
Noname manuscript No.
(will be inserted by the editor)

Fast Computation of Katz Index for Efficient
Processing of Link Prediction Queries

Mustafa Coşkun · Abdelkader Baggag ·
Mehmet Koyutürk

Received: date / Accepted: date

Abstract Network proximity computations are among the most common op-
erations in various data mining applications, including link prediction and
collaborative filtering. A common measure of network proximity is Katz in-
dex, which has been shown to be among the best-performing path-based link
prediction algorithms. With the emergence of very large network databases,
such proximity computations become an important part of query processing
in these databases. Consequently, significant effort has been devoted to devel-
oping algorithms for efficient computation of Katz index between a given pair
of nodes or between a query node and every other node in the network. Here,
we present LRC-Katz, an algorithm based on indexing and low rank correc-
tion to accelerate Katz index based network proximity queries. Using a variety
of very large real-world networks, we show that LRC-Katz outperforms the
fastest existing method, Conjugate Gradient, for a wide range of parameter
values. Taking advantage of the acceleration in the computation of Katz index,

Mustafa Coşkun
Department of Computer Engineering
Abdullah Gül University
Kayseri,Turkey
Tel.: +90-505-0082739
E-mail: mustafa.coskun@agu.edu.tr

Abdelkader Baggag
Qatar Computing Research Institute
Hamad Bin Khalifa University
Doha, Qatar
Tel.: +971-4454-7250
E-mail: abaggag@hbku.edu.qa

Mehmet Koyutürk
Department of Computer and Data Sciences
Case Western Reserve University
Cleveland, USA
Tel.: +1-216-3682963
E-mail: mehmet.koyuturk@case.edu

2 Mustafa Coşkun et al.

we propose a new link prediction algorithm that exploits locality of networks
that are encountered in practical applications. Our experiments show that the
resulting link prediction algorithm drastically outperforms state-of-the-art link
prediction methods based on the vanilla and truncated Katz.

Keywords Fast Katz Method · Link Prediction · Network Proximity

1 Introduction

Proximity computation in networks is a well-adapted operation in many data
analytic applications. In link prediction or recommender systems, network
proximity measures the node similarity in social networks (Liben-Nowell and
Kleinberg 2007; Sarkar and Moore 2012a). In information retrieval, anomalous
links are ranked based on the nodes’ proximity to other nodes (Rattigan and
Jensen 2005). In unsupervised learning, network proximity is used to quantify
cluster quality (Saerens et al. 2004).

The general setting for network proximity queries is as follows: given a
query node, we aim to compute a score for all other nodes in the network, based
on their proximity to the query node. These measures of network distance
include shortest path (minimum number of edges between two nodes), random
walk with restarts, effective resistance, commute distance, and Katz-index. All
measures except shortest path aim to quantify the multiplicity of relatively
short paths connecting the two nodes. Katz-index accomplishes this directly,
where the proximity between two nodes is defined as a weighted sum of the
number of paths connecting the two nodes. The weighting is applied to assign
more importance to shorter paths (Bonchi et al. 2012; Katz 1953). Katz-based
proximity measures have been used in a number of applications, including
link prediction (Liben-Nowell and Kleinberg 2007), clustering (Saerens et al.
2004), and ranking (Rattigan and Jensen 2005).

Motivated by problems such as link prediction and collaborative filtering,
significant efforts have been devoted to reducing the computational costs asso-
ciated with the computation of Katz-based proximity. These efforts typically
speed-up computations by taking one of the following approaches: (i) exploit-
ing numerical properties of iterative methods, along with structural character-
istics of the underlying networks to speed up query processing; (ii) avoiding
iterative computations during query processing by inverting the underlying
system of equations using Cholesky factorization and storing the resulting fac-
torization as an index. For instance, in the context of top-k Katz-based proxim-
ity queries, the state-of-the-art methods (Bonchi et al. 2012) use breadth-first
ordering of the nodes in the network to bound element-wise increments of prox-
imity scores by exploiting a relationship between the Lanczos process and a
quadrature rule in the iterative computation (Bonchi et al. 2012). This bound-
ing process eliminates nodes whose proximity values cannot exceed those of the
nodes that are already among the top-k most proximate to the query node by
only entering some part of the underlying network. Likewise, using Cholesky
factorization of the underlying linear system, top-k proximity computations

Fast Katz for Efficient Link Prediction Queries 3

can be performed efficiently (Saad 2003). These approaches have been demon-
strated to yield significant improvement in computation time, however, their
application to larger networks is limited. Specifically, for very large networks,
iterative methods (Bonchi et al. 2012; Saad 2003) require a large number of
iterations to converge. More concretely, Fast-Katz (Bonchi et al. 2012) offers a
tight convergence upper bound, however, Conjugate Gradient (CG) performs
better than Fast-Katz (Bonchi et al. 2012) for Katz-based proximity. On the
other hand, direct inversion techniques (Saad 2003) are not scalable to large
matrices, since the inverse of a sparse matrix is usually dense.

In this paper, we propose a hybrid approach that partitions the network
into disjoint subnetworks and inverts the small matrices corresponding to these
subnetworks. This partitioning idea can be viewed as non-overlapping domain
decomposition (Smith et al. 2004). By inverting the small block diagonal ma-
trices that correspond to small sub-networks, our hybrid procedure overcomes
the memory constraint of direct inversion techniques. The denser matrix, com-
posed of the nodes connecting these subnetworks is handled through a low rank
corrected iterative CG method. By performing an iterative low rank corrected
procedure on this smaller matrix (as compared to the original matrix that
corresponds to the entire network), our method overcomes the computational
cost considerations of classical CG. Motivated by the skewed distribution of
Katz-based proximity scores(Bonchi et al. 2012), we also propose a new link
prediction algorithm, called Sparse-Katz that exploits the modularity of
networks encountered in practical applications.

We provide detailed theoretical justifications for our results and experimen-
tally show the superior performance of our method on a number of real-world
networks. Our experiments on these networks show that the resulting hybrid
approach converges much faster than classical CG, and significantly accelerates
the computation of Katz-based proximity queries for very large graphs. Specif-
ically, we show that our method yields over at least 3-fold improvement in the
runtime of online query processing over the best state-of-the-art method, CG,
across all our experiments. Our experimental results on the link prediction
problem show that our modularity based algorithm significantly outperforms
state-of-the-art link prediction Vanilla and Truncated Katz methods.

In summary, the two main contributions of the proposed framework are
the following:

– We introduce a hybrid approach to indexing-based acceleration of Katz-
based network proximity queries, in which the network is divided into two
components, where the larger and sparser part of the resulting system
is solved by indexing the inverse of the corresponding matrix, and the
smaller and denser part of the system is solved during query processing
using proposed low rank corrected CG method.

– We introduce a link prediction algorithm that renders Katz-based link
prediction more effective by exploiting the skewed distribution of Katz
scores.

4 Mustafa Coşkun et al.

Taken together, these two contributions bring the field closer to real-time
processing of proximity queries as well as link prediction task on very large
networks.

The rest of the paper is organized as follows: in the next section, we pro-
vide a review of the literature on efficient processing of Katz-based network
proximity and link prediction. In Section 3, we define Katz-based proximity
and link prediction problem, and describe our method, along with its theoret-
ical justifications. In Section 4, we provide detailed experimental assessments
of our method on very large networks for both Katz based proximity and its
link prediction task. In Section 5, we discuss avenues for future research. We
conclude our discussion in Section 6.

2 Related Work

Node proximity queries have received significant research attention in recent
years in various areas of data mining, such as searching, ranking, clustering
and analyzing network structured object similarity (Coşkun et al. 2018). In
particular, Katz-based node proximity queries in large graphs have been well
studied (Bonchi et al. 2012).
Efficient Computation of Katz-based Proximity. One of the commonly
used approaches for computing Katz-based proximity is the power method
through the Neumann series expansion of the underlying linear systems of
equations (Saad 2003). An alternate approach to power iterations is to use
of offline computation, which directly inverts the underlying linear system of
equations, typically using Cholesky factorization or eigen-decomposition (Acar
et al. 2009; Sarkar and Moore 2012b; Wang et al. 2007). These methods tend
compute network proximity rapidly, using a single matrix vector multiplica-
tion, however, they involve in some expensive preprocessing, and their memory
requirements constrain their use to smaller networks.

