
Supplement to

“Subnetwork State Functions Define

Dysregulated Subnetworks in Cancer”∗

Salim A. Chowdhury1, Rod K. Nibbe2,4 Mark R. Chance3,4, Mehmet Koyutürk1,4

(1) Dept. of Electrical Engineering & Computer Science, (2) Dept. of Pharmacology

(3) Dept. of Physiology & Biophysics, (4) Center for Proteomics & Bioinformatics

Case Western Reserve University, Cleveland, OH, USA.

In this supplementary document, we prove two theorems that support the algorithms described in [1] and
we present experimental results from systematic study of the performance of Crane when the value of the
tuneable parameters are varied. First, in Theorem 1, we provide bound on the score of a state function that
can be obtained by extending that state function, in terms of simple statistics of the smaller state function.
We use this result to develop efficient search algorithms that grow subnetworks in a bottom-up fashion,
effectively pruning the search space using the bound provided by this theorem. Then we provide two lemmas
that are used in the proof of this theorem. Subsequently, in Theorem 2, we provide a tight bound on the
information that any subnetwork state function can provide on the phenotype (J(fS , C)), for given number
of phenotype and control samples. This result is useful for obtaining a uniform criterion to score subnetwork
state functions. Specifically, by normalizing J(.) by the bound provided by this theorem, we obtain a scoring
criterion that ranges from 0 to 1 regardless of the number of phenotype and control samples in the dataset.
Finally, we provide the pseudo-code for the subnetwork search algorithm implemented by Crane.

In this document, we use the following conventions for notational convenience:

• q denotes p(1) = P (C = 1), that is the probability that the sample is associated with the phenotype
of interest.

• z denotes p(fS) = P (FS = fS), that is the probability that subnetwork S is in state fS in a given
sample.

• s denotes p(1|fS) = P (C = 1|FS = fS), that is the probability that a sample with state fS for the
genes in S is associated with the phenotype of interest.

• r denotes p(1|fR) = P (C = 1|FS = fR), that is the probability that a sample with state fR for the
genes in R is associated with the phenotype of interest.

• T denotes R \ S and fT denotes the state of T that is consistent with fR.

• γ denotes P (FT = fT |FS = fS), that is the probability of observing state fT for subnetwork T , given
that subnetwork S is in state fS .

• θ denotes P (C = 1|FS = fS , FT 6= fT), that is the probability that a sample is associated with the
phenotype of interest, given that subnetwork S is in state fS , but subnetwork T is not in state fT in
that sample.

For other notation and definitions, please refer to the main article [1].

∗The main article is to be published in the Proceedings of 14th Int’l Conf. on Research in Computational Molecular Biology
(RECOMB’2010).

1

Theorem 1 Consider a subnetwork S ⊆ V and associated state function fS . For any R ⊃ S, the following
bound holds:

J(fR;C) ≤ p(fS) max
c∈{0,1}

{
p(c|fS) log

1

p(c)

}
= Jbound(fS , C). (1)

Proof. This theorem and its proof are based on a more general result by Smyth & Goodman [2] in the
context of association rule mining.

Using the notation introduced at the beginning of this document, we can write J(fR;C) and Jbound(fS , C)
as follows:

J(fR;C) = zγ(r log(r/q) + (1− r) log((1− r)/(1− q))). (2)

Jbound(fS ;C) = zmax{s log(1/q), (1− s) log(1/(1− q))}. (3)

We will show that, for fixed S and fS , the maximum value that J(fR;C) attains cannot exceed Jbound(fS ;C)
(for any choice of T and fT). First, by definition of conditional probability, we note the following equality:

s = γr + (1− γ)θ. (4)

Since s is fixed, this equation represents a constraint that must be satisfied by r, γ, and θ. Thus, we will
bound J(fR;C) subject to this constraint. Note also that we can write this constraint as

γ =
s− θ
r − θ

=
θ − s
θ − r

. (5)

Without loss of generality, we assume s > q, that is the observation of state function fS increases the
probability of a sample being associated with the phenotype (fS ”indicates” phenotype). Since we consider
only two classes for the samples (phenotype or control), if the assumption does not hold (i.e., if fS “indicates”
control), then the following arguments still hold if we simply interchange the labels of sample classes.

