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Abstract

Susceptibility loci identified by GWAS generally account for a limited fraction of heritability.

Predictive models based on identified loci also have modest success in risk assessment

and therefore are of limited practical use. Many methods have been developed to over-

come these limitations by incorporating prior biological knowledge. However, most of the

information utilized by these methods is at the level of genes, limiting analyses to variants

that are in or proximate to coding regions. We propose a new method that integrates protein

protein interaction (PPI) as well as expression quantitative trait loci (eQTL) data to identify

sets of functionally related loci that are collectively associated with a trait of interest. We call

such sets of loci “population covering locus sets” (POCOs). The contributions of the pro-

posed approach are three-fold: 1) We consider all possible genotype models for each

locus, thereby enabling identification of combinatorial relationships between multiple loci.

2) We develop a framework for the integration of PPI and eQTL into a heterogenous net-

work model, enabling efficient identification of functionally related variants that are associ-

ated with the disease. 3) We develop a novel method to integrate the genotypes of multiple

loci in a POCO into a representative genotype to be used in risk assessment. We test the

proposed framework in the context of risk assessment for seven complex diseases, type 1

diabetes (T1D), type 2 diabetes (T2D), psoriasis (PS), bipolar disorder (BD), coronary

artery disease (CAD), hypertension (HT), and multiple sclerosis (MS). Our results show

that the proposed method significantly outperforms individual variant based risk assess-

ment models as well as the state-of-the-art polygenic score. We also show that incorpo-

ration of eQTL data improves the performance of identified POCOs in risk assessment. We

also assess the biological relevance of POCOs for three diseases that have similar biological

mechanisms and identify novel candidate genes. The resulting software is publicly avail-

able at http://compbio.case.edu/pocos/.

Author Summary

Several studies try to predict the individual disease risk using genetic data obtained from
genome wide association studies (GWAS). Earlier studies only focus on individual genetic
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variants. However, studies on diseasemechanisms suggest the aggregation of genomic var-
iants may contribute to diseases. For this reason, researchers commonly use prior biologi-
cal knowledge to identify genetic variants that are functionally related. However, these
approaches are often limited to variants that are in the coding regions of genes. However,
several risk variants are in the regulatory region. Here, we incorporate known regulatory
and functional interactions to find sets of genetic variants which are informative features
for risk assessment. Our result on seven complex diseases show that our method outper-
forms individual variant based risk assessment models, as well as other methods that inte-
grate multiple genetic variants.

Introduction

Genome-wide association studies (GWAS) have a transformative effect on the search for
genetic variants that are associatedwith complex traits, since they enable screening of hundreds
of thousands of genomic variants for their association with traits of interest [1]. Recently pub-
lished GWAS lead to the discovery of susceptibility loci for many complex diseases, including
type 2 diabetes [2], psoriasis [3], multiple sclerosis [4], and prostate cancer [5]. For improved
identification of risk variants, researchers draw information from clinical, microarray, copy
number, and single nucleotide polymorphism (SNP) data to build disease risk models, which
are then used to predict an individual’s susceptibility to the disease of interest [6, 7]. Several
companies, such as deCODE genetics (http://www.decode.com) and 23andme (https://www.
23andme.com) have started using SNPs identified by GWAS, to provide personal genomic test
services in the United States and health related genomic test services in Canada and the United
Kingdom.
An important problem with GWAS is that the identified variants account for little heritabil-

ity [8, 9]. However, empirical evidence frommodel organisms [10] and human studies [11] sug-
gests that the interplay among multiple genetic variants contribute to complex traits. Epistasis
among pairs of loci, i.e., significantly improved association with the phenotype when two loci
are considered together, is also shown to provide provide further insights into diseasemecha-
nisms [12–14]. Therefore, recent studies focus on identifying the interactions among pairs of
genomic loci, as well as among multiple genomic loci [15–17]. These studies suggest that consid-
eration of more than one locus together can better capture the relationship between genotype
and phenotype. For this reason, geneticmarkers that aggregate multiple genomic loci can be
used to design effective strategies for risk assessment and guide treatment decisions [18].
The Polygenic score is a commonly usedmethod to identify the joint association of a large

mass of the loci to predict disease risk [19]. The first application of polygenic score on GWAS
data shows that the genetic risk for schizophrenia is a predictor of bipolar disorder [20]. There
are also several studies demonstrating that polygenic risk score is a powerful tool in risk predic-
tion [20–22]. However, polygenic score does not make use of prior biological knowledge,
which may be useful in generating more robust features by incorporating the functional rela-
tionships among individual variants. Furthermore, according to a recent comparative assess-
ment of various classification algorithms, there are no statistically significant differences
between state-of-the-art classification algorithms in terms of performance in risk assessment
[23]. This observation suggests that research on construction of features for risk assessment
can be useful in improving the classification performance of these algorithms.
Since detection of epistasis and higher order interactions is computationally expensive,

many methods first assess the disease association of individual loci and then use functional
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knowledge to integrate these associations [24–26]. The key idea behind these methods is that
functionally related variants, e.g., those that induce dense subnetworks in protein-protein
interaction (PPI) networks, can provide stronger statistical signals when they are considered
together [27]. Based on similar insights, some researchers integrate GWAS with pathway infor-
mation to identify statistically significant pathways that are associated with the disease [28, 29].
Recently, Azencott et al. propose a method to discover sets of genomic loci that are associated
with a phenotype while being connected in an underlying biological network [30]. They use an
additive model to integrate the genotypes of loci and use connectivity patterns in the network
to select a functionally coherent set of disease associated SNPs. While this method works on a
network of genomic loci, the network is constructed based on the interactions among genes
and mapping of loci to genes. For this reason, the application of these methods is limited to the
variants in coding regions or in regions that are in close proximity to genes. However, 88 per-
cent of genotyped variants in GWAS fall outside of coding regions [31]. Several risk variants
are found in non-coding regions of the genome and it is shown that the functional effects of
these variants are regulatory (e.g., mRNA expression, microRNA expression) as opposed to
directly influencing protein structure or function [32].
In this paper, we propose a new algorithm for the identification of multiple functionally

related genomic variants that are collectively associated with a phenotype. The proposed
method builds on the concept of “Population Covering Locus Sets” (POCOs) [33, 34]. A POCO
is a set of loci that harbor at least one susceptibility allele in samples with the phenotype of
interest. Here, we extend the notion of POCOs to enable adaptive identification of “susceptibil-
ity genotype” (as opposed to susceptibility allele) for each locus.We also develop a method for
aggregating the genotypes of multiple loci in a POCO to compute representative genotypes for
use in risk assessment. Finally, in order to capture the functional relationship between genomic
loci, we integrate GWAS data with human protein-protein interaction (PPI) network and regu-
latory interactions identified via expression quantitative trait loci (eQTL).
We use the POCOs identified by the proposed framework to construct features that can be

used in risk assessment. We evaluate the performance of POCOs in risk assessment via cross-vali-
dation on sevenGWAS case-control data sets obtained from theWellcome Trust Case-Control
Consortium (WTCCC).We compare the risk assessment performance of models built using
POCOs to that of models built using individual loci and polygenic score. Our experimental results
show that POCOs significantly outperform individual loci and polygenic score in risk assessment.
Furthermore, we assess the information added by the incorporation of PPI and eQTL and
observe that inclusion of these data leads to more parsimonious models for risk assessment.
In the next section, we describe the proposed procedure for modeling the genotypes and

identifying POCOs. Then we describe how we use POCOs to develop a model for risk assessment.
Subsequently, we present comprehensive experimental results on GWAS data sets for Type 2
Diabetes (T2D), Psoriasis (PS), Type 1 Diabetes (T1D), Hypertension (HT), Bipolar Disorder
(BD), Multiple Sclerosis (MS) and Coronary ArteryDisease (CAD). Our results show that the
proposedmethod significantly outperforms individual variant based risk assessment model as
well as the state-of-the-art polygenic score. We also observe that integrating prior biological
information leads to more parsimonious models for risk assessment.