There have also been extensive efforts aimed at scaling top-k proximity
queries to large sparse networks for Katz-based proximity. These methods uti-
lize the topology of the network to perform a local search around the query
node by exploiting a relationship between the Lanczos process and a quadra-
ture rule in the iterative computation (Bonchi et al. 2012). However, these local
search based methods for Katz proximity computation are not as efficient as
CG method (Bonchi et al. 2012).
Relation to Domain Decomposition. In this paper, we focus on exact
computation of Katz proximity in very large networks using non-overlapping
domain decomposition (DD) (Smith et al. 2004) accelerated by low-rank cor-
rection. Domain Decomposition techniques efficiently solve (non)-linear sys-
tems of equations derived from Partial Differential Equations (PDE) using
a divide-and-conquer approach (Saad 2003; Skogent 1992; Smith et al. 2004;
Van der Vorst and Chan 1997). However, the rich literature on DD has not
been fully exploited by research efforts in data mining and machine learning,
where many graph learning related problems, including link prediction, semi-

Fast Katz for Efficient Link Prediction Queries 5

supervised learning (Zhou et al. 2004), and graph convolutional networks (Kipf
and Welling 2016) require solution to large linear systems of equations that
can efficiently be solved via DD approaches. In the context of computing Katz-
based proximity, our approach uses DD for partitioning the underlying graph
and further accelerates the DD preconditioners by solving the dense part of
the system via a low rank correction. Hence, our method is fundamentally
different from existing approaches in that it simultaneously targets scalability
and efficiency.

Application to Link Prediction. Link prediction can be defined as the
problem of predicting the links that are likely to emerge/disappear in the
future, given the current snapshot of the network. Various topological mea-
sures were extensively examined for the link prediction problem (Liben-Nowell
and Kleinberg 2007). These measures can be classified into two categories:
neighborhood-based measures (local) and path-based measures (global). Clearly,
methods that are based on local measures, such as Common Neighbor and
Adamic-Adar (Liben-Nowell and Kleinberg 2007) are more efficient than those
that are based on global measures, such as PageRank (Page et al. 1999) and
Katz-index (Katz 1953). However, the global measures are more effective than
local measures for the link prediction problem since they account for the flow
of the information through the indirect paths (Bonchi et al. 2012; Coskun and
Koyutürk 2015) whereas the local methods focus only on the local neighbor-
hood of the nodes in the network.

In the context of candidate disease gene prioritization, a common applica-
tion of link prediction in computational biology, global measures are also shown
to be significantly more effective than local measures (Navlakha and Kingsford
2010). However, these global measures were shown to favor high-degree genes
over the genes that are relatively less connected or less studied (Erten, Bebek,
Ewing and Koyutürk 2011). To alleviate this problem, Erten et. al., (Erten, Be-
bek and Koyutürk 2011) proposed a topological similarity-based global method
that assesses the similarity of two nodes in a network using the correlation of
their random-walk based proximities to all other nodes in the network (Erten,
Bebek and Koyutürk 2011). Observing that the computation of topological
similarity can be adversely affected by high-dimensionality in link prediction
applications on social networks, we proposed a simple dimensionality reduction
technique (Coskun and Koyutürk 2015). Here, we develop a link prediction al-
gorithm, Sparse-Katz that uses the similarity between the Katz-based prox-
imity profiles of nodes to assess the topological similarity between the nodes.
In comparison to existing algorithms, the key contribution of Sparse-Katz is
that it computes the proximity vectors used in the assessment of topological
similarity at query time. This feature enables Sparse-Katz to personalize the
dimensions of the proximity vectors based on the query node, which is facili-
tated by the improvement in the efficiency of computing Katz-based proximity
scores provided by LRC-Katz.

6 Mustafa Coşkun et al.

3 Methods

In this section, we first define Katz-index and formulate node proximity queries
based on Katz index. We then describe our approach to indexing, which is
based on a domain decomposition technique, graph-partitioning indexing, i.e.,
to partition the resulting linear system and to index the sparser part of the
system. Subsequently, we discuss how the iterative computation can be accel-
erated using low rank correction to refine the solution, and solve the remaining
part of the linear system. Finally, we discuss how these two approaches can
be used in combination, to efficiently process Katz-based network proximity
queries. The workflow of the proposed framework is shown in Figure 1.

3.1 Katz Index

Let G = (V, E) be an undirected and connected network, where V denotes the
set of |V| nodes and E denotes the set of edges, with sizes indicated as |V| and
|E|, respectively. Katz index quantifies the proximity between a pair of nodes
in this network as the weighted sum of all paths connecting the two nodes,
where the weights of the paths decay exponentially with path length (Bonchi
et al. 2012; Katz 1953). Namely, for a pair of nodes i and j ∈ V, the Katz
index is defined as:

Ki,j =

∞∑
l=1

αlpathsl(i, j), (1)

where pathsl(i, j) denotes the number of paths of length l connecting i and j
in G. The parameter α is a damping factor that is used to tune the relative
importance of longer paths, where 0 < α < 1, thus smaller α assigns more
importance to shorter paths (Bonchi et al. 2012).

By observing the relationship between the number of paths in G and the
powers of the adjacency matrix G of G, of size |V| × |V|, the computation
of Katz index can be formulated as an algebraic problem. To see this, let K
denote the Katz matrix, i.e., the matrix of Katz indices between all pairs of
nodes in G.

Since (Gl)i,j is equal to the number of paths of length l between i and j,
K can be written as:

K =

∞∑
l=1

αlGl = (I− αG)
−1 − I, (2)

where I is the identity matrix. In the rest of our discussion, we assume that
α < 1/‖G‖2 to ensure that (I− αG) is symmetric positive definite, and to
guarantee the convergence of the Neumann series to the inverse of (I− αG).
Here we highlight that, in this paper, we aim to solve the Katz proximity

with the hardest α =
1

‖G‖2 + 1
which makes (I− αG) very close to indefinite

matrix (Bonchi et al. 2012).

Fast Katz for Efficient Link Prediction Queries 7

For a given query node q, the Katz index of every other node in G with
respect to q is given by the qth column of K, which we denote kq. Observe
that the computation of kq corresponds to solving the following linear system:

Mkq = αgq. (3)

Here, M = (I − αG) and gq is the qth column of the adjacency matrix G.
Since M does not depend on the query node q, it can be inverted offline, and
the inverse can be used as an index to compute kq = αM−1gq by performing a
single matrix vector multiplication during query processing. However, inverting
M and storing M−1 is not feasible for very large graphs, since the inverse of a
general sparse matrix is dense. Therefore, existing algorithms solve this linear
system of equations using an iterative solver such as the (preconditioned)
Conjugate Gradient method (Saad 2003, p. 196), which is applicable in this
case since M is symmetric (Bonchi et al. 2012). While these iterative methods
greatly accelerate the computation of Katz index, they are not fast enough to
enable real-time query processing in very large graphs.

Recently, to enable efficient processing of random-walk based queries on
billion-scale networks, we have developed I-Chopper, a hybrid method that
uses a combination of indexing and accelerated iterative solvers (Coşkun et al.
2018). In the following subsection, we show how a similar idea can be applied
to the processing of Katz index based queries by indexing the inverse of the
matrix that corresponds to sparser parts of the network and performing low-
rank correction at query time to obtain an exact solution for the rest of the
network. We then describe how the resulting algorithm, LRC-Katz, can be
used to efficiently perform Katz index based link prediction.

3.2 Graph Partitioning Based Indexing

As in I-Chopper, LRC-Katz exploits the sparsity of real-world networks
to efficiently compute and index the inverse of a large part of M. The key
insight behind this approach is that, although the inverse of a general sparse
matrix is dense, the inverse of a block-diagonal matrix with a low bandwidth
is sparse [p.87](Saad 2003).

