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Abstract

Motivation: Protein phosphorylation is a ubiquitous mechanism of post-translational modification that plays a cen-
tral role in cellular signaling. Phosphorylation is particularly important in the context of cancer, as downregulation of
tumor suppressors and upregulation of oncogenes by the dysregulation of associated kinase and phosphatase net-
works are shown to have key roles in tumor growth and progression. Despite recent advances that enable large-
scale monitoring of protein phosphorylation, these data are not fully incorporated into such computational tasks as
phenotyping and subtyping of cancers.

Results: We develop a network-based algorithm, CoPPNet, to enable unsupervised subtyping of cancers using phos-
phorylation data. For this purpose, we integrate prior knowledge on evolutionary, structural and functional associ-
ation of phosphosites, kinase–substrate associations and protein–protein interactions with the correlation of
phosphorylation of phosphosites across different tumor samples (a.k.a co-phosphorylation) to construct a context-
specific-weighted network of phosphosites. We then mine these networks to identify subnetworks with correlated
phosphorylation patterns. We apply the proposed framework to two mass-spectrometry-based phosphorylation
datasets for breast cancer (BC), and observe that (i) the phosphorylation pattern of the identified subnetworks are
highly correlated with clinically identified subtypes, and (ii) the identified subnetworks are highly reproducible
across datasets that are derived from different studies. Our results show that integration of quantitative phosphoryl-
ation data with network frameworks can provide mechanistic insights into the differences between the signaling
mechanisms that drive BC subtypes. Furthermore, the reproducibility of the identified subnetworks suggests that
phosphorylation can provide robust classification of disease response and markers.

Availability and implementation: CoPPNet is available at http://compbio.case.edu/coppnet/.

Contact: marzieh.ayati@utrgv.edu or mehmet.koyuturk@case.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein phosphorylation is a ubiquitous mechanism of post-
translational modification observed across cell types and species,
and plays a central role in cellular signaling. Phosphorylation is
regulated by networks composed of kinases, phosphatases and their
substrates. Phosphorylation is particularly important in the context
of cancer, as downregulation of tumor suppressors and upregulation
of oncogenes (often kinases themselves) by dysregulation of the
associated kinase and phosphatase networks are shown to have key
roles in tumor growth and progression (Halim et al., 2013; Rosell
et al., 2009). To this end, characterization of signaling networks
enables exploration of the interconnected targets leading to the de-
velopment of kinase inhibitors to treat a variety of cancers

(Butrynski et al., 2010; Perrotti and Neviani, 2013). In response to
the growing need for large-scale monitoring of phosphorylation,
advanced mass spectrometry (MS)-based phospho-proteomics tech-
nologies have exploded. These technologies enable simultaneous
identification and quantification of thousands of phosphopeptides
and phosphosites from a given sample (Yates III. et al.. 2014).

MS-based phospho-proteomics screens create a great opportun-
ity to discover biology that may not be observed in transcriptomic
and proteomic data (Archer et al., 2018). Indeed, recent research
shows that, as compared to gene expression, data on post-
transcriptional modifications can be more useful in subtyping can-
cers. As a striking example, monitoring of the specific phosphoryl-
ation pathways reveals a novel breast cancer (BC) subtype that is
unique to the phospho-proteomics and cannot be captured based on
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DNA mutations, mRNA-level expression, or protein expression
(Mertins et al., 2016).