Given that s > q, five different cases are possible: (i) q < s < r, (ii) q < s = r, (iii) q < r < s, (iv)
q = r < s, and (v) r < q < s. We consider each case separately.

Case (i): q < s < r. In this case, the probability of phenotype given the state of the larger subnetwork is
larger than the probability of phenotype given the state of the smaller subnetwork (and thus the additional
part of the larger subnetwork provides additional evidence indicating that the sample might be associated
with phenotype).

Since s < r, we have r > γr+(1−γ)θ from (4) and thus r > θ. Therefore, since 0 ≤ θ < s < r ≤ 1, we can
write by Lemma 1 (see below) that γ ≤ s/r, without putting any additional constraint on r. Consequently,
from (2), we obtain

J(fR;C) ≤ z s
r

(r log(r/q) + (1− r) log((1− r)/(1− q))) (6)

and thus
J(fR;C) ≤ zs(log(r/q) + (1/r − 1) log((1− r)/(1− q))). (7)

Since q < r ≤ 1, the second term in parenthesis is negative. Consequently, noting r ≤ 1, we obtain

J(fR;C) ≤ zs log(1/q) ≤ Jbound(fS , C). (8)

This proves the theorem for case (i).

Case (ii): q < s = r. In this case, the probability of phenotype given the state of the larger subnetwork
is equal to the probability of phenotype given the state of the smaller subnetwork (and thus the additional
part of the larger subnetwork does not provide additional information).

Noting λ ≤ 1 and replacing r with s, we can write

J(fR;C) ≤ z(s log(s/q) + (1− s) log((1− s)/(1− q))). (9)

Since 1− s < 1− q, the second term in parentheses is negative, so we have

J(fR;C) ≤ z(s log(s/q)) ≤ Jbound(fS , C). (10)

2

This proves the theorem for case (ii).

Case (iii): q < r < s. In this case, the observation of the state of the larger subnetwork increases the
probability of phenotype compared to background, but not to the extent that the smaller subnetwork does.

The proof here is very similar to that in case (ii). Let y(x) = x log(x/q) + (1 − x) log((1 − x)/(1 − q)).
Then we have y′(x) = log(x/q)− log((1−x)/(1−q)). Therefore, for x > q, since x/q > 1 and (1−x)/(1−q),
y′(x) is always positive and y is an increasing function of x. Consequently, for q < r < s, we have:

r log(r/q) + (1− r) log((1− r)/(1− q)) ≤ s log(s/q) + (1− s) log((1− s)/(1− q)). (11)

Once this inequality is etablished, the rest of the proof for case (iii) follows the proof for case (ii).

Case (iv): q = r < s. In this case, the probability of phenotype given the state of the larger subnetwork is
equal to background, thus the additional part of the larger subnetwork takes away all the evidence provided
by the smaller subnetwork in favor of phenotype.

By definition of J(.), J(fR;C) = 0 (both r/q and (1− r)/(1− q) are equal to 1 in (2)). Thus, J(fR;C)
trivially satisfies the bound, proving the theorem for this case.

Case (v): r < q < s. In this case, the additional part of the larger subnetwork reverses the direction of
evidence provided by the smaller subnetwork, that is the state function of the larger subnetwork increases
the probability of the sample being associated with control.

The proof in this case is very similar to that for case (i). Since r < s, using Equation 4 we have
r < γr+ (1− γ)θ and thus r < θ. Therefore, since 0 ≤ r < s < θ ≤ 1, we can write by Lemma 2 (see below)
that γ ≤ (1− s)/(1− r), without putting any additional constraint on r. Consequently, from (2), we obtain

J(fR;C) ≤ z 1− s
1− r

(r log(r/q) + (1− r) log((1− r)/(1− q))) (12)

and thus
J(fR;C) ≤ z(1− s)(log((1− r)/(1− q)) + (r/(1− r)) log(r/q)). (13)

Since r < q, the second term in parenthesis is negative and also 1− r ≤ 1; therefore

J(fR;C) ≤ z(1− s) log(1/(1− q)) ≤ Jbound(fS , C). (14)

This proves the theorem for case (v).