Since most real-world networks are scale-free, most of the nodes in the
network have low degree. Consequently, observing that the non-zero structure
of the matrix M is identical to that of the adjacency matrix of the network,
we can reorder the rows of M such that M can be partitioned into a very
large block-diagonal matrix with a low bandwidth (corresponding to small
connected subgraphs consisting of low-degree nodes) and relatively dense but
much smaller matrices (corresponding to hubs and their connections to other
nodes). The following lemma shows how such partitioning of M can be used
to separate the solution of the linear system of Equation 3 into two parts:

Lemma 1 Suppose a linear system Mkq = g̃q, can be partitioned as[
M11 M12

MT
12 M22

] [
kq1

kq2

]
=

[
g̃q1

g̃q2

]
, (4)

8 Mustafa Coşkun et al.

such that M11 is invertible. Letting S = M22 −MT
12M

−1
11 M12 denote the Schur

complement, the linear system can be solved as:

kq2 = S−1
(
g̃q2 −MT

12M
−1
11 g̃q1

)
, (5)

kq1 = M−1
11 (g̃q1 −M12kq2) . (6)

Proof The proof of this lemma is straightforward, and hence it is not included.

In our application, g̃q = αgq. This lemma applies to the computation of
Katz indices as long as α < 1/‖G‖2, since M is diagonally dominant and
invertible in that case. In the light of this lemma, the computation of Katz
indices can be performed as follows:

1. Indexing: Construct M.
2. Indexing: Partition G using multi-way minimum-vertex-separator parti-

tioning.
3. Indexing: Reorder M so that M11 contains the internal edges of all parts

resulting from the partitioning with nodes within each partition corre-
sponding to successive rows (hence columns), M12 = MT

12 contains the
edges between nodes in partitions and nodes in the separator, and M22

contains the edges between nodes in the separator.
4. Indexing: Compute and store M−1

11 , M12, and S.
5. Query Processing: For a query q, compute kq2 as given in Equation (5),

but without inverting S, as described below.
6. Query Processing: Compute kq1 by performing two matrix-vector mul-

tiplications as given in Equation (6).

This procedure is identical to the procedure implemented in I-Chopper,
with one important difference in the computation of kq2 during query process-
ing (Step 5). In I-Chopper, this computation is accelerated using Chebyshev
polynomials over the elliptic plane (Coşkun et al. 2018). In the computation of
Katz-index, S is symmetric [p.271](Saad 2003), thus the elliptic plane degrades
to the real axis and the solution can be found by using Chebyshev polynomi-
als on the real axes (Coskun et al. 2016). However, this requires knowledge
of the largest and smallest eigenvalues of S, and it is costly to compute these
eigenvalues. Since the matrix in question is not symmetric in queries involv-
ing random walks, I-Chopper addresses this problem by pre-computing these
eigenvalues using Arnoldi’s method [p. 160](Saad 2003). In the computation
of Katz-index, however, S is symmetric, and therefore this computation can be
avoided by utilizing methods that do not require an eigen-bound. Specifically,
we use the Conjugate Gradient (CG) method to solve the linear system in-
volving S, since CG does not require the knowledge of the largest and smallest
eigenvalues of S. Still, this computation can be accelerated using eigenvectors
of a low-rank approximation of S−1.

Since the details of all other steps are described in (Coşkun et al. 2018), here
we briefly describe the key idea in each step. We then focus on the description
of low-rank approximation and describe this approach in detail.

Fast Katz for Efficient Link Prediction Queries 9

Steps 2 and 3 – Partitioning of G and Reordering of M: The idea
behind the partitioning of the network is to reorder the rows and columns
of M in such a way that we can obtain a block diagonal M11 with a small
bandwidth, i.e., the non-zero entries in matrix M11 are condensed around its
diagonal, ensuring that M−1

11 is sparse. To accomplish this, we use multi-way
minimum-vertex-cover partitioning to partition the nodes of G into p parti-
tions such that each node in partition Πi are connected only to nodes in Πi or
to a set Πs of nodes that are classified as the “vertex-separator” (Karypis and
Kumar 1998a,b). Given such a partitioning, we reorder the matrix M such that
the rows/columns that correspond to nodes in the partitions Π1, Π2, ...,Πp are
ordered next to each other, and rows/columns that correspond to the nodes in
Πs are at the bottom/right of the matrix. As a result, the reordered matrix M
can be divided into the following sub-matrices: (i) M11 contains the non-zeros
that correspond to the edges within the partitions, (ii) M12 and MT

12 con-
tain the non-zeros that correspond to the edges between nodes in a partition
and nodes in Πs, (iii) M22 contains the non-zeros that correspond to the edges
between nodes Πs. Since minimum-vertex-separator graph partioning is a NP-
hard problem, we use a heuristic that is well-suited to our application. Namely,
the Part-GraphRecursive package implemented in the MeTiS graph par-
titioning tool (Karypis and Kumar 1998a) allows the user to put a threshold
on the size of the vertex separator, as opposed to minimizing it, and recur-
sively bipartitions the network until this threshold is reached. Therefore, we
can directly control the size of S (number of rows/columns of S is equal to
the number of nodes in the vertex separator) and the recursive partitioning
generates many small partitions with roughly equal sizes, thereby keeping the
bandwidth of M11 small.

Step 4 – Computation of M−1
11 and S. Once M11 is constructed, we

invert M−1
11 , which is also relatively sparse and can be stored as an index. Here,

we remark that the inversion of M11 is feasible even for graphs with hundred
millions of nodes since it is block diagonal with a small bandwidth and there
exists many efficient algorithms for inverting banded matrices (Coşkun et al.
2018). In our implementation, we use the Incomplete Cholesky factorization
along with approximate minimum algorithms (Amestoy et al. 1996a,b) before
we invert the sparse block diagonal matrix M11. Once M−1

11 is available, we
compute S as defined in Lemma 1, and store M−1

11 , S, and M12.
Step 5 – Computation of kq2 During Query Processing.
Recall that processing of a Katz index query involves the computation

of kq for a given query node q. As described in Lemma 1, we divide the
computation of kq into the computation of kq1 and the computation of kq2.
Since the computation of kq1 required knowledge of kq2, we first compute kq2

during query processing. This computation requires solution of the system

Skq2 = (g2 −MT
12M

−1
11 g1) = f , (7)

where f can be computed efficiently (by performing a single matrix-vector
multiplication) during query processing, since we form and index MT

12 and
M−1

11 in Steps 3 and 4. However, solving the linear system Skq2 = f , during

10 Mustafa Coşkun et al.

Σ̃Network

Query node

Merging

q ∈ V

Indexing

I : Identity matrix
α : Damping factor

M = (I − αG)

G = (V,E)

Adjacency Matrix

k2

k1

M

M11 M12

M22M12
T

S = L(I −R)LT

S R ≈

U UT

top-k

(1)

(2)

(3) (4)

(5)

(6)

L!
−1

Index for k1

Index for k2

(7)

M12

LRC-Katz

Online QueryingOffline Preprocessing

S̃−1
S̃−1

Fig. 1: Flowchart illustrating the proposed framework for indexed
processing of Katz-based proximity queries on large networks.

query processing or pre-computing and storing the inverse of S is not feasible
since S is a relatively dense matrix. For this reason, we compute a low-rank
approximation for S offline and store this approximation as an index that can
be used to efficiently compute kq2 during query processing. We now explain
this process. To avoid cluttered notation, we drop the subscripts (q) in the
following sections.

3.2.1 Low Rank Correction

The idea behind Low Rank Correct Katz Algorithm (LRC-Katz) is as follows:
To solve Sk2 = f , we approximate the Schur complement S ∈ Rn2×n2 via M22

plus some low rank vectors so that we use sparser matrices instead of dense
matrix S.

Let M22 = LLT be the Cholesky factorization of M22 and recall that the
Schur complement matrix can be rewritten as

S = LLT −MT
12M

−1
11 M12 (8)

= L(I− L−1MT
12M

−1
11 M12L

−T)LT (9)

= L(I−R)LT (10)

Now define the eigen-decomposition of the symmetric matrix R as follows:

R = L−1MT
12M

−1
11 M12L

−T = UΣUT , (11)

where the diagonal entries of Σ are the eigenvalues of R and U is the column
matrix that contains the corresponding eigenvectors, which are orthogonal to
each other. Then S can be rewritten as:

S = L(I−R)LT = L(I−UΣUT)LT = LU(I−Σ)(LU)
T
. (12)

Fast Katz for Efficient Link Prediction Queries 11

Thus, the inverse of the Schur complement matrix S becomes:

S−1 =
(
LU(I−Σ)(LU)

T
)−1

= L−TU(I−Σ)
−1

UTL−1

= L−T
[
I + U(I−Σ)

−1
UT − I

]
L−1

= M−1
22 + L−TU

[
(I−Σ)

−1 − I
]

UTL−1.