Although phospho-proteomics provides a critical data source to
model signaling pathways, systematic methods for network analysis
of phospho-proteins and phosphosites are relatively scarce. Since
most of the methods designed for genomics and general proteomics
are not designed to handle the complexity of phospho-proteomics,
phospho-proteomic analyses are often centralized at the protein
level. However, due to the many-to-one mapping from phosphosites
to proteins (i.e. each protein may have multiple phosphorylation
sites), and also multi-layer annotations (e.g. regulatory function of
phosphosites and kinase-phosphosite associations), novel
approaches are needed to fully leverage the richness of the data. To
enable analysis of phospho-proteomic data at the level of phosphor-
ylation sites and the relationships between these sites, we propose
CoPPNet, a network-based algorithm for the analysis of phospho-
proteomic data, which offers the following innovations: (i) construc-
tion of a PhosphoSite Functional Association (PSFA) network that
represents the functional relationship among individual phospho-
sites. To create PSFA network, we incorporate known structural,
evolutionary and functional associations between phosphosites, pro-
tein–protein interactions (PPIs) and kinase-substrate associations
(KSA). (ii) Utilization of the PFSA network in the identification of
phosphorylation modules in BC, through filtering of phosphosite
pairs that are potentially functionally associated. CoPPNet accom-
plishes this by assigning co-phosphorylation (Co-P)-based weights
to the edges in PFSA network, where Co-P quantifies the similarity
of the phosphorylation patterns of phosphosites across different BC
samples. We have recently introduced the notion of co-
phosphorylation and used it in the context of predicting KSAs,
showing that it significantly enhances the coverage and accuracy of
prediction methods over those that utilize static data such as sequen-
ces, structures and generic networks (Ayati et al., 2019).
Conceptually, Co-P is similar to gene co-expression, which has been
shown to be effective in many biomedical applications (Liu et al.,
2016; Yang et al., 2014). (iii) Development of a scoring scheme
accompanied by an algorithm to identify co-phosphorylated signal-
ing modules from this weighted PSFA network.

We test the proposed framework in the context of unsupervised
identification of subtype-specific signaling modules in BC. For this
purpose, we apply CoPPNet on two independent public phospho-
proteomics datasets for BC. BC is categorized into four molecular
subtypes: Luminal A, Luminal B, HER2-enriched and triple-
negative (Basal-like). Among the subtypes, Luminal A has the great-
est survival, and Basal has the poorest survival (Fallahpour et al.,
2017). While constructing the weighted PSFA network and identify-
ing co-phosphorylation modules on this network, we do not use any
information on the samples’ clinically determined subtypes.

Our results show that the statistically significant modules identi-
fied by CoPPNet are reproducible between the two independent
datasets and can capture the differential phosphorylation
between BC subtypes. The identified subtype-specific signaling mod-
ules have the potential to provide significant insights into the disrup-
tion of signaling processes in different cancer subtypes, and can be
used in developing subtype-specific therapeutic targeting strategies
for BC.

2 Materials and methods

The workflow of the proposed framework for unsupervised identifi-
cation of co-phosphorylation (Co-P) modules is shown inFigure 1.
As seen in the figure, we first construct a network to model the func-
tional relationship between phosphorylation sites. For this purpose,
we incorporate available knowledge on functional associations be-
tween phosphosites, KSAs and PPIs, and integrate these knowledge
into a PSFA network. Subsequently, we use a module identification
algorithm to identify subnetworks of the PSFA network that are
composed of highly co-phosphorylated phosphosites (called Co-P
modules). The premise of this approach is that, pairs of phosphosites
whose phosphorylation is related to a specific cancer subtype will
exhibit co-variation across different samples. For this reason, we ex-
pect that Co-P can highlight subtype-specific signaling modules even
if subtype information is not available for the samples that are used
to compute Co-P.

To assess the biological significance of the identified significant
modules, we comprehensively evaluate their statistical significance
and investigate the reproducibility of significant modules using a

Fig. 1. Workflow of CoPPNet. We first construct a PSFA network to represents the functional relationship among phosphosites, using generic KSA, phosphosites associations

and PPI data. The nodes of the PSFA network represent phosphosites and the edges represent (1) KSA, (2) phosphosites targeted by a common kinase, (3) functional associa-

tions between phosphosites, (4) physical interaction between proteins harboring the sites. For a given phosphorylation dataset collected from multiple cancer samples, we

weigh the edges of the PSFA network based on the co-phosphorylation (Co-P) of pairs of sites across these samples. Then, we identify Co-P modules as subnetworks composed

of heavy edges in this weighted network. Finally, we comprehensively assess the significance, reproducibility, subtype-specificity and biological relevance of the Co-P modules
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dataset that comes from a different patient cohort. Subsequently, we
assess the differential phosphorylation of the sites in the signaling
modules between different subtypes and perform pathway enrich-
ment analysis and kinase enrichment analysis on these modules to
annotate the modules.

