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Abstract—Link prediction is an important and well-studied
problem in network analysis, with a broad range of applications
including recommender systems, anomaly detection, and de-
noising. The general principle in link prediction is to use the
topological characteristics of the nodes in the network to predict
edges that might be added to or removed from the network.
While early research utilized local network neighborhood to
characterize the topological relationship between pairs of nodes,
recent studies increasingly show that use of global network
information improves prediction performance. Meanwhile, in the
context of disease gene prioritization and functional annotation
in computational biology, “global topological similarity” based
methods are shown to be effective and robust to noise and
ascertainment bias. These methods compute topological profiles
that represent the global view of the network from the perspective
of each node and compare these topological profiles to assess the
topological similarity between nodes. Here, we show that, in the
context of link prediction in large networks, the performance of
these global-view based methods can be adversely affected by
high dimensionality. Motivated by this observation, we propose
two dimensionality reduction techniques that exploit the sparsity
and modularity of networks that are encountered in practical
applications. Our experimental results on predicting future
collaborations based on a comprehensive co-authorship network
shows that dimensionality reduction renders global-view based
link prediction highly effective, and the resulting algorithms
significantly outperform state-of-the-art link prediction methods.

I. INTRODUCTION

Large scale real-world networks and their characteristics

have been soaring popularity and gaining considerable atten-

tion of researchers in a broad range of applications. Design-

ing methods to understand the evolution of these networks

and predict their future behavior is a major challenges for

researchers. One recurring theme in this line of challenges

is known as the link prediction problem. Link prediction is

usually defined as the task of predicting the links that are likely

to emerge/dissappear in an evolving network or identifying the

missing/spurious links in a static network [1].

Earlier link prediction methods are designed to characterize

the relationship between pairs of nodes in a network based

on the local network neighborhood of the nodes, and use this

information to assess the likelihood of the emergence of an

edge between nodes [2]–[4]. To assess the likelihood of the

emergence/existence of an edge between a pair of nodes, these

methods usually utilize the individual properties of the two

nodes or the sets of their neighbors (incident nodes). Clearly,

such methods treat the network as a ”bag of interactions”

rather than a true network, since they do not take into account

the potential flow of information across the network through

indirect paths. However, the topology of the entire network

may have an influence on the existence or emergence of an

edge between a pair of nodes. For example, in the case of

co-authorship networks, researchers may gain collaborations

through a chain of collaborators. Similarly, in biological

networks, paths often represent the flow of information in

the cell, including transduction of signals through a series

of interactions or synthesis of metabolites through a chain

of reactions [5], thus pairs of proteins involved in similar

biological processes may be likely to gain interactions [6].

“Global” link prediction methods aim to account for the

influence of the overall network topology on the emergence

of edges. The main idea behind these approaches is that pairs

of nodes that are close to each other in the network are likely to

gain edges. Existing methods differ in terms of how they assess

the proximity of (or distance between) nodes in the network.

In the context of link prediction, algorithms that are utilized

to assess proximity (or distance)) include shortest paths [7],

random walks, rooted page rank, and hitting time [8].

Network-based disease gene prioritization can be considered

an application of link prediction. In this application, the

network is composed of genes and diseases. The task in

disease gene prioritization is to use this network to rank a

given set of candidate genes in terms of their likelihood of

association with a given disease [9]. In the context of this

problem, global methods are shown to be significantly more

effective than local methods [10]. However, these methods are

vulnerable to ascertainment bias in that they favor high-degree

nodes over nodes with lower degree [11]. To alleviate this

problem, “global view based” methods assess the closeness of

nodes in the network by comparing the views of the network

from the perspective of nodes [12]. To be more precise, these

methods compute the topological profile of each node in

terms of proximity to other nodes, and use those profiles

to assess the positional similarity of nodes in the network.
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In computational biology, “global view based” methods are

shown to be effective in disease gene prioritization [12],

network de-noising [6], and prediction of protein function [13].