Methods

In this section, we first present the set-up for genome-wide association studies. We then define
“Population Covering Locus Sets” (POCOs) and describe the algorithmwe use to identify
POCOs. Finally, we describe our feature selection framework for the selection of POCOs to be
used for risk assessment. The workflow of the proposedmethod is presented in Fig 1.
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Fig 1. The workflow of the proposed method for the identification of PoCos and their utilization in risk assessment.

doi:10.1371/journal.pcbi.1005195.g001
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Genome-Wide Association Data

The input to the problem is a genome-wide association (GWA) datasetD = (C, S, g, f), where
C denotes the set of genomic loci that harbor the genetic variants (e.g., single nucleotide poly-
morphisms or copy number variants) that are assayed, S denotes the set of samples, g(c, s)
denotes the genotype of locus c 2 C in sample s 2 S, and f(s) denotes the phenotype of sample
s 2 S. Here, we assume that the phenotype variable is dichotomous, i.e., f(s) can take only two
values: if sample s is associated with the phenotype of interest (e.g. diagnosedwith the disease,
responds to a certain drug etc.), s is called a “case” sample (f(s) = 1), otherwise (e.g., was not
diagnosedwith the disease, does not respond to a certain drug etc.), s is called a “control” sam-
ple (f(s) = 0). We denote the set of case samples with S1 and the set of control samples with S0,
where S1 [ S0 = S. While we focus on qualitative traits here for brevity, the proposedmethod-
ology can also be extended to quantitative traits (i.e., when f(s) is a continuous phenotype
variable).

Identifying Genotypes of Interest

The minor allele for a locus is usually defined as the allele that is less frequent in the popula-
tion. While it is common to focus on the minor allele as the risk allele, specific genotypes
can also be associated with a phenotype [35–37]. Different types of encodingmay represent
different biological assumptions. In an additive model, each genotype is encoded as a single
numeric feature that reflects the number of minor alleles (homozygous major, heterozygous,
and homozygous minor are respectively encoded as 0, 1 and 2). This model does not capture
combinatorial relationships between locus genotypes and phenotype, since the assumption
is that one of the alleles quantitatively contributes to risk. In the recessive/dominant model,
each genotype is encoded as two binary features (presence of minor allele and presence of
major allele). This model does not capture the difference between homozygous and hetero-
zygous genotypes, since it only accounts for the presence of an allele. Here, we argue that
considering the effect of all possible genotype combinations can provide more information
in distinguishing case samples from control samples. The five models proposed here capture
all potential relationships, in that differences in heterozygosity vs. homozygosity, presence
vs. absence of a specific risk allele are represented by different genotype models. This notion
is particularly useful when the genotypes of multiple loci are being integrated. For example,
heterozygosity on one locus can be associated with increased susceptibility to a disease,
while homozygous minor allele on another locus may be protective at the presence of hetero-
zygosity in the former locus [38]. In this case, the interaction between the two loci can be
detected by considering the association of all possible genotype combinations with the
phenotype.
We adaptively binarize the genotypes of each locus by considering all possible allele combi-

nations. Given the genotype of a locus, we consider five different binary genotypemodelsm(i), i
2 {1, . . . 5}. Based on each model, we generate a binary genotype profile for each locus.
Namely, we consider the following genotypemodels:
1. Homozygous Minor Allele:This corresponds to the case when the possible effect of the

minor allele is “recessive”, i.e., the locus is considered to harbor a genotype of interest if both
copies contain the minor allele.

mð1Þðc; sÞ ¼
1 if gðc; sÞ 2 faag

0 otherwise

(

ð1Þ
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2. Heterozygous Genotype:The locus is considered to harbor a genotype of interest if the
two copies contain different alleles.

mð2Þðc; sÞ ¼
1 if gðc; sÞ 2 fAag

0 otherwise

(

ð2Þ

3. Homozygous Major Allele:The locus is considered to harbor a genotype of interest if
both copies contain the major allele.

mð3Þðc; sÞ ¼
1 if gðc; sÞ 2 fAAg

0 otherwise

(

ð3Þ

4. Presence of Minor Allele:This corresponds to the case when the possible effect of the
minor allele is “dominant”, i.e., the locus is considered to harbor a genotype of interest if at
least one copy contains the minor allele. This is the complement ofm(3).

mð4Þðc; sÞ ¼
1 if gðc; sÞ 2 fAa; aag

0 otherwise

(

ð4Þ

5. Presence of Major Allele:The locus is considered to harbor a genotype of interest if at
least one copy contains the major allele. This is the complement ofm(1).

mð5Þðc; sÞ ¼
1 if gðc; sÞ 2 fAa;AAg

0 otherwise

(

ð5Þ

Note that, althoughmodelsm4 andm5 are complements of other models, we consider them
separately. This is because, as we discuss in the next section, the 1s and 0s in the binary geno-
type profiles are considered asymmetrically while integrating the genotypes of multiple loci.
Also note that “homozygous minor allele or homozygous major allele” is not considered since
it is not associated with a specific risk allele.
To select a genotypemodel for each locus, we separately assess the association of the result-

ing five genotype profiles with the phenotype of interest. Subsequently, we choose the model
that leads to greatest discrimination between cases and controls, and use the respective binary
genotype profile as the representative genotype of that locus. This process is illustrated in Fig 2.
For each locus c, binarization according to the five different genotypemodels produces five

|S|-dimensional binary genotype profilesm(i)(c), i 2 {1, . . . 5}. For each binary genotype profile
m(i)(c), we compute the difference in the fraction of case and control samples that harbor the
genotype of interest as follows:

DðiÞðcÞ ¼
hf ;mðiÞðcÞi
jS1j

�
h1 � f ;mðiÞðcÞi

jS0j
: ð6Þ

where 1 denotes a vector of all 1’s and<.> denotes the inner product of two vectors. We then
determine the binary genotypemodel for each locus as the model that maximizes the difference
of relative coverage between case samples and control samples, i.e.:

kðcÞ ¼ argmaxi2f1���5gfjD
ðiÞðcÞjg: ð7Þ

Based on the selectedmodel for each locus, we compute the binary genotype profile
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accordingly:

Mðc; sÞ ¼ mðkðcÞÞðc; sÞ: ð8Þ

Population Covering Locus Sets (POCOs)

Once we compute the binary genotype profiles for all loci, we identify Population Covering
Locus Sets (POCOs). In previous work, we define and use POCOs in the context of prioritizing
locus pairs for testing epistasis [33]. In this earlier definition, the genotypes of interest are lim-
ited to the presence of the minor or major allele; i.e., only the last two models described in the
previous section are used to determine the binary genotype profile of each locus. Here, we gen-
eralize the concept of POCO to utilize five different models for determining the genotypes of
interest, as described in the previous subsection.