(13)

Now consider approximating R using its most dominant ` eigenvectors.
That is, define R̃ ≈ ŨΣ̃ŨT , where Ũ and Σ̃ ∈ Rn2×n2 , diag(Σ̃) = (σ1, σ2, .., σ`, 0, 0, ..., 0)
and Ũ consists of first ` eigenvectors of U padded with zeros, i.e.,:

R ≈ ŨΣ̃ŨT

=

· · · · · ·

u1 ulul+1 un2

` 0

σ1
. . .

σl
0

. . .

0

uT1

uTl
uTl+1

uTn2

`

0

Using this approximation to R, we define an approximation to S−1 as follows:

S̃−1 = M22
−1 + L−T Ũ[(I− Σ̃)

−1 − I]ŨTL−1 (14)

Note that we never compute S̃−1 in practice, we define it here solely for
theoretical justification.

The following theorem establishes the relationship between the eigenvalues
of SS̃−1 and the eigenvalues of R.

Theorem 1 Assume that the eigenvalues of R are ordered as σ1 ≥ σ2 ≥
.... ≥ σn2

, where n2 is size of S. For a given integer `, define S̃−1 as in
Equation (14). Then, the eigenvalues of SS̃−1 are in the form of

λi =

{
1 if i ≤ `.
1− σi otherwise

Proof From Equations (13) and (14), we can write S−1−S̃−1 = L−T Ũ[(I−Σ)
−1−

(I− Σ̃)
−1

]ŨTL−1. Then, we have,

LTS−1L− LT S̃−1L = Ũ[(I−Σ)
−1 − (I− Σ̃)

−1
]UT .

12 Mustafa Coşkun et al.

Multiplying both sides of the above equality with (LTS−1L)Ũ
−1

= L−1SL−T ,
we have

I− L−1SS̃−1L = L−1SL−T Ũ[(I−Σ)
−1 − (I− Σ̃)

−1
]ŨT .

From the definition, we know that L−1SL−T = (I−R) = Ũ(I−Σ)ŨT . Then,
by using orthogonality of U, we have

I− L−1SS̃−1L =

Ũ(I−Σ)ŨT Ũ[(I−Σ)
−1 − (I− Σ̃)

−1
]ŨT

Ũ[I− (I−Σ)(I− Σ̃)
−1

]ŨT .
Finally, we have,

SS̃−1 = (LŨ)[(I−Σ)(I− Σ̃)
−1

](LŨ)
−1
.

Q.E.D.

It follows from this theorem that if we compute the top ` eigenvectors of R
matrix, we can use these eigenvectors and M22 to efficiently solve the system
in Equation (7). This is because, in the iterative solution of (7), we multiply
k2 vector by a matrix that contains ` × ` identity matrix on top instead of
S matrix at each iteration. From the theorem, we can approximate the first
` part of inverse of S via low rank and since this ` × ` upper part of inverse
of S is already computed in the preproccessing phase, we automatically use
precomputed part in the iterative computation of (7).Setting the iterative
process this way, we eliminate `× ` computation from equation (7).

Algorithm 1 The Preprocessing Phase

1: procedure Preprocess(G, α, k)
2: Construct M← (I− αG)
3: Use minimum-vertex-seperator graph partitioning on M to partition it into

M11,MT
12,M12,M22 (Karypis and Kumar 1998a,b)

4: Decompose M11 into L1 and L1
T using Cholesky factorization and invert L1 and

L1
T

5: Decompose M22 into L and LT using Cholesky factorization
6: Create l(0) as normalized random vector
7: Compute

[
Ũ, Σ̃

]
= Lanczos(Rl(0), k, l(0)) (Demmel 1997) . As matrix-vector

product

3.2.2 The LRC-Katz Algorithm

In this section, we outline our algorithm for Katz-based network proximity
computation. In “offline” preprocessing Algorithm 1, we first construct M
and use PartGraphRecursive in Metis to partition M in such a way that
M11 is a sparse block diagonal matrix, and M22 is dense but smaller (Karypis
and Kumar 1998a,b). Next, we reorder the entries of partitioned matrix M

Fast Katz for Efficient Link Prediction Queries 13

based on an approximate minimum degree ordering (AMD) (Amestoy et al.
1996a,b). After reordering entries of M, we invert the Cholesky factorization
of sparse block-diagonal matrix M11 and obtain L1

−1 and L1
−T . Then, we

construct Ũ and Σ̃ via Lanczos procedure (Demmel 1997) without forming R
matrix. Subsequently, we form matrices for S̃ and store the resulting values and
matrices into an index to use them in query processing phase of our algorithm,
LRC-Katz .

Algorithm 2 The LRC-Katz Algorithm

1: procedure LRC-Katz
2: Partition vector eq into e1 and e2 for query, q
3: Construct b1, b2, and f = (g2 −MT

12M11
−1g1)

4: Create k2
(0) as normalized random vector

5: Set i = 0, r(i) = f − Sk2
(k), s = Sr(i), p = S̃\s(i), y(i) = S̃\r(i) . S and S̃ are

used as matrix-vector product
6: γ(i) = y(i)Ts(i)

7: if γ(k) ≤ ε then
8: k2 = k2

(i) and terminate

9: q(i) = Sp(i)

10: α(i) = γ(i)

‖q(i)‖2

11: k2
(i+1) = k2

(i) + α(i)p(i)

12: r(i+1) = r(i) − α(i)q(i)

13: s(i+1) = S(i+1)

14: y(i+1) = S̃\r(i+1)

15: γ(i+1) = y(i+1)Ts(i+1)

16: p(i+1) = S̃\s(i+1) + γ(i+1)

γ(i)
p(i)

17: if i < imax then
18: i← i+ 1 and go to line 7

19: Compute k1 ← L1
−1(L1

−T (g1 −M12k2)) and merge k1 and k2 as Katz-vector

In the query phase of Katz-based proximity, for a given query node, q. We
first construct the identity vector eq and reorder the entries of eq using the same

ordering of M. Subsequently, we divide eq into two parts, eq =

[
eq1
eq2

]
, based on

the partition of M and set b1 = eq1− (I− αG)eq1 and b2 = eq2− (I− αG)eq2.

Next, we use the indexed matrices and S̃ to compute k2 in equation (7), the
lower part of solution of the linear system, with Conjugate Gradient method.
Here, the S̃ serves as preconfitioner of Conjugate Gradient to refine norms of
eigenvectors of S. Finally, using k2 and the indexed matrices, we compute k1,
the upper part of solution of the linear system. We then merge the entries
in k1 and k2 and return the resulting merged vectoras Katz-based network
proximity vector.

14 Mustafa Coşkun et al.

3.3 Efficient Processing of Link Prediction Queries via Katz Proximity

Observing that our hybrid algorithm enables efficient computation of Katz-
based proximity at query time, we develop an algorithm that uses Katz-based
proximity to efficiently and effectively process link prediction queries. Instead
of using Katz-based proximity directly for link prediction, our algorithm,
Sparse-Katz uses the similarity of Katz-based proximity vectors to assess
the likelihood that two nodes will gain a edge. While doing so, Sparse-Katz
takes the sparsity of the network into account and reduces dimensionality di-
rectly while assessing the topological similarity of the nodes.

The setting for Sparse-Katz is as follows: A query is formulated by spec-
ifying a query node q and integer s, indicating that the user aims to identify
the s nodes that are most likely to gain an edge with node q. A query is also
associated with two integer parameters, C and T . The parameter C, where
C > s and C << n, is used to generate a set of candidate nodes using Katz-
based proximity to q. The parameter T << n, on the other hand, specifies the
dimensionality of the vectors used by Sparse-Katz compute the topological
similarity between the nodes.