PhosphoSite Functional Association (PSFA) Network. We define
a PSFA network as a network that represents potential functional
relationships between pairs of phosphosites. This network serves the
purpose of filtering out the search space for pairs of phosphosites
whose co-phosphorylation may reveal their functional relationship
in the context of a specific process (e.g. dysregulation of a signaling
pathway in the progression of a certain cancer subtype). In PSFA
network G(V, E), V denotes the set of nodes in the network, each of
which represents a phosphosite; thus a protein is represented by
multiple nodes in the PSFA network. The edge set E denotes the set
of pairwise functional relationships between phosphosites, where an
edge sisj 2 E between phosphosites si; sj 2 V may represent one of
the following relationships:

• Functional, Evolutionary and Structural Association between

Phosphosites (FES). PTMCode is a database of known and pre-

dicted functional associations between phosphorylation and

other post-translational modification sites (Minguez et al.,

2015). The associations included in PTMCode are curated from

the literature, inferred from residue co-evolution, or are based on

the structural distances between phosphosites. We use PTMcode

as a direct source of functional, evolutionary and structural asso-

ciations between phosphorylation sites.
• Kinase–substrate association (KSA). If phosphosite si is a target

of kinase pk and sj is a phosphosite on kinase pk, then there is an

edge between si and sj in the PFSA network. We call these edges

KSA edges. This relationship indicates potential functional asso-

ciation between si and sj since the regulation of kinase pk through

phosphorylation of sj may influence action of pk on si. In our

experiments, we use PhosphositePLUS as the main source of in-

formation for KSA (Hornbeck et al., 2015).
• Phosphosites targeted by common kinase (TCK). If phosphosites

si and sj (which may be on the same protein or on different pro-

teins) are targeted by kinase pk, then we call them a shared-kin-

ase pair and include an edge between si and sj in the PSFA

network. We call these edges TCK edges. We include TCK edges

in the PSFA network since the activity of pk in a specific process

may influence the phosphorylation of both si and sj, which may

be captured by their co-phosphorylation. Indeed, studies have

shown that the substrates of a protein kinase can have significant

similarity in terms of their biological functions (Li et al., 2007).
• Protein–protein interaction (PPI). If two proteins p‘ and pr phys-

ically interact, for any site si is on p‘, and site sj is on protein pr,

then there is an edge between si and sj in the PSFA network. We

call these edges PPI edges. We include PPI edges in the PSFA net-

work, since these edges may capture functional relationships and

post-transcriptional modifications beyond phosphorylation, and

may remedy the sparse and incomplete nature of existing kinase–

substrate annotations. In our experiments, we use the PPIs that

are annotated as ‘physical’ in the BIOGRID PPI database (Chatr-

Aryamontri et al., 2017) to infer the PPI edges in the PFSA

network.

The PSFA network is a generic network of potential functional
associations between pairs of phosphosites. In the next section, we
discuss how to assign weights to the edges of the PSFA network to
represent the co-phosphorylation of pairs of phosphosites in a spe-
cific context.

Assessment of co-phosphorylation. As with gene co-expression,
correlated phosphorylation of phosphosites on proteins may be

indicative of their functional relationship in a specific biological
context (Ayati et al., 2019). Based on this premise, we use context-
specific phosphorylation data, obtained from MS-based phospho-
proteomics assays, to assess the co-phosphorylation (Co-P) of all
pairs of phosphosites that are connected in the PSFA network. In
gene co-expression analysis, Pearson’s correlation and mutual infor-
mation are commonly used to assess linear and non-linear relations
between the expression profiles of genes (Ballouz et al., 2015; Meyer
et al., 2008). Recognizing the benefits and shortcomings of each
method, Song et al. (2012) developed bi-weight mid-correlation as
an alternative, and showed that it outperforms mutual information
in terms of capturing biologically relevant relationships between
genes, while being more robust to outliers than Pearson’s correl-
ation. Motivated by these results, we use bi-weight mid-correlation
to assess the Co-P of pairs of phosphosites.

Identification of co-phosphorylation modules. Given a weighted
PSFA network GðV;E;wÞ associated with a specific phosho-
proteomic dataset, our objective is to identify subnetworks of the
PSFA network that are enriched in highly co-phosphorylated (posi-
tively or negatively) pairs of phosphosites. This problem is similar to
the well-studied problem of identifying altered subnetworks, in
which the nodes are scored based on their dysregulation (e.g. z-score
indicating differential gene expression) in a given condition (Dittrich
et al., 2008) or association with a disease (e.g. �log of the P-value
of association) (Ayati et al., 2015). In this network, one or more
connected subnetworks composed of high-scoring nodes are sought.
In contrast, in our problem, scores are associated with edges, thus
the problem is also similar to the infamous community detection
problem in network analysis.