Fig 2. Model selection and computation of binary genotype profiles for each genomic locus. The genotypes of four loci on a hypothetical case-

control dataset are shown on the left. The five possible binary genotype profiles for each locus are computed, as shown in the middle. Blue squares

indicate the presence of the genotype of interest in the respective sample for each model (respectively, homozygous minor allele, heterozygous,

homozygous major allele, presence of minor allele, presence of major allele). The resulting binary genotype profiles for each locus are shown on the

right. Red squares indicate the existence of genotype of interest according to the selected model. In this example, models m(4), m(1), m(5), and m(2) are

respectively selected for the four loci.

doi:10.1371/journal.pcbi.1005195.g002
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A POCO is a set of genomic loci that collectively “cover” a larger fraction of case samples
while minimally covering control samples. Namely for a given set P� C of loci, we define the
set of case and control samples covered by P respectively as

EðPÞ ¼ [c2Pfs 2 S1 : Mðc; sÞ ¼ 1g ð9Þ

and

TðPÞ ¼ [c2Pfs 2 S0 : Mðc; sÞ ¼ 1g: ð10Þ

We define a POCO as a set P of loci that satisfies |E(P)| = |S1| while minimizing |T(P)|. Note
that, since we are interested in finding all sets of loci with potential relationship in their associa-
tion with phenotype, we do not define an optimization problem that aims to find a single POCO
with minimum |T(P)|. We rather develop an algorithm to heuristically identify all non-overlap-
ping POCOs with minimal |T(P)|.

Identification of POCOs

To identify all non-overlapping POCOs, we use a greedy algorithm that progressively grows a
set of loci to maximize the difference of the fraction of case and control samples covered by the
loci that are recruited in a POCO. In another words, we initialize P to ; and at each step, add to
P the locus that maximizes

dðcÞ ¼
EðfcgÞ \ S0j
jS1j

�
jTðfcgÞ \ S0j
jS0j

�
�
�
�

�
�
�
� ð11Þ

where S0 = S\(E(P)[ T(P)). The algorithm stops when all case samples are covered. We then
record P, remove the loci in P from the dataset, and identify another POCO. This process con-
tinues until it is not possible to find a set of loci that covers all case samples.
We develop two methods to identify two different types of POCOs. The first type of POCOs

(named “network-free POCOs”) are identifed using the greedy algorithm described above, with-
out the use of any prior biological information. The second type of POCOs are NETPOCOs, which
are identified by restricting the search space to connected subgraphs of a network of potential
functional relationships among genomic loci. As we describe below, this network is constructed
by integrating established locus-gene associations from eQTL studies and protein-protein
interaction (PPI) data that contains functional relationships among genes.
Network-free POCOs. For network-free POCOs, the search space for the problem contains

all the loci that are genotyped and no restriction is applied on the search space. We use δ(.) to
guide the search for POCOs, and require the search to proceed until all case samples are
covered.
NETPOCOs. Since our aim is to find sets of variants that are related to each other in their

association with a phenotype, interaction data can provide a useful functional context for
POCOs. This approach is inspired by the NETCOVER algorithm that is used to identify dysregu-
lated subnetworks in the context of cancer [39]. To identify NETPOCOs, in addition to GWAS
data, we utilize a heterogeneous network G = (V [ U, E [ F [ Q) that represents the functional
relationships among genomic loci. The network contains two types of nodes: genomic loci and
genes/proteins. More precisely, the setU� C contains all genomic loci that are genotyped in
the GWAS and are located in the gene region of interest or are expression quantitative trait
loci. The setV contains all human genes/proteins.
The interactions and associations between these nodes are represented by three different

sets of edges:
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• F contains an edge between locus c 2 U and gene v 2 V if c is in the region of interest (RoI;
defined as 50Kb up- and down-stream of the coding region in our experiments) of v. We call
these edges RoI edges.

• Q contains an edge between locus c 2 U and gene v 2 V if c is found to be significantly associ-
ated with the expression of v in an expression quantitative trait loci (eQTL) screen.We refer
to these as eQTL edges.

• E contains an edge between two genes u and v if u and v code for interacting proteins. We
refer to these as PPI edges.

Note that Azencott et al. [30] also propose the idea of integrating multiple types of networks
to drive the search for phenotype-associated genomic loci. However, the heterogenous network
model proposed here encapsulates more biological information in a sparser network by allow-
ing nodes and edges to represent different types of biological entities and interactions/associa-
tions. Moreover, the incorporation of eQTL links in the network makes this method
particularly powerful since these links capture functional associations also for loci that are out-
side coding regions or RoIs of genes.
The algorithm for identifyingNETPOCOs is illustrated in Fig 3. This algorithm proceeds simi-

larly to the algorithm for identifying network-free POCOs. However, while growing POCOs, the
set of loci that can be added to a growing POCO P is constrained by the network. Namely, at
any step of the algorithm, only loci that are at most 3 hops away from at least one locus in P are
considered as candidates for addition into P. This ensures that the loci in a NETPOCO are func-
tionally related to each other. In other words, reachability within three hops captures all func-
tional association patterns between a pair of loci in this heterogeneous network:

• ROI-ROI association: Two loci that are in the RoI of the same gene are within 2 hops of each
other.

• ROI-eQTL association: A locus that is in the RoI of a gene u is 2 hops away from loci that are
associated with u’s expression.

• ROI-PPI-ROI association: Two loci that are in the RoI of the genes coding for two interacting
proteins are within 3 hops of each other.

• ROI-PPI-eQTL association: A locus that is in the RoI of a gene u is 3 hops away from a locus
that is associated with the expression of gene v such that the products of u and v interact with
each other.

When the algorithm terminates, it returns the setP of all discovered POCOs. As we discuss in
the next section, each identified POCO contains multiple loci and most of the loci in the dataset
are not assigned to any of the POCOs in practice. For this reason, we usually have |P|<< |C|.

Model Development for Risk Assessment

One potential utility of the POCOs is risk assessment. By construction, POCOs (NETPOCOs) con-
tain (functionally associated) loci that exhibit improved power in distinguishing cases from
control. Consequently, as compared to individual variants, they may provide more robust and
reproducible features to be used in predictive models. To investigate the utility of these multi-
locus features in risk assessment, we use POCOs to build a model for risk assessment using L1
regularized logistic regression classifier.
Representative genotypes of POCOs. To facilitate the use of POCOs for risk assessment, we

compute a representative genotype for each POCO. For this purpose, we use the fraction of the
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Fig 3. Identification of NETPOCOs. Each vi represents a protein (V) and each cj represents a genomic locus

(U). Blue edges represent the interactions between proteins (E), purple edges indicate that the respective

locus is in the RoI of the coding gene for the respective protein and red edges represent the eQTL links.