In this paper, we show that the performance of “global view

based” methods in the context of link prediction in large social

networks can be adversely affected by high-dimensionality. To

address this problem, we propose two dimensionality reduction

techniques that take advantage of the sparsity and modularity

of the networks. Namely, to exploit the sparsity of the network,

we compute reduced topological profiles for each node in the

network that can parsimoniously represent the position of the

node in the network. Second, we exploit the modularity of

the network by clustering the nodes and using node clusters

as the dimensions in the topological profile. This approach

is motivated by the observation that node clusters may have

semantic meanings that may contribute to the emergence of

links between nodes. For example, in a co-authorship network,

two authors can be more likely to publish papers if they have

a common research interest, attend the same conference, or

reside in the same institution [15]. Such ‘discrete” entities can

be better captured by considering clusters of nodes as opposed

to considering proximity to each individual nodes.

Experimental results on predicting future collaboration

based on a large co-authorship network derived from DBLP

show that our techniques render global view based methods

highly effective in link prediction, and resulting algorithms

significantly outperform Random Walk with Restart algorithm

[14] and global topological similarity based link prediction

without dimensionality reduction (GLOBAL) [12].

The remainder of the paper is organized as follows. We first

discuss existing global view based link prediction approaches

in Section 2. In Section 3, we present the algorithmic details

of the proposed dimensionality reduction methods. We give

systematic experimental studies using DBLP, a large-scale

real-world dataset,1 in Section 4. We conclude our discussion

in Section 5.

II. RELATED WORK

Link prediction can be supervised or unsupervised, depend-

ing on whether training samples are available for the “future”

instances of the network. Here, our focus is on unsupervised

link prediction, where no such training data is available. Unsu-

pervised link prediction methods need to make assumptions on

which topological characteristics of the earlier instances of the

network indicate the likelihood of the emergence of an edge.

The most commonly used assumption can be roughly defined

as ”guilt-by-associations” (or generalizations of this principle

thereof), where the expectation is that nodes that have many

indirect connections or in general are close to each other in

the network are likely to become adjacent to each other in the

network.

Unsupervised link prediction methods mainly fall into two

categories in terms of how they quantify the ”closeness” of

two nodes vi, vj∈ V: local neighborhood methods [8] and

1http://www.informatik.uni-trier.de/ley/db/

global perspective methods [16]. Local neighborhood based

methods mostly work on the sets of nodes that are adjacent

to the nodes being considered for link prediction. A general

principle that is employed by these methods is that pairs of

nodes that share a large set of neighbors are likely to become

adjacent in the future. The performance of these methods have

been broadly examined by Nowell et al. [8] and it was found

that the Adamic and Adar’s method that takes into account

node degrees [2] outperforms other local neighborhood-based

methods.

Global perspective based methods aim to account for the

entire topology of the network. Earlier global perspective

methods, such as shortest path (the most reliable path) or

Katz measure [17], were shown to be adversely affected

by the ”small wold phenomenon” [8]. Recently, information

flow based methods have been commonly used to measure

global proximity, including random walk with restarts [18].

These methods are also used in various applications, including

community detection [19], disease gene prioritization [12],

and modeling the evolution of social networks [20]. Other

global view based prediction methods include meta-path based

approaches [21], where the path count and random walk

around the given meta paths is used to assess the proximity

between pairs of nodes.

III. METHOD

In this section, we first describe the link prediction problem

within a formal framework. Subsequently, we formulate the

concept of global topological similarity of pairs of nodes in

terms of their proximity to other nodes in the network. Then,

we introduce our dimensionality reduction techniques that aim

to alleviate the effect of high dimensionality in very large

networks and we discuss how we employ these dimensionality

reduction techniques to score node pairs in the context of the

link prediction problem.

A. Link Prediction Problem

Let G = (V, E , T ) be a large network that evolves over

time through emergence of new edges. Here, V denotes the

set of nodes, E denotes the set of edges, and T : E → N

is a function that specifies the creation times of edges. For

some real-world networks (e.g., friendships in social networks,

protein-protein interaction networks at the evolutionary time

scale) edges can emerge or disappear. For many other real-

world networks (e.g., co-authorship networks, acquaintances

in social networks), edges can emerge over time, but they do

not disappear. While the methods proposed in this paper apply

to either formulation; we focus here on the latter model (i.e.,

edges cannot disappear) for simplicity.