Given a query, we first compute the Katz-based proximity vector for the
query node, kq ∈ Rn×1 using LRC-Katz. We then identify the top T nodes
with highest scores in kq, as the anchor nodes representing the neighborhood
of q. Subsequently, as shown in Figure 2, using LRC-Katz again, we compute
Katz-based proximity vectors for these T nodes and represent these as an
n× T matrix KT. Observe that the ith row of KT represents the proximity
of the ith node to the neighborhood of q. Then, we identify the top C nodes
with highest scores in kq as the candidate nodes that are considered for the
link prediction query. We denote the set of these nodes as {C} ⊂ V. The idea
behind using Katz-based proximity directly to identify a list of candidate nodes
is as follows: While topological similarity is potentially a better indicator of
the likelihood of gaining an edge as compared to proximity, nodes that are too
far from q are not likely to be topologically similar to q.

Once we have a set C of candidate nodes that are closest to q according
to Katz-based proximity, we use Katz-based proximity profiles to assess the
topological similarity between these candidate nodes and q. For this purpose,
for each node c ∈ C, we compute βq(c) as the correlation between the cth row
of KT and the qth row of KT. The resulting vector β ∈ R|C|×1 contains the
topological similarity scores of the candidate nodes with respect to the query
node q. Finally, we identify the top s nodes with highest scores in βq, and
return these nodes as the query result. The pseudo-code for Sparse-Katz is
shown in Algorithm 3.

We note that in Sparse-Katz, we need to solve |T |+ 1 linear systems of
equations for each unique query node for the link prediction task. These
linear systems of equations can be solved using either Richardson iterations
and CG or LRC-Katz. In the next section, we empirically show that when
we use LRC-Katz to solve these |T | + 1 linear system of equations for all

Fast Katz for Efficient Link Prediction Queries 15

Algorithm 3 Sparse-Katz

1: procedure Sparse-Katz
2: Given Query q, positive integer s, C and T , where C > s
3: Compute kq with LRC-Katz
4: Sort kq in descending and take Top− C nodes
5: Take Top− T nodes that are the closest to the query node, q, in kq vector
6: for t = 1 : T do
7: Compute kt with LRC-Katz
8: Store kts as matrix, KT
9: Take row-wise correlations of C nodes in KT with respect to the row corresponding

to the query node
10: Sort the correlation scores as a vector, βq ∈ RC×1

11: Return to Top− s nodes in vector βq

ρ(q, c)

q

c ∈ C

T

V − C − {q}

C

kt

t ∈ T

Fig. 2: Illustration of the Sparse-Katz algorithm for link prediction.
T denotes the set of nodes that are to assess topological similarity to query
node q. C denotes the set of candidates for link prediction. The large matrix
(including red, brown, and white portions) is the matrix of Katz-based prox-
imity vectors for the nodes in T . The red row shows the topological profile of
query node q in the space of defined by the nodes in T . The rows of the brown
matrix show the topological profiles of the candidate nodes in T . The topolog-
ical similarity between a candidate node c and the query node q is computed
using the topological profiles of q and c.

query nodes, it drastically improves the computational efficiency of Sparse-
Katzover CG or Richardson iteration.

4 Experimental Results

In this section, we first systematically evaluate the runtime performance the
proposed algorithm, LRC-Katz in processing Katz-based proximity queries.
As stated in the previous section, LRC-Katz is an “exact” algorithm in the
sense that it is guaranteed to correctly identify Katz scores of all nodes in the
graph for a given query node. For this reason, we focus on computational cost
(measured in terms of number of iterations and runtime) in our experiments

16 Mustafa Coşkun et al.

Table 1: Network data sets used in the experiments

Network Number of Nodes Number of Edges Average Node Degree ‖G‖2
DBLP lcc 93,156 178,145 3.82 39.5753
Arxiv lcc 86,376 517,563 11.98 99.3319

Email-Enron 36,692 183,831 10.02 111.2871
Gowalla 196,591 950,327 9.67 169.3612
Flickr 513,969 3,190,452 12.41 663.3587

Hollywood-2009 1,139,905 113,891,327 99.13 2247.5591

PPI Data 12,976 99,814 7.6916 94.4121
DBLP Data 10,704 49,750 4.65 19.6986

for Katz-based proximity and compare LRC-Katz against another exact al-
gorithm instead of top-k based algorithms (Bonchi et al. 2012). We do not
report the pre-processing time since it takes less than a few minutes even for
the largest dataset. This pre-processing time is negligible, since all datasets we
consider contain more than 10K nodes, thus the total runtime of query pro-
cessing would take much longer if Katz-based proximity queries were processed
for all nodes in the network.

We then evaluate the link prediction performance of Sparse-Katz and
compare it against vanilla Katz, where computation is performed using CG
and Truncated Katz, which is based on Richardson iterations (Van der Vorst
and Chan 1997). It is important to note that LRC-Katz is the only algorithm
that permits topological similarity based link prediction (Sparse-Katz). This
is because, Sparse-Katz requires repeated computation of Katz-based prox-
imity while processing a link prediction query for a single node. Such computa-
tion is not feasible using vanilla Katz or truncated Katz. For this reason, while
scoring the likelihood of an edge, the link prediction algorithms we implement
using vanilla Katz and truncated Katz directly use Katz-based proximity to
the query node. Consequently, although both vanilla Katz and LRC-Katz
are exact algorithms for computing Katz-based proximity, their accuracy in
link prediction can be different. Thus, in addition to efficiency, our compara-
tive studies in the context of link prediction also provide an assessment of the
contribution of topological similarity based link prediction in improving the
accuracy of link prediction.

4.1 Datasets and Experimental Setup for Katz-based Proximity

We use six publicly available real-world network datasets commonly used in
benchmarking proximity computation algorithms. For link prediction, we use
two networks, one representing the human protein interaction network and the
other representing the citation network obtained from DBLP. The descriptive
statistics of these eight networks are shown in Table 1.

The first six real-world networks are used in assessing the runtime per-
formance of algorithms in processing Katz-based proximity queries. DBLP lcc

and Arxiv lcc are citation networks based on publications databases, and
Flickr is a social network, all of which are provided by (Bonchi et al. 2012).

Fast Katz for Efficient Link Prediction Queries 17

DBLP Dataset

2 4 6 8 10 12 14 16 18

Number of Iter

10-10

10-8

10-6

10-4

10-2

100

R
e
s
id

u
a
l
D

e
c
a
y

CG

LRC

(a)

Arxiv Dataset

0 5 10 15 20 25

Number of Iter

10-10

10-8

10-6

10-4

10-2

100

R
e
s
id

u
a
l
D

e
c
a
y

CG

LRC

(b)

Email-Enron Dataset

2 4 6 8 10 12 14 16

Number of Iter

10-10

10-8

10-6

10-4

10-2

100

R
e
s
id

u
a
l
D

e
c
a
y

CG

LRC

(c)

Gowalla Dataset

0 5 10 15 20

Number of Iter

10-10

10-8

10-6

10-4

10-2

100
R

e
s
id

u
a
l
D

e
c
a
y

CG

LRC

(d)

Flickr Dataset

0 5 10 15 20 25

Number of Iter

10-10

10-8

10-6

10-4

10-2

100

R
e
s
id

u
a
l
D

e
c
a
y

CG

LRC

(e)

Hollywood-2009 Dataset

2 4 6 8 10 12 14 16

Number of Iter

10-10

10-8

10-6

10-4

10-2

100

R
e
s
id

u
a
l
D

e
c
a
y

CG

LRC

(f)

Fig. 3: The number of iterations required for LRC-Katz and CG
in computing Katz proximity scores. In these experiments, the reported
numbers are the averages across 1000 randomly chosen query nodes.

Email-Enron is the e-mail commmunication network at Enron and Gowalla

is a local social communication network, both of which are obtained from the
SNAP collection (Leskovec et al. 2010). The last dataset we use is the publicly

18 Mustafa Coşkun et al.

DBLP Dataset

5 10 15 20 25

Dimension of Low Rank

10-2

10-1

100

R
u

n
n

in
g

 T
im

e
 (

S
e
c
)

CG LRC

(a)

Arxiv Dataset

5 10 15 20 25

Dimension of Low Rank

10-2

10-1

100

R
u

n
n

in
g

 T
im

e
 (

S
e
c
)

CG LRC

(b)

Email-Enron Dataset

5 10 15 20 25

Dimension of Low Rank

10-2

10-1

100

R
u

n
n

in
g

 T
im

e
 (

S
e
c
)

CG LRC

(c)

Gowalla Dataset

5 10 15 20 25

Dimension of Low Rank

10-1

100

R
u

n
n

in
g

 T
im

e
 (

S
e
c
)

CG LRC

(d)

Flickr Dataset

5 10 15 20 25

Dimension of Low Rank

10-1

100

101

R
u

n
n

in
g

 T
im

e
 (

S
e
c
)

CG LRC

(e)

Hollywood-2009 Dataset

5 10 15 20 25

Dimension of Low Rank

100

101

102

R
u

n
n

in
g

 T
im

e
 (

S
e
c
)

CG LRC

(f)

Fig. 4: Runtime of LRC-Katz and CG to process a Katz-based prox-
imity query for a single node as a function of k ranging from 5 to
25. In these experiments the reported numbers are the averages across 1000
randomly chosen query nodes.

available Hollywood-2009 (Boldi et al. 2011) Hollywood movie actor network,
in which an edge represents acting together in a movie.