Initially, P is empty and all loci are considered and the locus (c5) that maximizes δ(.) is added to P. After this

point, the search space is restricted to loci that are at most three hops away from c5. We continue this
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loci in the POCO that harbor a genotype of interest in the respective sample. To bemore precise,
for each POCO P 2P, we compute the profile of P as

hðP; sÞ ¼
P

c2PMðc; sÞ
jPj

ð12Þ

for all s 2 S. The set of features utilized by the classifier is comprised of h(P,.) for all P 2P.
Next, we perform feature selection to identify a parsimonious set of POCOs to be used in risk
assessment.
Feature selectionand model building. High dimensionality is always an important prob-

lem in GWAS (a.k.a. “large p small n”). The large number of features makes feature selection
quite challenging. In particular, the models can be easily over-fit if too many features are
entered into the model. For this reason, many researchers suggest filtering algorithms for
dimension reduction and feature selection [40–42]. Furthermore, building the L1-regularized
logistic regressionmodel is computationally expensive, and reduction in the number of features
can greatly reduce runtime.Motivated by these considerations, to find the optimal set of
POCOs to be used for risk assessment, we use a two-step feature selectionmethod. The first step
implements filtering-based feature selection, and the second step incorporates feature selection
into model building by using a L1-regularized logistic regression classifier that enforces spar-
sity. Note that feature selection is applied within a cross-validation framework, so that test sam-
ples are not used in the identification and selection of the POCOs that are used in the model.
For filtering-based feature selection, we compute a p-value representing the significance of

the association of each POCO with the disease. For this purpose, we use two different methods:

• Logistic regression:We compute a logistic regression model by including all identified
POCOs in the model. The p-value of the coefficient of each POCO in this model represents the
significance of the POCO in predicting phenotype at the presence of all other POCOs.

• KS-statistic:We assess the significance of the Kolmogorov-Smirnov (KS) statistic comparing
the distribution of h(P, s) in case samples against that in control samples. The p-value of the
KS-statistic quantifies the significance of the difference between the two sample classes in
terms of the distribution of the values of the feature representing that POCO.

We then apply a threshold on these p-values to reduce the number of POCOs that are used
in model building. Namely, for a given threshold α, we filter out all POCOs with p-value greater
than α and retain all other POCOs to be entered into model building. This is done separately for
each of the filteringmethods.
LetH be the matrix in which rows represent samples and columns represent POCOs that

pass the filtering stage, such that H(s, p) = h(p, s). As before, f denotes the vector composed of
the phenotypes of samples. Then the L1-regularized logistic regression classifier computes a
vector β to solve the following optimization problem:

min
b2Rq

� log pðf jH; bÞ þ l k b k1f g ð13Þ

Here, q denotes number of POCOs that are entered into the model and λ is a non-negative
regularization parameter. The second term in the objective function is a penalty function that
enforces sparsity of the model and the parameter λ controls the number of POCOs selected in

procedure until the set of selected loci cover a sufficient fraction of the case samples. Cyan nodes and gold

nodes show the selected loci and proteins respectively.

doi:10.1371/journal.pcbi.1005195.g003
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the model (i.e., the number of non-zero entries in β). For larger λ, the model is expected to be
more sparse.
Performance evaluation for risk assessment. To evaluate the performance of POCOs in

risk assessment, we use nested K-fold cross validation. Namely, we divide the set of samples
into K subsets {T1, . . ., TK}, while keeping the proportion of case and control samples fixed
across all subsets. For the kth subset of samples, we reserve the samples in this subset as test
samples. We divide the training group further into K groups and use this partitioning to per-
form genotype identification, PoCo identification, feature selection, filtering-based feature
selection and model building using the L1-regularized logistic regression classifier. Once the
model is optimized in the inner fold, we use the resulting model to predict the class of each
sample in the kth subset, and evaluate prediction performance on this outer fold. This process
is iterated for k = 1, 2, . . ., K and the performance of classification is evaluated based on the pre-
dictions across all samples. The typical choices of K are 5 or 10 and here we use 5-fold cross val-
idation in our experiments.We also repeat the randomization of folds five times and report the
averages of performance figures across these randomizations.
Risk assessment models produce quantitative predictions of susceptibility to the disease of

interest. To evaluate the predictive ability of these risk assessment models, we apply different
thresholds on the predicted risk to obtain a binary prediction for each test sample. Using
these binary predictions, we obtain the counts of true positives (predicted to be in risk, has
the disease), false positives (predicted to be in risk, does not have the disease), and false nega-
tives (predicted not to be in risk, has the disease), and compute the precision (fraction of true
positives among all predicted to have risk) and recall (fraction of true positives among all
who have the disease) figures based on these counts. We assess the performance of each risk
assessment model based on the area under the ROC curve (AUC), which characterizes the
ability of the model in trading off precision and recall for varying thresholds on the quantita-
tive prediction.
Polygenic score. We compare the performance of PoCo-based risk assessment models

against models based on individual loci, as well as Polygenic score. Polygenic score is a com-
monly usedmethod for risk assessment in GWAS. It is based on the assumption that the joint
effect of multiple loci on the phenotype is additive [20]. Based on this assumption, the poly-
genic score for an individual is defined as the summation of the effect sizes of multiple loci,
weighted by effect sizes of individual loci. To estimate effect sizes, the p-value of the association
of each loci with the phenotype is calculated. For a given parameter α, L is defined as the set of
loci with p-value less than α. Subsequently, the polygenic score for a sample s is the defined as
follows:

PSaðsÞ ¼
X

c2L

gðcÞ � gðc; sÞ ð14Þ

Here, γ(c) denotes the effect size of locus c which can be estimated using an appropriate regres-
sion model(i.e. logistic for a binary phenotype or linear for a continuous phenotype).

Results

To assess the ability of POCOs in producing informative multi-locus features, we evaluate their
utility in the context of risk assessment. For this purpose, we use GWAS data from theWel-
come Trust Case-Control Consortium (WTCCC), which includes data from studies for seven
complex diseases, namely type 1 diabetes (T1D), type 2 diabetes (T2D), psoriasis (PS), bipolar
disorder (BD), coronary artery disease (CAD), hypertension (HT), and multiple sclerosis (MS).
On each dataset, we first identify POCOs, select features to build a model for risk assessment,

PoCos: Population Covering Locus Sets for Risk Assessment in Complex Diseases

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005195 November 11, 2016 12 / 29



and then evaluate the performance of the resulting model. To control for overfitting and to
ensure that the performance figures are not biased, we use cross validation.
We first compare the risk assessment performance of the multi-locus features against the

standard approach of using individual significant loci. To facilitate fair comparisons, we use
the classification and feature selectionmethods described in the “performance evaluation for
risk assessment” section identically for all types of multi-locus and individual-locus based fea-
tures. We also compare the performance of NETPOCOs against Polygenic Score, which is a com-
monly usedmethod for risk assessment. Subsequently, to gain insights into the information
provided by network data and specifically eQTL-based regulatory interactions, we also com-
pare the performance of NETPOCOs, network-free POCOs, and eQTL-free POCOs. Moreover, we
investigate the effect of λ in the L1 regularized logistic regression classifier, i.e. the parameter
that controls the parsimony of the model.We also assess the biological relevance of some of
the selected POCOs using enrichment analysis and a literature-driven list of genes and processes
that have been reported to be associated with diseases. Finally, we compare the most frequently
recruited genes in POCOs in different diseases to gain insights into shared genetic bases of dif-
ferent diseases. This analysis also suggests novel potential susceptibility genes for these
diseases.