As with the altered subnetwork identification problem, the key
component of a solution to the problem is the definition of an ob-
jective function for scoring a given subnetwork. Inspired by
Newman’s definition of network modularity (Clauset et al., 2004)
and our adaptation of this measure to the identification of disease-
associated modules (Ayati et al., 2015), we here propose a
modularity-based approach to scoring co-phosphorylation modules.
In this approach, subnetworks are scored based on the difference be-
tween their total edge weight and their expected total edge weight
under a reference model that considers the degree distribution of the
network (in our case, the distribution of Co-P across the network).
Namely, for a given set of phosphosites Q � V, we define the Co-P
score of Q according to ‘ as

rðQÞ ¼
X

si ;sj2Q

wðsi; sjÞ �w (1)

where w is the mean of the absolute values of Co-P across all pairs
of phosphosites, and wðsi; sjÞ is Co-P of si and sj if there is an edge
between them and 0 otherwise. Thus, it penalizes the non-existent
edges.

Having defined the Co-P score of a subnetwork as in Equation 1,
given weighted PSFA network GðV;E;wÞ, we search for subnet-
works of G that maximize rðQÞ. Since the maximum-weight-
induced subgraph problem is NP-hard (Koyutürk et al., 2006), we
use a greedy algorithm for this purpose. Namely, we search the net-
work by starting from the phosphosite with the largest fold change,
repeatedly examining the phosphosites in the neighborhood of the
phosphosites so far in the subnetwork, and adding to the subnet-
work the phosphosites that provide the best improvement of the
subnetwork score. Once we identify a subnetwork with locally max-
imal Co-P score, we remove this subnetwork from G and use the
greedy algorithm again to identify the next subnetwork with locally
maximal Co-P score. We repeat this procedure until the entire net-
work is exhausted, and sort all of the identified subnetworks (called
Co-P modules) in decreasing order of their Co-P score. The pseudo-
code of the algorithm is provided in Supplementary Material. We
also compare the performance of this algorithm against two other
state-of-the-art module identification algorithms: Girvan and
Newman’s algorithm for the identification of communities (Girvan
and Newman, 2002) and the WGCNA algorithm for clustering gene
co-expression networks (Langfelder and Horvath, 2008; Zhang and
Horvath, 2005). We observe that the subnetworks identified by
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other algorithms are less parsimonious and tend to be composed of
sites that are on the same protein. CoPPNet identifies more parsimo-
nious and statistically significant subnetworks by including a pen-
alty term for non-extant edges in its objective function. Since the
PFSA network does not include edges between sites on the same pro-
tein unless they are functionally associated, CoPPNet is able to iden-
tify signaling modules that span across multiple proteins. We report
these results in detail in Supplementary Material.

Assessment of statistical significance. To assess the statistical sig-
nificance of all identified Co-P modules, we use two types of permu-
tation tests. For this purpose, we use two null models: (i) randomize
the weights of the edges of the PSFA network while preserving the
topology of the network (thereby preserving the degree distribution
of the phosphosites) to generate N permuted networks, and (ii) we
permute the interactions while preserving the degree of phosphosites
(we use N¼100 in the experimental results reported in the next sec-
tion). On each of the permuted networks, we identify and rank Co-P
modules using the algorithm described in the previous section. We
then assess the statistical significance of each module identified on
the original network by comparing its score against the scores of the
subnetworks that are ranked at least as high as itself on the per-
muted networks. We also visualize the scores of the identified mod-
ules in the context of these cumulative empirical distributions. We
pick the modules that are statistically significant in terms of both
null models for further analysis.

Assessment of subtype specificity. Although the weights of edges
in the PSFA network are computed using co-phosphorylation (Co-
P), which is agnostic to the subtypes of the samples, Co-P captures
the co-variation of phosphorylation levels of phosphosites across
different samples. Therefore, the identified modules have the poten-
tial to be associated with subtype-relevant mechanisms. Motivated
by this insight, we investigate if the identified Co-P modules are
composed of phosphosites that exhibit differential phosphorylation
between cancer subtypes. For this purpose, we assess the differential
phosphorylation of each phosphosite in a module between different
subtypes. We use standard t-tests to compare the distribution of
relative phosphorylation level (with respect to the common refer-
ence) in different subtypes.