Lemma 1 For 0 ≤ x < a < b ≤ 1,
(a− x)

(b− x)
≤ a

b
.

Proof. Let x1 < x2. Since b− a > 0, we have x1(b− a) < x2(b− a). Adding x1x2 + ab to both sides of the
inequality, we obtain (a− x2)(b− x1) < (a− x1)(b− x2). Consequently, x1 < x2 implies

a− x2
b− x2

<
a− x1
b− x1

, (15)

and therefore the maximum of
(a− x)

(b− x)
for the interval 0 ≤ x < a occurs at x = 0, which is equal to

a

b
.

Lemma 2 For 0 ≤ b < a < x ≤ 1,
(x− a)

(x− b)
≤ 1− a

1− b
.

Proof. Let x1 > x2. Since a− b > 0, we have x1(a− b) > x2(a− b). Adding x1x2 + ab to both sides of the
inequality, we obtain (x1 − a)(x2 − b) > (x1 − b)(x2 − a). Consequently, x1 > x2 implies

x1 − a
x2 − a

>
x1 − b
x2 − b

, (16)

and therefore the maximum of
(x− a)

(x− b)
for the interval a < x ≤ 1 occurs at x = 1, which is equal to

1− a
1− b

.

3

Theorem 2 For a given gene expression dataset, let the fraction of phenotype samples be q. Then, for any
subnetwork S ⊆ V,

0 ≤ J(fS , C) ≤ max{−q log q,−(1− q) log(1− q)}. (17)

Proof. Assume that q and z are fixed. Then we can write J(fS ;C) as a function of s:

J(s) = z(s log(s/q) + (1− s) log((1− s)/(1− q))). (18)

Taking the derivative of this function with respect to s, we obtain

J ′(s) = z log
s(1− q)
q(1− s)

. (19)

Observe that J ′(s) assumes its zero at s = q. Furthermore, for s > q, since s/q > 0 and (1− s)/(1− q) < 0,
J ′(s) is always positive and J is an increasing function of s. Similarly, for s < q, J ′(s) is always negative
and J is a decreasing function of s. Consequently, J(s) is always non-negative and it assumes its maximum
at one of the boundaries of the range of values that s can take. Therefore, for fixed q, if we bound J(s) at
the boundaries that are enforced by z, we can write the bound on J as a function of z. The maxima of this
function over all values of z will provide a bound on J over all possible values of z and s for fixed q. We
analyze the cases z ≥ q and z ≤ q separately.

Case A: z ≥ q, that is the state function is observed at least as commonly as the phenotype of interest.
In this case, since the number of phenotype samples in which the state function is observed can be at most
equal to the number of all phenotype samples, we have s ≤ q/z. On the other hand, if z ≤ 1 − q , then
it is possible that none of the samples that exhibit the state function are associated with the sample, and
therefore s ≥ 0. Finally, when z ≤ 1 − q (which is only possible if z ≥ 1/2, the s will be minimized if
all samples that are not associated with the phenotype exhibit the state function, and therefore we have
s ≥ 1− (1− q)/z. Consequently, we have three boundary cases for s:

1. s = q/z, subject to q ≤ z ≤ 1.

2. s = 0, subject to q ≤ z ≤ 1− q.

3. s = 1− (1− q)/z, subject to max{q, 1− q} ≤ z ≤ 1.

We consider each of these boundary cases separately.

Case A1: Letting s = q/z in (18), we obtain

JA1(z) = z

(
q

z
log

1

z
+
z − q
z

log
z − q
z(1− q)

)
, (20)

and therefore JA1(z) = (z−q) log((z−q)/(1−q))−z log z. Consequently, J ′A1(z) = log((z−q)/(z(1−q))) ≤ 0
for q ≤ z ≤ 1 and therefore JA1(z) ≤ J(q) = −q log q, proving the bound for this case.

Case A2: Letting s = 0 in (18), we obtain JA2(z) = −z log(1 − q) and therefore JA2(z) ≤ J(1 − q) =
(1− q) log(1− q) for q ≤ z ≤ 1− q, proving the bound for this case.