Experimental Setup

GWAS datasets. We use genome wide association data for all seven diseases obtained
from theWellcome Trust Case-Control Consortium (WTCCC) [43–45]. For each dataset, we
use the genotypes generated by Chiamo algorithm.We filter out the loci with minor allele fre-
quency (MAF)� 5%.While identifying the POCOs, in order to avoid marginal effect of individ-
ual loci and reduce the risk of artifacts, we filter the loci with nominal p-value of individual
association less than� 10−7 (this corresponds to a corrected p-value threshold of 0.05). Since
we utilize the PPI networks and eQTL data to identify NETPOCOs, we include in our analyses
the SNPs that are either within 50kb upstream and downstream of coding regions or are identi-
fied by eQTL to be associated with the expression of a gene. The number of loci and the the
number of samples for each dataset are shown in Table 1.
Protein-protein interaction (PPI) dataset. We use a human PPI network downloaded

from BioGRID (The Biological General Repository for Interaction Datasets) database. The Bio-
GRID PPI network contains 194639 interactions among 18719 proteins.
Expression quantitative trait loci (eQTLs) datasets. We use an eQTL dataset obtained

from RegulomeDBwhich aims to annotate noncoding common variants from association
studies [46]. This database contains high throughput datasets from The Encyclopedia of DNA
Elements (ENCODE) [47] and other resources, as well as computational prediction and man-
ual annotation. We extract all the variants that are identified to have direct effect on gene
expression and also have been shown to be on transcription binding sites through ChIP-seq
and DNase with either a matched PWM to the ChIP-seq factor or a DNase footprint.
SNP-gene mapping. To identify network-free POCOs, we do not use gene information. To

facilitate the identification of NETPOCOs, we map SNPs to genes by defining the region of

Table 1. Genome-Wide Association data used in the computational experiments.

T1D BD HT T2D PS CAD MS

Number of genotyped loci 385134 330651 372461 409022 531592 322148 9469

Number of loci in network 248669 214464 248868 258217 255494 239763 8267

Number of control samples 2997 2997 2997 1504 5175 2997 2930

Number of case samples 2000 1998 2001 1999 2178 1988 975

doi:10.1371/journal.pcbi.1005195.t001
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interest (RoI) for a gene as the genomic region that extends from 50kb upstream to 50kb down-
stream of the coding region for that gene.
Association analysis for individual loci. We identify individually significant loci using

PLINK [48], a well-established toolkit for GWAS analysis. We assess the disease association of
all loci in each dataset based on minor allele frequency, obtaining a p-value for the association
of each locus with the disease.We adjust the p-values for multiple hypothesis testing using
Bonferroni correction.

Performance of POCOs in Risk Assessment

For each dataset, we divide the population into 5 groups while preserving the proportion of
case and control samples in each group. We reserve one group for testing and we identify NET-
POCOs on the remaining four groups. Then, we use these four groups for feature selection and
model building. Finally, we test the performance on the group reserved for testing. All of the
reported performance figures are averages across five different cross-validation runs. The num-
ber of POCOs identified on each dataset and the size of these POCOs are presented in Table 2.
Please note that the variance in number of POCOs does not have a significant effect on the per-
formance (S1 Fig).
Comparison of NETPOCOs against individual loci and polygenic score. To investigate the

benefits of using NETPOCOsin risk assessment, we first compare the performance of NETPOCO-
based risk assessment models against that of individual-locus basedmodels and the well-estab-
lished Polygenic Score. As described in the Methods section, we select NETPOCOs to be used in
model building using a filtering based feature selectionmethod, which uses p-values (of either
the coefficient in logistic regression model or the KS-statistic for difference in the distribution
between case and control samples) as the filtering criterion. Similarly, we filter individual loci
based on the statistical significance of their association with the disease (after correction for
multiple hypothesis testing). Polygenic risk score, which is commonly used in risk assessment,
is a sum of the scores of associated loci, weighted by effect sizes, which are estimated using the
training set. For polygenic score, the features are also selected using the p-value threshold in
training samples and they are used to score the individuals in test samples.
To comprehensively understand the effect of filtering, we test all methods using different

thresholds on p-value for filtering (α). Namely, for each α 2 {5E − 8, 0.05, 0.1, 0.15, 0.2, 0.25,
0.3}, we build the risk assessment model using the NETPOCOs or loci with p-value less than α.
Note that we use p-values to rank and select individual loci or PoCos to be entered into the
model as features. As discussed in Methods, the p-values for POCOs reflect the significance of
logistic regression coefficients or KS-test, whereas for individual loci, the p-value reflect the sig-
nificance of case/control association analysis as computed by PLINK. Since p-value are used
for ranking, correction for multiple hypotheses does not influence the behavior of the methods.
Nevertheless, the p-value thresholds shown in the figure are based on Bonferroni-correctedp-
value. For model building, we use the L1 regularized logistic regression classifier described in
the Methods section, for both NETPOCOs and individual locus based features. L1 regularized

Table 2. The number of POCOs identified on each dataset, and the distribution of the genomic loci in each individual POCO.

T1D BD HT T2D PS CAD MS

Number of POCOs 19867±14268 16542±1074 5300±7865 8147±5791 23959±9424 8474±3937 243±111

Number of SNPs per POCOs 2.99±0.99 3.42±0.85 3.34±0.88 3.72±0.67 3.5±0.72 3.48±0.76 3.05±0.6

The average and standard deviation is reported across different folds.

doi:10.1371/journal.pcbi.1005195.t002

PoCos: Population Covering Locus Sets for Risk Assessment in Complex Diseases

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005195 November 11, 2016 14 / 29



logistic regression provides a second layer of feature selection through the regularization term
in the associated objective function. Polygenic score has its own classification algorithm by
definition.
The results of cross-validation for using individual loci (using L1 regularized logistic regres-

sion), polygenic score, and NETPOCOs with two different filtering criteria (logistic regression p-
values vs. KS-statistic) are shown in Fig 4.
The results shown in Fig 4 suggest that filtering of NETPOCOs based on regression p-value

provides favorable prediction performance when a strict threshold is used for statistical signifi-
cance (i.e., for smaller α). However, as the threshold increases (i.e., more NETPOCOs are entered
into model building), the performance of regression based filtering declines. On the other
hand, the prediction performance of NETPOCOs filtered based on KS p-value is improved with
increasing threshold on significance. This observation suggests that, while regression p-value
tends to rank the most informative NETPOCOs at the top, KS-statistic based ranking provides a
more reliable set of NETPOCOs for L1 regularized logistic regression to choose from whenmore
NETPOCOs are entered into the model (S2 Fig).
Comparison of Polygenic Score and NETPOCO-based risk assessment in Fig 4 shows that