Assessment of predictive ability. To assess the utility of identified
modules in predicting subtypes, we train a support vector machine
(SVM)-based classifier on one dataset using the sites in the signifi-
cant modules as features and assess the performance of this classifier
in predicting subtypes on the other dataset. We compare the per-
formance of these module-based features against a full model (incor-
porating all sites) and a model that incorporates all sites that are
significantly deferentially phosphorylated (P<0.05) between sub-
types on the training dataset.

Assessment of reproducibility. We assess the reproducibility of
identified Co-P modules by investigating the overlap between sig-
nificant modules identified on independent datasets. To assess the
overlap between two Co-P modules that are identified in two inde-
pendent datasets, we use standard hypergeometric test. We assess
the reproducibility of subtype specificity by computing the correl-
ation between the fold changes of sites in the modules with respect
to subtypes across the two datasets. We assess the significance of
this correlation empirically using a permutation test.

Kinase substrate enrichment analysis. Kinase substrate enrich-
ment analysis (KSEA) seeks to identify kinases whose targets exhibit
significantly altered phosphorylation levels in a given condition.
KSEA scores each kinase based on the relative phosphorylation and
dephosphorylation of its substrates (i.e. fold change). To assess the
value added by Co-P modules, we perform kinase enrichment ana-
lysis by restricting KSEA to the substrates that are in the significant
modules as opposed to all phosphosites that are identified in the
study. To infer the differential activity of kinases between subtypes,
we compare the score of kinases which are computed using the fold
change of target phosphosites across samples in different subtypes.
We identify the kinases that are predicted to have different activity
by KSEA using all sites versus module-restricted sites and investigate
the association of these kinases with survival using integrated gene

expression data and survival information of 1809 patients from the
Gene Expression Omnibus (GEO) (Györffy et al., 2010).

Protein expression analysis. We also investigate if protein phos-
phorylation data provide information on cancer subtypes beyond
what can be captured by protein expression. For this purpose, we
utilize mass-spectrometry-based protein expression data that is
obtained from the samples that are used to obtain the phospho-
proteomic data used in our computational experiments. We utilize
protein expression data in the following way: using the phospho-
proteomic data, we identify phosphosites in Co-P modules that are
significantly differentially expressed (P<0.05) between different
subtypes. Subsequently, using proteomic data, we assess the differ-
ential expression of the proteins that harbor these significant phos-
phosites between different subtypes. If the protein that harbors the
site is not identified in the protein expression data, we exclude them
from the analysis. The result of this analysis is presented in
Supplementary Material.

3 Results and discussion

3.1 Datasets
Phosphoproteomics data. We use two independent public quantita-
tive MS-based phospho-proteomics datasets obtained from BC
Patient-Derived Xenografts (PDX).

• Huang et al. data: Huang et al. (2017) used isobaric tags for rela-

tive and absolute quantification (iTRAQ) to identify 56 874

phosphosites in 24 BC PDX models. The clinically determined

subtypes for the samples in this dataset are Basal for 10 samples,

Luminal for 9 samples and HER2-enriched for 5 samples. We re-

move phosphosites with missing intensity values in any sample.

This results in intensity data for 15 780 phosphosites from 4539

proteins, where 13 840 serines, 2280 threonines and 67 tyrosines

are phosphorylated. Protein expression data for all of these sam-

ples are also available.
• Mertin et al. data: The NCI Clinical Proteomic Tumor Analysis

Consortium conducted an extensive MS-based phospho-proteo-

mics of TCGA BC samples (Mertins et al., 2016). After selecting

the subset of samples that have the highest coverage and filtering

the phosphosites with missing intensity values in those tumors,

the remaining data contained intensity values for 11 018 phos-

phosites mapping to 8304 phosphoproteins in 20 tumors. This

dataset contains four Basal, nine Luminal and seven HER2-

enriched samples.

Functional, Evolutionary and Structural Association between
Phosphosites (FES). We use PTMcode, a database for functional
associations of post-translational modifications within and between
proteins (Minguez et al., 2015). The functional association between
PTM sites have been reported based on the literature survey, co-
evolution of sites, structural proximity and if PTMs at the same resi-
due and location are within PTM highly enriched protein regions.
For our analysis, we just focus on the functional associations be-
tween phosphorylation sites of different proteins.