Let G(t) = (V, E(t)) denote the instance of the network at

a given time t ∈ N, i.e., E(t) = {uv ∈ E : T (uv) ≤ t}. In

the classical problem of link prediction, the input is such an

instance of the network at time t [8]. The output is a scoring

or ranking of the pairs of nodes in (V×V\E(t)) in terms of the

likelihood of the emergence of an edge between these nodes
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Figure 1. Illustration of link prediction using global topological similarity
of nodes. The two vectors represent the global topological profiles of two
nodes, vi and vj . Shades of magenta indicate the proximity of vi and vj to
the node represented by each dimension in the vector. Dimensions on which
both nodes have patterned shades, highlighted by bidirectional arrows, indicate
the nodes that are close to both vi and vj . Global topological similarity aims
to utilize such nodes to capture the positional similarity of vi and vj in the
network.

at a future time t′ > t. Here, the prediction is unsupervised,

i.e., no training data is available from time t′.

B. Assessing Global Topological Similarity

For a given network G = (V, E) and node vi ∈ V , the global
topological profile βvi

of vi is defined as a |V|-dimensional

vector that is composed of the proximity of vi to the nodes

in V , i.e., βvi
(j) contains the proximity of vi to vj for all

vj ∈ V . Erten et al. [12] quantify the proximity between two

nodes using random walk with restarts, and we follow the

same procedure in this paper. However, the methods proposed

here can be applied to any other measure of proximity as well.

Random walk based proximity is defined as follows:

βvi = (1− α)Wβvi + αrvi . (1)

Here, W denotes the stochastic matrix derived from the

adjacency matrix of G, rvi
denotes the restart vector that

contains a 1 at its ith entry and a 0 in all other entries, and α
denotes the damping factor, which is a parameter that sets the

probability of restarting at vi in a random walk of the network.

Given the global topological profiles of all nodes in the

network, the global topological similarity of vi and vj ∈ V is

defined as [12]:

ρ(βvi , βvj ) =
∑

vt∈V (βvi
(vt)− 1

|V| )(βvj
(vt)− 1

|V| )√∑
vt∈V (βvj

(vt)− 1
|V| )

2
√∑

vt∈V (βvj
(vt)− 1

|V| )
2

(2)

In other words, ρ(βvi
, βvj

) is defined as the Pearson correl-

ation coefficient of βvi
and βvj

. While ρ(βvi
, βvj

) is useful

in quantifying the positional similarity of vi and vj in the

network, high dimensionality of these vectors adversely affects

its usefulness in very large networks. To remedy this problem,

we propose two dimensionality reduction techniques.

C. Dimensionality Reduction for Topological Profiles

The core idea behind the proposed dimensionality reduction

techniques is to identify a small set of nodes or other entities in

the network that can be used to represent the position of each

node in the network. The first approach we propose exploits

the modular nature of real-world networks, while the second

exploits their sparsity.

1) Modularity-Based Dimensionality Reduction: Many

real-world networks are organized in a modular manner; i.e.,

they are composed of identifiable clusters where the nodes in a

cluster are densely connected to each other, but are somewhat

sparsely connected to the rest of the network [15]. Since the

nodes in a cluster densely interact with each other, one can

naturally expect that the proximity of the nodes in a cluster to

any other node in the network will be similar to each other.

Motivated by this insight, we identify clusters in G(t) and

use these clusters to compute a modularity-based topological

profile for each node in the network. This process is illustrated

in Figure 2.

We first identify the clusters in G(t) using an established

algorithm for clustering networks based on the connectivity

of the nodes [22]. This algorithm identifies clusters in a given

network by hierarchically partitioning the network into K
clusters based on node proximities computed using page rank.