Case A3: Letting s = 1− (1− q)/z in (18), we obtain

JA3(z) = z

(
q + z − 1

z
log

q + z − 1

qz
+

1− q
z

log
1

z

)
(21)

and therefore JA3(z) = (q + z − 1) log((q + z − 1)/q)− z log z. Consequently, J ′A3(z) = log((q + z − 1)/qz).
J ′A3(z) assumes its zero at z = 1, corresponding to a minimum at J(1) = 0. Therefore, if q ≤ 1 − q, then
JA3(z) attains its maximum at z = 1 − q, which gives JA3(z) ≤ JA3(q) = −(1 − q) log(1 − q). Otherwise
(q > 1 − q and hence q > 1/2), JA3(z) attains its maximum at z = q, which gives JA3(z) ≤ JA3(1 − q) =
(2q − 1) log((2q − 1)/q)− (1− q) log(1− q) ≤ −(1− q) log(1− q) since (2q − 1)/q ≤ 1 for 1/2 ≤ q ≤ 1. This
proves the bound for this case.

4

Case B: z ≤ q, that is the state function is observed at most as commonly as the phenotype of interest.
In this case, s can attain the value 1 if all samples that exhibit the state function are associated with the
phenotype of interest, thus s ≤ 1. On the other hand, for z ≤ 1− q, s can be as low as 0 if all samples that
exhibit the state function are samples that are not associated with the phenotype. Finally, if z ≥ 1− q, then
s has to be at least 1 − (1 − q)/z since at most this fraction of samples that exhibit the state function can
be samples that are not associated with the phenotype. Consequently, we have three boundary cases for s:

1. s = 1, subject to 0 ≤ z ≤ q.

2. s = 0, subject to 0 ≤ z ≤ min{1− q, q}.

3. s = 1− (1− q)/z, subject to 1− q ≤ z ≤ q.

We consider each of these boundary cases separately.

Case B1: Letting s = 1 in (18), we obtain JB1(z) = −z log q and therefore JB1(z) ≤ −q log q for 0 ≤ z ≤ q,
proving the bound for this case.

Case B2: Letting s = 0 in (18), we obtain JB2(z) = −z log(1−q) and therefore JB2(z) ≤ −(1−q) log(1−q)
for q ≤ z ≤ 1− q, proving the bound for this case.

Case B3: Observe that JB3(z) = JA3(z). As we know from case A3, JB3(z) is a decreasing function of z
and JA3(1− q) ≤ −(1− q) log(1− q), so JB3(1− q) ≤ −(1− q) log(1− q), proving the bound for this case.

5

Algorithm 1 Crane-ExtendStateFunction ((S,fS),T , j∗, b, d): Extends a subnetwork and associated
state function. Invoked for each gi ∈ V and Êi ∈ {0, 1} as Crane-ExtendStateFunction(({gi}, {Êi}), ∅,
j∗, b, d), where j∗, b, and d are user-defined.

Global: . V: Set of genes, C: Phenotype vector
. E: Gene expression associated with V and C, E : PPI dataset associated with V
Inputs: . (S,fS): Subnetwork/state-function pair to be extended
. j∗: Threshold on information provided by a state function on phenotype
. d: Maximum number of genes in a subnetwork
. b: Maximum number of immediate extensions of a subnetwork/state-function pair
Input/Output: . T : Set of state functions informative of phenotype.

1: if |S| == d then
2: if J(fS ;C) ≥ j∗ then
3: T ← T ∪ {(S, fS)}
4: end if
5: return
6: end if
7: Q ← ∅; gi ← most recently added gene to S
8: for each gk : (gi, gk) ∈ E and gk /∈ S do
9: S ′ ← S ∪ {gk}