Kinase–substrate associations (KSAs). We use PhosphoSitePLUS
as a reference dataset for KSAs (Hornbeck et al., 2015).
PhosphoSitePLUS reported 9699 KSA over 347 kinases.

Protein–protein interaction (PPI) data. We use a generic human
PPI network downloaded from BioGRID database at https://thebiog
rid.org (Chatr-Aryamontri et al., 2017). This network contains
194 639 interactions among 18 719 proteins.

The number of sites and edges in the final PSFA network and
their types are shown in Table 1. This result suggests that all differ-
ent types of edges contribute to the functional relevance of the phos-
phosites in the modules. Although there are more PPI edges in the
PSFA network, TCK edges play an important role in the identifica-
tion of signaling modules, since these edges induce cliques in the

4 M.Ayati et al.
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PFSA network. In this respect, CoPPNet implicitly identifies kinases
whose targets exhibit enriched differential phosphorylation in spe-
cific subtypes. We elaborate on this feature of CoPPNet in the con-
text of kinase enrichment analysis later in this section. The overlap
between different types of edges is presented in Supplementary
Table S1.

3.2 CoPPNet identifies co-phosphorylation (Co-P) mod-

ules that are statistically significant and reproducible
We identify co-phosphorylated subnetworks on each of the two
datasets using CoPPNet. We investigate the statistical significance of
these subnetworks and visualize the results of this analysis in
Figure 2a. As seen in the figure, the two top-scoring subnetworks
identified on both datasets have scores at least two standard devi-
ation above the mean of the top subnetworks identified on 100
randomized networks. At a q-value threshold of 0.01, two of these
subnetworks are detected to be statistically significant for each

dataset. Note that since module identification is exhaustive, we do
not expect all the identified modules to be significant. In contrast,
we observe that, with the exception of the highest-scoring two mod-
ules, the scores of all other modules fall within one standard devi-
ation of the average score of modules identified on permuted
datasets. This confirms that our null models are realistic.

We also investigate the reproducibility of the significant modules
identified on Huang et al. and Mertin et al. datasets. In Figure 2b,
the green circles represent the Co-P modules identified on Huang
et al. dataset and the pink circles represent the Co-P modules identi-
fied on Mertin et al. dataset. As seen in the figure, there is consider-
able overlap between the top Co-P modules identified on each
dataset; 26 out of the 91 sites in the top Huang et al. module and 65
sites in the top Mertin et al. module are identical. This overlap is
highly statistically significant according to hypergeometric test and
is particularly impressive considering that some phosphosites may
not be present in a dataset because of the limited coverage of MS-
based phospho-proteomics. Indeed, only 41 of 91 sites in the top
Huang et al. module are identified in the Mertin et al. study, and
only 54 of the 65 sites in the top Mertin et al. module are identified
in the Huang et al. study. Many of these phospho-proteins such as
THRAP3 (Beli et al., 2012), NBN (Di Masi et al., 2011), RAD18
(Tateishi et al., 2000) and CDK7 (Li et al., 2017) are playing im-
portant role in different cancers.

The second top-scoring Co-P modules identified in the two data-
sets, which are both highly significant (q<0.01), also exhibit signifi-
cant overlap. Namely, 18 out of the 68 sites in the Huang et al.
module (of which 33 are present in the Mertin et al. dataset) and 68
sites in the Mertin et al. module (of which 49 are present in the
Huang et al. dataset) are identical. Note also that two of the sites in
the top Huang et al. module are in the second Mertin et al. module,
and one of the sites in the top Mertin et al. module is in the second-
ranked Huang et al. module. The significant overlap and concord-
ance between the top identified modules across two datasets show
that the identified modules are highly reproducible and thus likely to
be highly relevant to the dysregulation of signaling processes in BC.
We also compare the significant modules with the modules extracted
from gene co-expression data published in Wolf et al. (2014). The
paper reported 11 modules. One of the co-expression modules they
reported has 18 genes common with top two significant modules
identified by our algorithm.