Fast Katz for Efficient Link Prediction Queries 19

For the CG algorithm, we use the Matlab implementation downloaded
from (Bonchi et al. 2012). We also implement LRC-Katz and Sparse-Katz
in Matlab. We assess the performance of the algorithms for a fixed damping
factor, i.e for each dataset we use the αs that is recognized as the hardest

α =
1

‖G‖2 + 1
for computing Katz-based proximity (Bonchi et al. 2012). In

practice, using such “supremum” α is recommended to fully utilize the infor-
mation provided by the network (Coşkun et al. 2018). In all experiments, we
randomly select 1000 query nodes and report the average of the performance
figures for these 1000 queries, in which eq is set to the identity vector for node
q. For the Richardson iterations in truncated Katz, we perform 15 iterations
for low degree nodes and 5 iterations for high degree nodes. All of the experi-
ments are performed on an Intel(R) Xeon(R) CPU E5-46200 2.20 GHz server
with 500 GB memory.

4.2 Runtime Performance for Katz-based Proximity

The rate of convergence of LRC-Katz in comparison to the Conjugate Gradi-
ent algorithm for all six networks is shown in Figure 3. In these experiments,
k, the number of dimensions of low rank eigenvectors, is set to 5. As it can be
seen LRC-Katz converges significantly faster than CG across all datasets.

We then assess the runtime performance of LRC-Katz as a function of k
ranging from 5 to 25. The results of this analysis for all datasets are shown in
Figure 4. As seen in the figure, faster convergence of LRC-Katz translates into
savings in time, and LRC-Katz achieves more than 3-fold speed-up over CG
for all networks. The performance of LRC-Katz improves as we increase the
number of dimensions, however, due to the memory requirements of computing
eigenvectors, we do not go beyond the first 25 eigenvectors corresponding the
top eigenvalues.

4.3 Datasets and Experimental Setup for Link Prediction

We test and compare Sparse-Katz, our topological similarity based link pre-
diction algorithm, on two comprehensive datasets: 1) a real-world collabora-
tion network extracted from DBLP Computer Science Bibliography 1, which
consists of 15 conferences in Computer Science, 2) human protein-to-protein
interaction (PPI) data obtained from the IntAct database (Orchard et al.
2013).

In the DBLP dataset, for training data, we consider authors who have
published papers between 2006 and 2008. In this network, the authors are
represented by nodes and there is an undirected link if two authors published at
least one paper together from 2006 to 2008. As test data, we use new co-author
links that emerge between 2009 and 2010. In the PPI dataset PPI Data, nodes

1 http://www.informatik.uni-trier.de/ley/db/

20 Mustafa Coşkun et al.

DBLP Less Than 4 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

Sparse-Katz

Vanilla Katz

Truncated Katz

(a)

DBLP Between 4 and 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

Sparse-Katz

Vanilla Katz

Truncated Katz

(b)

DBLP More Than 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e

c
a

ll

Sparse-Katz

Vanilla Katz

Truncated Katz

(c)

Fig. 5: Performance evaluation of Sparse-Katz for DBLP Data The per-
formance of Sparse-Katz with fixed T = 200 for link prediction as compared
to Vanilla and Truncated Katz measure based link prediction on the DBLP Data

Table 2: The division of the nodes in the datasets used for link pre-
diction according to their degrees in the training data. The number
of positive links in the test data is shown for each group of nodes.

Network # of Edges 1 to 3 # of Edges 4 to 10 # of Edges > 10

DBLP Data 10,389 2,877 336
PPI Data 28,490 7,355 3,649

represent and edges represent interactions between. For training data, we use
the interactions that are included in the 2014 version of the database. As
test data, we use the interactions that are included in the 2016 version of
database (which were not included in the 2014 version). These datasets are
chosen as realistic cases of network evolution, where the DBLP networks evolve
naturally as authors publish new papers, whereas the PPI network evolves

Fast Katz for Efficient Link Prediction Queries 21

PPI Less Than 4 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

Sparse-Katz

Vanilla Katz

Truncated Katz

(a)

PPI Between 4 and 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

Sparse-Katz

Vanilla Katz

Truncated Katz

(b)

PPI More Than 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

Sparse-Katz

Vanilla Katz

Truncated Katz

(c)

Fig. 6: Performance evaluation of Sparse-Katz for PPI Data The per-
formance of Sparse-Katz with fixed T = 200 for link prediction as compared
to Vanilla and Truncated Katz measure based link prediction on the PPI Data

with the advance of human knowledge on biological systems. These datasets’
descriptive statics are provided in the last two rows of Table 1.

The objective of link prediction is to predict links that will emerge in the
network in the future. For this reason, a positive label in this setup refers to
a new link that emerges in the future version of a network, whereas a nega-
tive label refers to two nodes that remain unconnected in the future version.
Since the real-world networks are highly sparse, the number of negative pairs
is much larger than the number of positive pairs. For this reason, to evaluate
the accuracy of link prediction methods, we use recall as the evaluation cri-
terion and assess the recall of each method as a function of s (the number of
potential new edges that are returned by the query). To investigate the effect
of node degree to prediction performance, we stratify the evaluation of recall
according to node degree. The distribution of the positive labels into three
degree categories are shown in Table 2.

22 Mustafa Coşkun et al.

DBLP Less Than 4 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

T = 50

T = 100

T = 150

T = 200

(a)

DBLP Between 4 and 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

T = 50

T = 100

T = 150

T = 200

(b)

DBLP More Than 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

T = 50

T = 100

T = 150

T = 200

(c)

Fig. 7: The effect of the number of dimensions used to assesss topo-
logical similarity (T) on the link prediction performance of Sparse-
Katz on DBLP Data. The recall (fraction of true positives in the predicted
links among all positives) provided by Sparse-Katz for four different values
of T are shown as a function of the number of predicted links (s).

For the DBLP data set, let W denote the set of authors who published
at least one paper in the testing interval [2009, 2010], but have not published
together in the training interval ([2006, 2008]). We construct our positive node
pairs from this set as follows:

– The positive test set P is composed of u, v ∈W such that u and v published
a paper between 2009 and 2010.

– For DBLP network, P consists of 13602 nodes which gained at least one
edge in between 2009 and 2010, i.e, |P| = 13602.

– We divide P into three categories as summarized in Table 2.
– For all experiments for DBLP Data dataset, we report the mean and the

standard deviation of the performance figures.

Similarly, we obtain a positive set P of 39494 edges for the PPI network.

Fast Katz for Efficient Link Prediction Queries 23

PPI Less Than 4 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

T = 50

T = 100

T = 150

T = 200

(a)

PPI Between 4 and 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

T = 50

T = 100

T = 150

T = 200

(b)

PPI More Than 10 Neighbors

10 20 30 40 50

Top-s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

T = 50

T = 100

T = 150

T = 200

(c)

Fig. 8: The effect of the number of dimensions used to assesss topo-
logical similarity (T) on the link prediction performance of Sparse-
Katz on PPI Data. The recall (fraction of true positives in the predicted links
among all positives) provided by Sparse-Katz for four different values of T
are shown as a function of the number of predicted links (s).

4.4 Link Prediction Performance for Sparse-Katz

We compare the link prediction performance of Sparse-Katz against that
of vanilla Katz and truncated Katz (Lu et al. 2010) with parameters T =
200 (i.e., 200 most proximate nodes to the query node are used to assess
topological similarity) and C = 2s (i.e., twice as many nodes as the number
of potential edges requested by the user are considered as candidates). The
results of this analysis for the DBLP data are shown in Figure 5. As seen in
the figure, Sparse-Katz significantly outperforms both Vanilla and Truncated
Katz across all experiments. The comparison of link prediction accuracy for
the PPI Data dataset is shown in the Figure 6. We observe that Sparse-
Katz outperforms both of the competing methods on this dataset as well.