10: for each Êk ∈ {0, 1} do
11: fS′ ← fS′ ∪ Êk; redundant← false
12: for gj ∈ S ′ do
13: if (J(fS′\{gj};C) ≥ J(fS′ ;C) then
14: redundant← true; break
15: end if
16: end for
17: if (not redundant) and ((Jmax(fS′ ;C) > j∗)) then
18: Q ← Q∪ {(S ′, fS′)}
19: end if
20: end for
21: end for
22: if Q = ∅ then
23: if J(fS ;C) ≥ j∗ then
24: T ← T ∪ {(S, fS)}
25: end if
26: return
27: end if
28: Qb ← set of top b subnetwork/state-function pairs in Q with respect to J(fS′ ;C)
29: for each (S ′, fS′) ∈ Qb do
30: Crane-ExtendStateFunction((S ′, fS′), T , j∗, b, d)
31: end for

6

Effect Of Parameters on Performance of Crane
Here, we investigate the systematic effect of parameters used to configure Crane on classification perfor-
mance of identified subnetworks. We vary the parameter under test and fix the other parameters. The
classification performance is reported using the average ‘F Measure’ for top 10 subnetworks. The tuneable
parameters of Crane are:

• d: d is the maximum number of genes belonging to a subnetwork. Crane stops extending a subnetwork
when the number of genes in the subnetwork rearches d. In other words, d determines the depth of the
search.

• b: b is the number of state functions selected by Crane at each iteration with maximum J(.) value.
So b determines the breadth of the search.

• j∗∗: j∗∗ is the minimum J value each subnetwork state function must satisfy in order to be considered
extensible. Thus this parameter allows pruning of larger state functions using statistics of smaller state
functions.

• α: α is the fraction of the entries in the normalized gene expressin matrix that is set to H (high
expression). The rest of the (1− α) entries of the gene expression matrix is set to L (low expression).

Figure 1: Peformance of Crane across different value of the tuneable parameters. For all experiments,
subnetworks are discovered on GSE3964 and tested on samples of GSE6988. F Measure of the classifier
is calculated by increasing the number of subnetworks gradually from 1 to 10 and average F Measure is
reported. (A), (B), (C) and (D) show performance of Crane for parameters d, b, j∗∗ and α respectively. In
(A), b = 10 and j∗∗ = 0.15. In (B), d = 3 and j∗∗ = 0.15. In (C), b = 10 and d = 3. In (D), b = 10,
j∗∗ = 0.15 and d = 3
.

Figure shows the effect of choosing different value of the above mentioned parameters on the classification
performance of Crane. We discuss the results one at a time for each parameter.

7

• d: A high value of d indicates larger subnetworks. Larger subnetworks allow us to gain more insights
into the mechanistic bases of diseases by incorporating more interactions amongst the genetic products
that might be informative. But large subnetworks might also pose a negative impact on the performance
of the classifiers by incorporating more dimensionality. As can be seen from the figure, while values
of d > 1 give impressive classification accuracies of more than 80%, the performance shows slight
degradation when d > 3. This might be attributed to the curse of the dimensionality associated with
the larger subnetworks.

• b: The classifier shows better performance when the breadth of the search, b, is increased. The graph
show expected monotonically increasing behavior for all the 4 cases where b takes value ranging within
1 to 15.

• j∗∗: Large value j∗∗ ensures that the discovered subnetworks are highly informative of the phenotype
and thus, it is quite natural that, subnetworks associated with high j∗∗ would show better performance
in terms of classifying the samples. The upward trend in the graph of Figure (C) with increased value
of j∗∗ shows consistency between the experimental results and theoretical aspect.

• α: Although Crane shows very good performance across different values of α, it’s performance reaches
the peak when 25% of the genes are expressed across all samples. Thus, it can be hypothesized from
this performance trend, that, on average, in a cell, 25% of the genes are expressed.

Thus from the discussion above, it is easy to comprehend that the performance of Crane across different
value of the parameters matches our logical understanding of the algorithm.

8

References

[1] S. A. Chowdhury, R. K. Nibbe, M. R. Chance, and M. Koyutürk. Subnetwork state functions define
dysregulated subnetworks in cancer. In 14th Int’l Conf. on Research in Computational Molecular Biology
(RECOMB’2010), in press.

[2] P. Smyth and R. M. Goodman. An information theoretic approach to rule induction from databases.
IEEE Trans. on Knowl. and Data Eng., 4(4):301–316, 1992.

9