3.3 Co-P modules identified via unsupervised analysis

are associated with BC subtypes
Since the subtype information is not used in the construction of the
PSFA network and the assessment of co-phosphorylation, the identi-
fication of the Co-P modules is agnostic to the clinically determined
subtypes of the samples; i.e. CoPPNet is an unsupervised method for
the identification of BC-associated signaling modules. However,
since the Co-P modules capture co-variation across different samples
and this variation can be associated with subtypes, these modules
can be informative on subtypes. Motivated by this consideration, we
investigate if the phosphorylation levels of phosphosites in the iden-
tified modules can differentiate BC subtypes. The results of this ana-
lysis for the Huang et al. dataset are shown in Figure 3 and
Supplementary Figure S1. Subtype-specific differential phosphoryl-
ation of Co-P modules identified on the Mertin et al. dataset are pre-
sented in Supplementary Figure S2.

As seen in Figure 3, top significant Co-P module identified on
the Huang et al. dataset is highly enriched in phosphosites with sig-
nificant differential phosphorylation between Luminal and Basal
subtypes. There are 14 phosphosites in the top Huang et al. module
with significant differential phosphorylation between Luminal and
Basal subtypes (P < 0.05). Eight (DPF2-T176, THRAP3-T874,
TERF2-S365, EIF4A3-T163, SETDB1-S1066, TCOF1-S982,
PRPF31-S451, PML-S518) out of 14 of these sites are hyper-
phosphorylated in Basal samples and de-phosphorylated in Luminal
samples. For some of the proteins harboring these sites, the differen-
tiation between BC subtypes also has been captured at the level of
mRNA expression. For example, PML (promyelocytic leukemia)

Table 1. Number of phosphosites and edges in PSFA network and

statistically significant modules

Type of edges #

sites/# edges

PSFA network 9652/

173 772

Module

191/4095

Module 268/2026

FES 7999 1 6

KSA 3024 93 306

TCK 34 857 4095 1714

PPI 133 536 46 17

Fig. 2. CoPPNet identifies highly significant and reproducible co-phosphorylation

(Co-P) modules. (a) Statistical significance of identified subnetworks in two BC

datasets. For each dataset, the blue curve shows Co-P scores (y-axis) of the highest

scoring 10 subnetworks in decreasing order (rank shown on x-axis). For each rank i

on the x-axis, the red (green) curve and error bar show the distribution of the scores

of i highest scoring subnetworks in 100 randomized networks obtained by permut-

ing the edge weights (edges). (b) Reproducibility of significant Co-P modules be-

tween two independent dataset Huang et al. and Mertin et al. The size of the circles

indicates the number of phosphosites in each Co-P module, the number in the circle

shows its rank among all identified subnetworks. The thickness of the edges repre-

sents the significance of the overlap between the two Co-P modules based on hyper-

geometric test. (Color version of this figure is available at Bioinformatics online.)
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and SETDB1 (SET Domain Bifurcated 1) are significantly up-
regulated in Basal cancers as compared to Luminal cancers, and
their expression is related to the survival rate of the patients
(Carracedo et al., 2012; Jiang et al., 2016). We have also compared
the relative phosphorylation levels of the sites in the identified mod-
ules (Luminal versus Basal) between the Huang et al. and Mertin
et al. datasets. For module 1, the Pearson, Spearman and biweight
mid-correlation between the relative phosphorylation levels of the
sites across the two datasets are, respectively, 0.37 (P < 0.004), 0.37
(P<0.003) and 0.39 (P<0.005). For module 2, the Pearson,
Spearman and biweight mid-correlation between the relative phos-
phorylation levels of the sites across the two datasets are, respective-
ly, 0.03 (P<0.41), 0.41 (P<0.01) and 0.25(P<0.01). The result of
this analysis is presented in Supplementary Figure S3.

3.4 Using co-phosphorylation modules for subtype

prediction
To investigate how the modules can distinguish the subtypes, we use
the Co-P modules identified by CoPPNet as features for predicting
subtypes on a different dataset. In this analysis, we train a SVM-
based classifier for predicting subtypes using the Huang et al. dataset
as training data. We then test the performance of this classifier on
the Mertin et al. dataset. For this analysis, for all models that were

considered, we restricted the analysis to the sites that were identified
in both datasets.