24 Mustafa Coşkun et al.

These results show that topological similarity based link prediction using Katz-
based proximity, which is enabled by LRC-Katz, improves the accuracy of
link prediction over methods that directly utilize (exact or approximate) Katz-
based proximity to predict links.

Interestingly, truncated Katz does not deliver reasonable recall for up to
15 Richardson iterations for low degree nodes (which are the majority of test
nodes). However, we confirm the link prediction performance of truncated
Katz as in (Lu et al. 2010) for nodes with relatively higher degree. For the
high degree nodes, truncated Katz slightly outperforms vanilla Katz with only
5 Richardson iterations.

4.5 Effect of Parameter T on Link Prediction

We further evaluate the effect of parameter T , which specifies the number
of dimensions used in assessing topological similarity. For this purpose, we
randomly sample 100 query nodes from each of the degree groups shown in
Table 2. We then plot the recall provided by Sparse-Katz for different values
of T (T = 50, T = 100, T = 150, T = 200) and as a function of s (the number
of predicted links). The results of this analysis are shown in Figure 7 and 8. As
seen in both figures, for lower degree nodes, using a low number of dimensions
to assess topological similarity is sufficient. However, for medium and high
degree nodes, addition of more dimensions largely improves prediction perfor-
mance, with the performance improvement saturating at around T = 200 for
both datasets.

4.6 Effect of The Damping Factor (α)

The damping factor, α, is used to adjust the importance of the length of
the paths between two nodes in computing Katz-based proximity (with larger
alpha corresponding to more importance given to shorter paths). For the re-

sults reported in this section so far, we use α =
1

‖G‖2 + 1
(Bonchi et al. 2012),

since this value is suggested as the hardest case for computing Katz-based
proximity (from an efficiency perspective). However, the value of α can also
influence the accuracy of link prediction. For this reason, we also systematically
examine the effect of the damping factor on the accuracy of link prediction.
The results of this analysis are shown in Figure 9. For these experiments, we
restrict our analysis to a random sample of 100 high-degree nodes. As it can

be seen in the figure, α =
1

‖G‖2 + 1
yields better link prediction accuracy as

consistent with the literature (Bonchi et al. 2012). These results suggest that
link prediction with Katz-based proximity is more accurate when the search

is localized. However, it is important to note that α =
1

‖G‖2 + 1
is the largest

possible value of alpha that renders the resulting system numerically solvable

Fast Katz for Efficient Link Prediction Queries 25

and represents the hardest case from the perspective of computational com-
plexity. Therefore, this result also demonstrates the importance of improving
the runtime performance of the computation of Katz-based proximity.

DBLP More Than 10 Neighbors, Top-s = 50

 /2 /3 /4 /5

Damping Factor

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e

c
a

ll

Sparse-Katz

Vanilla Katz

Truncated Katz

(a)

PPI More Than 10 Neighbors, Top-s = 50

 /2 /3 /4 /5

Damping Factor

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e

c
a

ll

Sparse-Katz

Vanilla Katz

Truncated Katz

(b)

Fig. 9: The effect of the damping factor (α) on the link prediction
accuracy of Sparse-Katz. We randomly select 100 high degree nodes as
query nodes for each of the DBLP and PPI datasets, and plot the behavior of
recall as a function of α.

4.7 Computational Advantage of Using LRC-Katz in Sparse-Katz

Recall that in Sparse-Katz(Algorithm 3), we need to solve T + 1 linear
systems of equations for each query node. For this reason, the runtime im-
provement provided by LRC-Katz is essential in enabling the application
of this algorithm. To investigate the effect of the algorithm used to compute
Katz-based proximity on the runtime performance of Sparse-Katz, we run
the algorithm by changing line 3 and 7 with each of vanilla and truncated
Katz. In this experiment, we set T = 200 and truncated Katz iteration num-
bers to 15 and 5 for low and high degree nodes, respectively. We then report
runtime for all query nodes the two datasets. These results are shown in detail
in Table 2 and visualized in Figure 10 as a function of low rank dimension.
As seen in the figure, the advantage of using LRC-Katz in Sparse-Katz is
quite pronounced for all types of nodes.

5 Discussion

The application of the proposed algorithms is not limited to link prediction. In
this section, we briefly discuss some of our anticipated usage of the developed
algorithms in this paper for various data mining/machine learning problems.

26 Mustafa Coşkun et al.

Total Link Prediction Run Time DBLP Dataset

5 10 15 20 25

Dimension of Low Rank

100

101

102

R
u

n
n

in
g

 T
im

e
 (

H
o

u
rs

)

Vanilla Katz

Truncated Katz

LRC(Ours)

(a)

Total Link Prediction Run Time PPI Dataset

5 10 15 20 25

Dimension of Low Rank

100

101

102

R
u

n
n

in
g

 T
im

e
 (

H
o

u
rs

)

Vanilla Katz

Truncated Katz

LRC(Ours)

(b)

Fig. 10: Runtime performance evaluation of Sparse-Katz for all pos-
itive labels in DBLP Data and PPI Data The total runtime performance of
Sparse-Katz when we use LRC-Katz , CG and Richardson iterations in
Sparse-Katz line 3 and 7.

Semi-Supervised Learning(SSL) is commonly utilized in classification
settings when the labeled samples are limited (Chapelle et al. 2006) and there
is an underlying graph that represents the potential similarity between all
samples. This class of approaches in machine learning have received significant
research attention in recent years. In essence, SSL involves the incorporation
of a regularization factor that represents the consistency between the labels
of the nodes of the graph, which can be formulated using a linear system of
equations (Zhou et al. 2004). For instance, Zhou et.al., (Zhou et al. 2004) aim
to expand the set of labeled nodes by solving follow equation:

F ∗ = β(I − αS)−1Y (15)

where S is symmetrically normalized Laplacian matrix of the graph and Y
contains very few known labeled nodes. To solve the linear system represented
by the above equation, earlier research focuses on computing approximate
solutions (Liu et al. 2010). However, it is clear that (I − αS) is a symmetric
positive definite matrix for any α ∈ (0, 1) and thus can efficiently be processed
by LRC-Katz. Furthermore, Sparse-Katz can be used for label expansion
in the SSL framework.

Graph Convolutional Networks (GCNs) are a variant of traditional
Convolutional Neural Networks(CNNs) on graphs (Kipf and Welling 2016).
Although the first GCN uses a two-step propagation in its feature propagation
phase, later it has been shown that an infinitely many feature propagation
steps can be carried out by solving a linear system of equations. Therefore,
the feature propagation phase of a GCN can be separated from neural networks
for better node classification (Coskun 2019; Klicpera et al. 2019). The task of
feature propagation can therefore be formulated as a linear system of equations

Fast Katz for Efficient Link Prediction Queries 27

in the softmax classifier (Klicpera et al. 2019):

ZPPNP = softmax(ΠpprH) (16)

where Πppr = α(I − (1− α) ˆ̃A)
−1

and H is the feature matrix. Here, Ã is the
self-loop added symmetrically normalized Laplacian matrix and for this reason
Πppr is the inverse of a symmetric positive definite matrix. Thus, LRC-Katz
can be used efficiently solve equation 16.

Network Proximity Querying In addition to Katz measure, LRC-
Katz can be used for efficiently computing network proximity using other
measures, including symmetrically normalized Personalized PageRank (Page
et al. 1999) and ParWalk (Wu et al. 2012).

6 Conclusion

In this paper, we propose an alternate approach to accelerating Katz- based
network proximity queries. The proposed approach is based on low rank cor-
rection of underlying partitioned linear systems of equation derived from Katz
matrix. We show that our approach, LRC-Katz , significantly decreases con-
vergence times in practice on real-world problems. Using a number of large
real-world networks, we show that LRC-Katz drastically outperforms the
fastest known method, Conjugate Gradient, for a wide ranges of parameter
values.