NETPOCO-basedmodels consistently outperform Polygenic Score for all diseases, perhaps with
the exclusion of multiple sclerosis. Overall, Polygenic Score has a peak performance at rela-
tively stricter thresholds on the significance of individual loci included in the model, but this
figure remains under the peak performance of NETPOCO-basedmodels. Individual locus based
classifier performsmore favorably whenmore loci are entered into the model (which is
expected since L1 regularized logistic regression effectively performs feature selection), but the
performance of the classifier that uses individual locus based features remains below the perfor-
mance of the classifier that uses NetPoco-based features. These results suggest that NETPOCOs
are useful in “feature construction” for risk assessment, i.e., they bring together robust sets of

Fig 4. Comparison of the risk assessment performance of NETPOCOs, individual locus based features, and polygenic

score on seven different diseases. The x-axis shows the p-value threshold (α) used in filtering based feature selection and

the y-axis shows the area under the ROC curve (AUC) for performance in risk assessment. The curve shows the average AUC

score and error bars show the standard deviation of AUC score across 5 folds in 5 different runs.

doi:10.1371/journal.pcbi.1005195.g004
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loci to be used together in risk prediction (S3 Fig). It is also possible that, as compared to using
standard genotype coding for individual loci, our method for computing representative geno-
types for POCOs improves prediction performance, since it potentially captures non-linear rela-
tionships among POCOs as well.
To facilitate thorough comparison of NETPOCOs, individual locus based features, and Poly-

genic Score, we also report the best average AUC and the number of features in the final model
across all p-value thresholds used for filtering. These results are shown in Fig 5. As seen in the
figure, models that use NETPOCO-based features consistently outperform individual locus based
features and Polygenic Score in risk assessment for all diseases, and they provide more parsi-
monious models as compared to Polygenic Score. However, it is interesting to note that PoCoS
do not provide significant improvement in risk assessment for MS. This is the dataset that has
the smallest number of loci. To this end, this behavior may be indicative of the need for higher
coverage to be able to identifymore informative POCOs.
NETPOCOs vs. network-freePOCOs. Many computational methods are developed to inte-

grate the GWAS data with other biological datasets that provide information on the functional
relationships between individual biological entities (here, genomic loci). In this study, we inte-
grate PPI data and eQTL data in the identification of NETPOCOs. Since the identifiedNETPOCOs
are guided by the PPI network and eQTL data, we expect that NETPOCOs would be more infor-
mative and robust as compared to network-free POCOs, since they are composed of function-
ally related loci. To investigate whether this hypothesis is supported empirically, we compare
the performance of NETPOCOs in risk assessment to that of network-free POCOs. For this pur-
pose, since the computation of network-free POCOs is computationally expensive, we limit our
analyses to three diseases: bipolar disorder (BD), type II diabetes (T2D), and coronary-artery
disease (CAD). The results of these analyses are shown in Fig 6. Note that, in these analyses,
network-free POCOs have been identified using all genotyped loci and the search space is not
limited to the loci that can be mapped to gene regions. Therefore, network-free POCOs can
include some loci that are out of gene regions as well, providing themwith an advantage over

Fig 5. The best risk prediction performance achieved by each method and the size of the resulting model for all seven

diseases.

doi:10.1371/journal.pcbi.1005195.g005
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NETPOCOs. However, as seen in the figure, NETPOCOs outperform the network-free POCOs for
T2D. In contrast, the results for BD and CAD suggest that constraining the search space by
functional interactions based on PPIs and eQTLmay slightly reduce the predictive power of
POCOs. However, importantly, when we consider model size, we observe that NETPOCOs pro-
vide more parsimonious final models for all three diseases.
We implement the procedure for the identification of POCOs in MATLAB. We assess the

runtime of this procedure using Intel(R) Xeon(R) CPU E5-4620 with a 2.2 GHz processor with
50 GB RAM. The results of this analysis are shown in Fig 7. These results suggest that incorpo-
rating interactions among proteins and eQTL data can effectively improve the quality of POCOs
by providing more parsimonious models. Furthermore, using prior knowledgemakes the prob-
lem computationally feasible since it drastically reduces the running time.
Information added by eQTL data. An important limitation of network-based analyses of

GWAS data stems from the constraints posed by the lack of regulatory interactions in network
models. If the functional relationships that are used to drive the search are limited to protein-
protein interactions (PPIs), the search is limited to loci that are in close proximity to coding
regions and regulatory interactions that involve non-coding loci are not considered [31]. One
important contribution of this study is the incorporation of eQTL-based interactions along
with PPIs to drive the search for NETPOCOs. To assess the benefits of including eQTL-based
interactions, we also identify PPI-based POCOs using a network that does not contain eQTL
edges, and compare the risk assessment performance of these POCOs against that of NETPOCOs
(which are identified using PPI and eQTL data). Note that removal of eQTL edges causes the
removal of loci that are connected to the network just by eQTL edges. Such loci are usually
those that are not in close proximity of coding regions.
The results of this analysis are presented in Fig 8. As see in the figure, the performance of

PPI-only POCOs and eQTL+PPI-based NETPOCOs is similar for all three diseases. However, for

Fig 6. Comparison of the risk assessment performance of NETPOCOs and network-free POCOs on T2D, BD and CAD

using KS p-value (first row) and regression p-value (second row). The colored bars show the average AUC score and the

error bars shows the standard deviation of AUC score across the folds.

doi:10.1371/journal.pcbi.1005195.g006
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BD and CAD, the predictive models provided by the incorporation of eQTL data are signifi-
cantly more parsimonious than the models provided by PPI-only NETPOCOs. For T2D, the
incorporation of eQTL edges leads to more complex models, but the prediction performance is
enhanced with the inclusion of eQTL edges. These observations suggest that incorporation of
eQTL data indeed provides biologically relevant information in the discovery of NETPOCOs.

Fig 8. Comparison of the risk assessment performance of NETPOCOs (which include eQTL-based regulatory

interactions and PPIs) and eQTL-free POCOs (which contain PPIs only) on T2D, BD and CAD. POCOs are filtered based

on KS p-value (first row) and regression p-value (second row). The colored bars show the average model size and AUC score

and the error bars show the standard deviation of these figures across 5 runs.

doi:10.1371/journal.pcbi.1005195.g008

Fig 7. Comparison of the running time for identification of NETPOCOs and network-free POCOs on T2D,

BD and CAD.

doi:10.1371/journal.pcbi.1005195.g007
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Effect of model complexity. In L1 regularized logistic regression, the parameter λ in Eq 13
is used to tune the trade-off betweenmodel fit and model complexity (number of features
included in the model). Larger λ forces the model to be more parsimonious. Therefore, as λ
grows, the learning task becomesmore difficult, in that L1 regularized logistic regression tries
to simplify the model by compromising model fit. For this reason, if the features that are input
into the classifier are “high-quality” features, the classifier can be expected to be more robust to
this parameter. Based on this premise, we assess the “quality” of the features constructed from
NETPOCOs by comparing the models based on NETPOCOs and individual loci in terms of their
performance as a function of λ. For this purpose, we fix the p-value threshold (0.05) for both
NETPOCOs and individual SNPs and compute the AUC in cross-validation for a range of differ-
ent values of λ. The results of this analysis are shown in Fig 9. As seen in the figure, as lambda
gets larger, the risk assessment performance of individual loci quickly becomes equivalent to
that of a coin toss. This observation suggests that the classifier needs to incorporate a large
number of features to maintain model fit, which may make the classifier vulnerable to overfit-
ting. This is also true for NETPOCOs, but NETPOCOs can tolerate larger lambdas.
In all other results reported in this section, we use λ = 0.001 which provides a reasonable

balance between the complexity and predictive performance of the model.
Biological interpretation of NETPOCOs. We assess the biological relevance of the predic-

tive NETPOCOs using pathway analysis, Gene Ontology enrichment analysis, and literature-
driven list of genes and processes that are reported to be associated with disease. For this analy-
sis, we focus on three diseases (T2D, CAD and BD) which are shown to have similar molecular
mechanisms [49, 50] and share common risk pathways [51].