Using this setting, we compared the performance of a model
which uses the sites in the significant modules (identified on training
data) as features against models that use (i) all the sites that are iden-
tified in both datasets (full model), (ii) sites with significant differen-
tial phosphorylation levels (P<0.05) in the Huang et al. dataset
(feature selection using significance of individual sites) and (iii) the
top 74 sites according to their differential expression on the Huang
et al. dataset (number of features identical to the number of features
used by the module-based classifier). The results of this analysis are
shown in Table 2. As seen on the table, models that use Co-P mod-
ules outperform individual sites and significant sites. While the lim-
ited number of samples that are available pose limitations on the
generalizability of these results, the improvement provided by Co-P
modules demonstrates the promise of Co-P-based analysis in differ-
entiating between subtypes.

3.5 Co-P modules provide a focal point for kinase

activity inference
To further understand the contribution of PSFA network and co-
phosphorylation analysis, we assess the value added by the Co-P
modules to the inference of the differential activity of kinases

Fig. 3. The phosphorylation sites in top Co-P modules identified in Huang et al. via unsupervised analysis are associated with BC subtypes. The fold change of the phosphosites

in each module are sorted in increasing order of average relative phosphorylation in Luminal samples (purple) with respect to the common reference. The green bars represent

the average fold change of phosphorylation in Basal samples. (Color version of this figure is available at Bioinformatics online.)

Table 2. Performance of models for subtype prediction using all phosphosites, significant phosphosites (P-value<0.05)

and phosphosites in significant Co-P modules

All sites (5476 sites)

Accuracy¼46%

All significant sites (621 sites)

Accuracy¼46%

Real\predicted Basal Luminal Real\predicted Basal Luminal

Basal 4 0 Basal 4 0

Luminal 7 2 Luminal 7 2

Significant sites (74 sites)

Accuracy¼46%

Module 1 & 2 (74 sites)

Accuracy¼84%

Real\predicted Basal Luminal Real\predicted Basal Luminal

Basal 4 0 Basal 4 0

Luminal 7 2 Luminal 2 7
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between Basal and Luminal subtypes. For this purpose, we use the
KSEA tool, which infers the differential activity of a kinase based on
the differential phosphorylation of its substrates (Casado et al.,
2013). In the kinase enrichment results shown in Figure 4a, the ana-
lysis is restricted to the target sites of kinases that are in the signifi-
cant Co-P modules (Basalm and Luminalm) as opposed to all known
target sites of the kinase that are identified in the study (BasalA and
LuminalA). This analysis infers several kinases with significantly
altered activity between the two subtypes. Some of these kinases
show different patterns of activity when we limit the KSEA to the
phosphosites in the significant modules. To assess the relevance of
these kinases, we used the microarray data of BC (Györffy et al.,
2010), and ran Kaplan–Meier survival analysis to investigate
whether the expression of these kinases is correlated with survival
rate. It is well-established that Basal subtype is associated with lower
survival rate as compared to Luminal subtype (Fallahpour et al.,
2017). We observed that, for AURKA, PRKCI, higher expression is
associated with lower survival rate (Fig. 4b). KSEA analysis that is
restricted to Co-P modules also suggested that these kinases are

hyperactive in the Basal samples, however, KSEA on all the phos-
phosites was not able to capture the association of these kinases
with the subtypes. For MAPK9 and CDK2, lower expression is asso-
ciated with lower survival rate, which is consistent with the kinase
activity inferred by restricting to the Co-P modules. The result of
this analysis for Mertin et al. data is presented in Supplementary
Figure S5.

4 Conclusion

In this study, we present CoPPNet, a computational method that uti-
lizes large-scale phospho-proteomic data for unsupervised identifica-
tion of phenotype-associated signaling modules in cancer. One
important contribution of the proposed method is the construction
of the PSFA network which is a site-centric network that compre-
hensively incorporates available functional information on phos-
phorylation sites to enable network-based analysis of
phosphorylation data. Our network model treats different types of
edges identically. While observation of an edge in different data-
bases would increase the confidence of functional association, we
here use the edges only to indicate potential functional association.
In future work, it can be useful to investigate the effect of assessing
the value of different lines of functional evidence. Our systematic
results on two BC datasets show that CoPPNet identifies reprodu-
cible subtype-specific signaling modules without requiring know-
ledge of the sample subtypes. However, this analysis does not
account for the tissue-specificity of the phosphorylation data.
Overall, this study represents one of the first attempts on utilizing
phospho-proteomics to generate reproducible functional readouts of
cellular signaling that can be used to characterize the dysregulation
of cellular signaling in cancers and development of future therapeut-
ic strategies.
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