We also develop an effective link prediction algorithm, Sparse-Katz that
improves the accuracy of link prediction by assessing topological similarity
between nodes as opposed to directly using Katz-based proximity to predict
links. Since this algorithm requires repeated computation of Katz-based prox-
imity for a single query, it poses significant challenges in terms of computa-
tional complexity. Our results show that, the runtime improvement provided
by LRC-Katz in the computation of Katz-based proximity over vanilla and
truncated Katz renders application of this link prediction algorithm feasible
in a real-time query setting.

Future efforts in this direction would include incorporation of other proxim-
ity measures into our framework and their applications, such as semi-supervised
learning and graph convolutional networks. Furthermore, while LRC-Katz is
an “exact algorithm and our experiments focus on runtime performance for
this reason, there also exist approximate methods that compromise accuracy
for improved runtime. Constructing an approximate version of LRC-Katz
can provide further insights into the trade-off between runtime and accuracy
in the context of network proximity problems.

28 Mustafa Coşkun et al.

References

Acar, E., Dunlavy, D. M. and Kolda, T. G. (2009), Link prediction on evolving
data using matrix and tensor factorizations, in ‘Data Mining Workshops,
2009. ICDMW’09. IEEE International Conference on’, IEEE, pp. 262–269.

Amestoy, P. R., Davis, T. A. and Duff, I. S. (1996a), ‘An approximate min-
imum degree ordering algorithm’, SIAM Journal on Matrix Analysis and
Applications 17(4), 886–905.

Amestoy, P. R., Davis, T. A. and Duff, I. S. (1996b), ‘An approximate min-
imum degree ordering algorithm’, SIAM Journal on Matrix Analysis and
Applications 17(4), 886–905.

Boldi, P., Rosa, M., Santini, M. and Vigna, S. (2011), Layered label prop-
agation: A multiresolution coordinate-free ordering for compressing social
networks, in ‘Proceedings of the 20th international conference on World
wide web’, ACM, pp. 587–596.

Bonchi, F., Esfandiar, P., Gleich, D. F., Greif, C. and Lakshmanan, L. V.
(2012), ‘Fast matrix computations for pairwise and columnwise commute
times and katz scores’, Internet Mathematics 8(1-2), 73–112.

Chapelle, O., Schölkopf, B., Zien, A. et al. (2006), ‘Semi-supervised learning,
vol. 2’, Cambridge: MIT Press. Cortes, C., & Mohri, M.(2014). Domain
adaptation and sample bias correction theory and algorithm for regression.
Theoretical Computer Science 519, 103126.

Coşkun, M., Grama, A. and Koyutürk, M. (2018), ‘Indexed fast network prox-
imity querying’, Proc. VLDB Endow. 11(8), 840–852.
URL: https://doi.org/10.14778/3204028.3204029

Coskun, M. (2019), ‘Graph convolutional networks meet with high dimension-
ality reduction’, arXiv preprint arXiv:1911.02928 .

Coskun, M., Grama, A. and Koyuturk, M. (2016), Efficient processing of net-
work proximity queries via chebyshev acceleration, in ‘Proceedings of the
22Nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining’, ACM, pp. 1515–1524.

Coskun, M. and Koyutürk, M. (2015), Link prediction in large networks by
comparing the global view of nodes in the network, in ‘Data Mining Work-
shop (ICDMW), 2015 IEEE International Conference on’, IEEE, pp. 485–
492.

Demmel, J. W. (1997), Applied numerical linear algebra, Vol. 56, Siam.
Erten, S., Bebek, G., Ewing, R. M. and Koyutürk, M. (2011), ‘Dada: degree-

aware algorithms for network-based disease gene prioritization’, BioData
mining 4(1), 19.

Erten, S., Bebek, G. and Koyutürk, M. (2011), ‘Vavien: an algorithm for prior-
itizing candidate disease genes based on topological similarity of proteins in
interaction networks’, Journal of computational biology 18(11), 1561–1574.

Karypis, G. and Kumar, V. (1998a), ‘A fast and high quality multilevel scheme
for partitioning irregular graphs’, SIAM Journal on scientific Computing
20(1), 359–392.

Fast Katz for Efficient Link Prediction Queries 29

Karypis, G. and Kumar, V. (1998b), ‘A parallel algorithm for multilevel graph
partitioning and sparse matrix ordering’, Journal of Parallel and Distributed
Computing 48(1), 71–95.

Katz, L. (1953), ‘A new status index derived from sociometric analysis’, Psy-
chometrika 18(1), 39–43.

Kipf, T. N. and Welling, M. (2016), ‘Semi-supervised classification with graph
convolutional networks’, arXiv preprint arXiv:1609.02907 .

Klicpera, J., Bojchevski, A. and Gunnemann, S. (2019), Combining neural
networks with personalized pagerank for classification on graphs, in ‘Inter-
national Conference on Learning Representations’.
URL: https://openreview.net/forum?id=H1gL-2A9Ym

Leskovec, J., Huttenlocher, D. and Kleinberg, J. (2010), Signed networks in
social media, in ‘Proceedings of the SIGCHI conference on human factors
in computing systems’, ACM, pp. 1361–1370.

Liben-Nowell, D. and Kleinberg, J. (2007), ‘The link-prediction problem for
social networks’, Journal of the American society for information science
and technology 58(7), 1019–1031.

Liu, W., He, J. and Chang, S.-F. (2010), ‘Large graph construction for scalable
semi-supervised learning’.

Lu, Z., Savas, B., Tang, W. and Dhillon, I. S. (2010), Supervised link predic-
tion using multiple sources, in ‘2010 IEEE international conference on data
mining’, IEEE, pp. 923–928.

Navlakha, S. and Kingsford, C. (2010), ‘The power of protein interaction net-
works for associating genes with diseases’, Bioinformatics 26(8), 1057–1063.

Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-
Carter, F., Campbell, N. H., Chavali, G., Chen, C., Del-Toro, N. et al.
(2013), ‘The mintact projectintact as a common curation platform for 11
molecular interaction databases’, Nucleic acids research p. gkt1115.

Page, L., Brin, S., Motwani, R. and Winograd, T. (1999), The pagerank cita-
tion ranking: Bringing order to the web., Technical report, Stanford InfoLab.

Rattigan, M. J. and Jensen, D. (2005), ‘The case for anomalous link discovery’,
Acm Sigkdd Explorations Newsletter 7(2), 41–47.

Saad, Y. (2003), Iterative methods for sparse linear systems, Vol. 82, siam.
Saerens, M., Fouss, F., Yen, L. and Dupont, P. (2004), The principal com-

ponents analysis of a graph, and its relationships to spectral clustering, in
‘European Conference on Machine Learning’, Springer, pp. 371–383.

Sarkar, P. and Moore, A. (2012a), ‘A tractable approach to finding clos-
est truncated-commute-time neighbors in large graphs’, arXiv preprint
arXiv:1206.5259 .

Sarkar, P. and Moore, A. (2012b), ‘A tractable approach to finding clos-
est truncated-commute-time neighbors in large graphs’, arXiv preprint
arXiv:1206.5259 .

Skogent, M. (1992), Domain decomposition algorithms of schwarz type, de-
signed for massively parallel computers, in ‘Fifth International Symposium
on Domain Decomposition Methods for Partial Differential Equations’, num-
ber 55, SIAM, p. 362.

30 Mustafa Coşkun et al.

Smith, B., Bjorstad, P. and Gropp, W. (2004), Domain decomposition: par-
allel multilevel methods for elliptic partial differential equations, Cambridge
university press.

Van der Vorst, H. A. and Chan, T. F. (1997), Linear system solvers: sparse
iterative methods, in ‘Parallel numerical algorithms’, Springer, pp. 91–118.

Wang, C., Satuluri, V. and Parthasarathy, S. (2007), Local probabilistic mod-
els for link prediction, in ‘icdm’, IEEE, pp. 322–331.

Wu, X.-M., Li, Z., So, A. M., Wright, J. and Chang, S.-F. (2012), Learning
with partially absorbing random walks, in ‘Advances in Neural Information
Processing Systems’, pp. 3077–3085.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J. and Schölkopf, B. (2004),
Learning with local and global consistency, in ‘Advances in neural informa-
tion processing systems’, pp. 321–328.

	Introduction
	Related Work
	Methods
	Experimental Results
	Discussion
	Conclusion