Type II Diabetes (T2D).We focus on NETPOCOs that have highest coefficient in the model
constructed by L1-regularized logistic regression classifier. Top two NETPOCOs are shown in Fig
10. The NETPOCO shown in Fig 10(a) induces a subgraph that does not contain any PPI edges.

Fig 9. Effect of model sparsity on the prediction performance of L1 regularized logistic regression classifier using

individual SNPs vs. NETPOCOs. The x axis shows λ, which is the coefficient of penalty function in L1 regularized logistic

regression, and y axis shows the cross-validation performance of the model (AUC) across 5 runs.

doi:10.1371/journal.pcbi.1005195.g009
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Fig 10. Two NETPOCOs associated with T2D. Two NETPOCOs associated with Type II Diabetes (T2D).

These NETPOCOs are consistently selected by L1 regularized logistic regression in the final model for risk

prediction. The circle nodes represent proteins and rectangular nodes represent SNPs. Red dashed lines

represent the eQTL association between a SNP and a gene, purple lines indicate that a SNP is in the ROI of

the respective gene, and the blue edges represent a protein-protein interaction (PPI) between the products
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However, eQTL edges are able to capture the functional relationship between the SNPs and the
genes in this NETPOCO. Interestingly, some of the genes in this NETPOCO are previously reported
to be associated with T2D [52], while somemay have links to T2D although no direct associa-
tions are previously reported.More precisely, Wong et al. [53] show that SIRPA is a T1D risk
gene in the non-obese diabeticmouse. The inclusion of this gene in a NETPOCO that is used in
risk assessment for T2D suggests that this gene can be a potential novel candidate for associa-
tion with T2D as well. We also use ontologizer for Gene Ontology enrichment analysis [54].
The Gene Ontology enrichment analysis shows that this POCO is enriched in isocitrate meta-
bolic process (p-value = 0.001) and alsoNADHmetabolic process(p-value = 0.004), which both
contribute to the amplification of insulin secretion [55].
The POCO shown in Fig 10 contains both PPI and eQTL-based edges. STC1 and LOXL2 are

genes that are previously reported to be associated with T2D [52]. It is notable that TINAGL1
is involved in Glucose/Energymetabolism pathway and CHRNA9 is involved in Postsynaptic
nicotinic acetylcholine receptors pathway with other genes such as CHRNA2, CHRNA4 and
CHRNA6 that are previously reported to be associated with T2D [52]. This observation sug-
gests that TINAGL1 and CHRNA9 can be potential candidate genes for T2D. Additionally, it is
known that acetylcholine can enhance glucose-stimulated insulin secretion from pancreatic
beta-cells [56]. This POCO is also enriched in calcium ion homeostasis (p-value = 0.001) which
is one of the T2D associated pathways.
Note that, for T2D, non-genetic risk factors including age, sex, and body-mass index (BMI)

play an important role in risk. These factors can be also combined with genetic factors to obtain
better performance in risk assessment [57]. Janipalli et al. [58] combine 32 genomic loci with
other conventional risk factors to obtain an AUC of 0.63 in an Indian population. Therefore
the performance improvement provided by the multi-locus features as compared to the indi-
vidual locus based features in a genetic factor only setting suggests that combination of multi-
locus genomic features with other factors may lead to an even greater predictive performance
in risk assessment.

Coronery-Artery Disease (CAD).Two NETPOCOs that have highest coefficient in L1 regular-
ized logistic regression for CAD are shown in Fig 11. The genes that are highlighted in gold
code for proteins that are previously reported to be associated with CAD [59]. The NETPOCO in
Fig 11(a) is enriched in positive regulation of STAT protein (p-value = 0.0003), positive regula-
tion of cardiac muscle cell proliferation (p-value = 0.002), cardiac muscle tissue regeneration
(p-value = 0.0003), and activation ofMAPKK activity (p-value = 0.02). These pathways are pre-
viously reported to be associated with susceptibility to CAD [59]. Although ERBB4 is not previ-
ously reported to be associated with CAD, it plays a role inMAPK pathway, which is one of the
top pathways for CAD [59]. Therefore, ERBB4 can be a potential candidate gene for CAD as
well. The NETPOCO in Fig 11(b) is also enriched in muscle cell proliferation (p-value = 3.3E-6),
prostate glanduar acinus development (p-value = 5.92E-6), and muscle cell differentiation(p-
value = 5.72E-5). This NETPOCO is also enriched in positive regulation of calcieneurin-NFAT
signaling pathway (p-value = 0.0006) and positive regulation of insulin-like growth factor
receptor signaling pathway. IGF1 and RXRA are both involved in a pathway named “Pathways
in cancer” which is known to be related to CAD. More than 20 genes in this pathway are
known to be associated with CAD [59]. This observation suggests that RXRAmay be a novel
CAD risk factor.

of respective genes. The genes that are previously reported to be associated with T2D are highlighted in

gold. (a) A NETPOCO enriched in isocitrate metabolic process and NADH metabolic process(p-value = 0.004),

which both contribute to the amplification of insulin, (b) a NETPOCO enriched in calcium ion homeostasis.

doi:10.1371/journal.pcbi.1005195.g010
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Fig 11. Two NETPOCOs associated with CAD. Two NETPOCOs associated with Coronary Artery Disease

(CAD). These NETPOCOs are consistently selected by L1 regularized logistic regression in the final model for

risk prediction. The circle nodes represent proteins and rectangular nodes represent SNPs. Red dashed

lines represent the eQTL association between a SNP and a gene, purple lines indicate that a SNP is in the

ROI of the respective gene, and the blue edges represent a protein-protein interaction (PPI) between the
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Bipolar Disorder (BD). Two NETPOCOs with highest coefficient in L1 regularized logistic
regression in the risk predictionmodel for bipolar disorder are shown in Fig 12. TheNETPOCO
in Fig 12(a) is enriched in regulation of dopamin metabolic process (p-value = 8.67e-6), which
plays a central role in bipolar disorder [60]. The NETPOCO in Fig 12(b) is enriched in regulation
of neurotrasmitter secretion (p-value = 0.0007), cell migration involved in coronary angiogene-
sis (p-value = 0.0008), and insulin receptor signaling pathway(p-value = 0.003).

Shared molecular bases among diseases. Identifying the links between the molecular etiolo-
gies of different diseases can provide an insights on the underlyingmechanisms of these dis-
eases. Elucidation of such relationships can also help to detect the novel candidate genes for
diseases. For example, patients with bipolar disease frequently have coexistingmedical condi-
tions such as obesity, cardiovascular disease, and diabetes mellitus [49]. Torkamani et al. [50]
also show a strong genetic correlation between BD and metabolic disorders CAD and T2D.
Note that the results of Gene Ontology enrichment analysis reported above also suggest that
NETPOCOs can capture the relationship between diseases. For example, the NETPOCO in Fig 11
(b), which is associated with CAD, is enriched in regulation of insulin-like growth factor recep-
tor signaling pathway, which is also associated with T2D.
To gain further insights into the shared molecular bases of T2D, CAD, and BD, we examine

the genes that appear most frequently in the NETPOCOs selected by L1 regularized logistic
regression in the risk assessment models for these diseases. For each disease, we identify the
top 10 most frequent genes. We then assess whether they are previously reported to be associ-
ated with T2D [52], CAD [59] and BD [61, 62] as well. The results of this analysis are shown in
Table 3. The first ten rows show the most frequent genes in NETPOCOs identified in CAD data-
set. Among these genes,WWOX and CD36 are previously reported candidates for CAD. They
are also known to be associated with BD. This result suggests that, for example, GRID1 can also
be a potential susceptibility gene for CAD. This hypothesis is also supported by the observation
that GRID1 plays a role with 14 other known CAD genes in neuroactive legand-receptor inter-
action.WWOX also can be a good candidate for T2D, considering that it plays a role in apopto-
sis and autophagy pathway, which is the main form of beta-cell death in T2D [63].
Note that NETPOCOs do not overlap at the SNP-level, however, they may overlap at the

gene-level since multiple SNPs can be mapped to the same gene. This shows the power of NET-
POCOs in identifyingmolecular bases of diseases, since multiple NETPOCOs can arise from simi-
lar functional contexts, providing stronger statistical evidence for the involvement of genes that
are associated with these NETPOCOs.

Discussion

In this paper, we propose a novel criterion to assess the collective disease-associationof multi-
ple genomic loci (POCOs) and investigate the utility of these multiple-loci features in risk
assessment. We also perform extensive experiments to evaluate the effect of using network
information to drive the search for multi-locus features on risk assessment. We also investigate
the effect of the variants that have regulatory effects (i.e. eQTL data) on performance for risk
assessment. Moreover, we compare the proposedmethod with the polygenic score which has
been shown to be successful in different studies. Our result show that our method is signifi-
cantly more powerful in risk assessment.

products of respective genes. The genes that are previously reported to be associated with CAD are

highlighted in gold. (a) A NETPOCO enriched in cardia muscle tissue regeneration (p-value = 0.0003) and

activation of MAPKK activity (p-value = 0.02), (b) a NETPOCO enriched in positive regulation of insulin-like

growth factor receptor signaling pathway (p-value = 0.0006).

doi:10.1371/journal.pcbi.1005195.g011
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Fig 12. Two NETPOCOs associated with BD. Two NETPOCOs associated with Bipolar Disorder (BD). These

NETPOCOs are consistently selected by L1 regularized logistic regression in the final model for risk prediction. The

circle nodes represent proteins and rectangular nodes represent SNPs. Red dashed lines represent the eQTL

association between a SNP and a gene, purple lines indicate that a SNP is in the ROI of the respective gene, and

the blue edges represent a protein-protein interaction (PPI) between the products of respective genes. The genes
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Our results show that multi-locus features improve prediction performance as compared to
individual locus based features. We also observe that integrating functional information pro-
vided by protein-protein interaction data and expression quantitative trait loci (i.e. eQTL) data
leads to more parsimonious models for risk assessment. However, inclusion of functional data
does not yield significant improvement in prediction performance. This may be indicative of

that are previously reported to be associated with CAD are highlighted in gold. (a) A NETPOCO enriched in

regulation of dopamin metabolic process which plays a central role in bipolar disorder (p-value = 8.67e-6), (b) a

NETPOCO enriched in regulation of neurotrasmitter secretion and insulin receptor signaling pathway (p-

value = 0.0007).

doi:10.1371/journal.pcbi.1005195.g012

Table 3. Shared molecular bases of T2D, BD, and CAD as revealed by NETPOCOs.

Gene Name Frequency T2D BD CAD

CAD

WWOX 102 NO YES YES

CSMD1 80 NO YES NO

APP 77 NO NO NO

PARK2 74 YES YES NO

GRID1 64 YES YES NO

DOCK10 61 YES NO NO

CUL3 56 NO NO NO

DENND1A 56 NO NO NO

CD36 52 NO YES YES

CNTNAP2 49 NO YES NO

T2D

CSMD1 38 NO YES NO

A2BP1 35 NO YES NO

FHIT 35 NO NO NO

CNTNAP2 34 NO YES NO

PTPRD 32 YES YES NO

CACNA2D3 31 NO NO NO

WWOX 29 NO YES YES

NRG1 28 YES YES YES

SUPT3H 28 YES NO NO

CDH13 26 NO YES YES

BD

PARK2 54 YES YES NO

NRG1 48 YES YES YES

ADRB2 47 YES YES YES

WWOX 43 NO YES YES

APP 41 NO NO NO

CACNA2D3 40 NO NO NO

CUL3 40 NO NO NO

KIF16B 40 NO NO NO

SNX29 35 NO NO NO

DAPK1 33 NO NO NO

For each disease, ten most frequent genes that are involved in NETPOCOs selected by L1 regularized logistic regression in risk prediction are listed.

Previously reported association of these genes with the three diseases are indicated with a “Yes” or “No” in the respective column of each row.

doi:10.1371/journal.pcbi.1005195.t003
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the limitations of genomic data in risk assessment. Furthermore, since PoCos contain loci that
are related to each other in the context of a phenotype, PoCos that are discovered without the
inclusion of functional information also likely contain functionally related loci. However, utili-
zation of functional information reduces the search space to render the problem computation-
ally feasible, and brings forward PoCos that are more functionally relevant and robust, thereby
leading to more parsimonious models.
Based on the success of multi-locus genomic features in risk assessment, we conclude that

combining these features with non-genetic risk factors and other biological data may lead to
further improvements in risk assessment.
The proposedmethod is implemented in MATLAB and provided in the public domain

(http://compbio.case.edu/pocos/) as open source software.

Supporting Information

S1 Fig. Effect of variance in the number of PoCos on the performance and number of
selected features.
(TIF)

S2 Fig. Effect of p-value threshold on risk assessment performance of NetPoCos on four
diseases.The x-axis shows the p-value threshold used in filtering based feature selection and
the y-axis shows the area under the ROC curve (AUC) for performance in risk assessment. The
curve shows the average AUC score and error bars show the standard deviation of AUC score
across 5 folds in 5 different runs.
(TIF)

S3 Fig. LinkageDisequilibrium (LD) distribution among selectedPoCos in the prediction
model.
(TIF)
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