An important parameter here is the number of clusters that are

utilized, since a smaller number of clusters leads to smaller

number of dimensions, whereas a larger number of clusters

provides a more accurate representation of the topology of the

network. We denote this parameter with K and investigate the

effect of this parameter on the performance in link prediction

in the next section.

Once clusters in the network are identified, we utilize the

random walk with restarts procedure to compute modularity-

based topological profiles for all nodes in the network. Let

C1, C2, ...CK denote the K clusters identified where each

cluster is a set of nodes. We first compute |V|-dimensional

topological profiles for clusters as

βCi
= (1− α)WβCi

+ αrCi
, (3)

where

rCi(j) =

{
1/|Ci| if vj ∈ Ci

0 otherwise
(4)

Subsequently, for each node vi ∈ V , we construct a K dimen-

sional modularity-based topological profile γvi , by setting

γvi
(j) = βCj

(i). (5)

We then compute the modularity-based topological similarity

between vi and vj as the Pearson correlation between the

vectors γvi
and γvj

, and use this score as an indicator of the

likelihood of the emergence of a link between vi and vj .

2) Sparsity Based Dimensionality Reduction: Many real-

world networks are sparse, i.e., nodes have connections to

only a very small fraction of all nodes in the large networks.

This translates into a skewed distribution in the proximity

of a node to other nodes in the network: A node is very

close to its few neighbors, somewhat close to its two or

three-hop neighbors, and the proximities dissipate quickly

as the number of hops grow further. For this reason, the

proximity of a node to many of the nodes in the network

may not be informative on the position of that node in the

487



γvj

vi

vj

βC1 βCk
βCj

βC2

i

j

v1

vn

γvi

Figure 2. Modularity-based dimensionality reduction for computing
global topological similarity.The column vectors labeled βC1

, ..., βCk
|V|-

dimensional topological profiles for K clusters identified using Gmine, an
established network clustering algorithm. The red row vectors γvi and γvj
show the modularity-based topological profiles for the nodes vi and vj derived
from these cluster topological profiles.

ξvj

ξvi

βvi

βvj

v1......................vi...vj.....................vn

v1......................vi...vj.....................vn

Figure 3. Sparsity-based dimensionality reduction for computing global
topological similarity. βvi and βvj represent the global topological profiles
of vi and vj . Red boxes indicate larger values in each vector. A smaller
number of dimensions are chosen by selecting the dimensions in which at
least one of βvi or βvj have a sufficiently large value (as determined using a
threshold parameter denoted ε). ξvi and ξvj show sparsity based topological
profiles of vi and vj which are computed by projecting the global topological
profiles on these selected dimensions.

network. Motivated by this insight, we propose to reduce

the dimensionality of the global topological profiles based on

the magnitude of entries. This sparsity-based dimensionality-

reduction technique is illustrated in Figure 3.

In sparsity-based dimensionality reduction, the dimensions

utilized depend on the pair of nodes that are being compared,

i.e., we select a different set of dimensions for each pair of

nodes vi and vj . The motivation behind this approach is that

the nodes that are most informative about the relative positions

of vi and vj with respect to each other are the nodes that are

in close proximity to at least one of these nodes. Namely, for

a given pair of nodes vi and vj , we select a subset D(i,j) ∈

Table I
DESCRIPTIVE STATISTIC OF DBLP DATASETS

DBLP Data Set DBLP-1 DBLP-2

Number of Nodes 10704 6250

Training Links 49750 30125

Maximum Degree 115 72

Average Degree 4.65 4.82

Test Links 12741 5592

{1, 2, ..., |V|} of the networks as follows:

D(i,j) = {vk ∈ V : βvi
(k) ≥ ε OR βvj

(k) ≥ ε}. (6)

Here, ε is a parameter that is used to balance the trade-

off between the number of dimensions and the accuracy of

the approximation provided by the reduced profiles. We also

investigate the effect of ε on link prediction performance in

the next section. Then, for each pair of nodes vi and vj , we

compute reduced topological ξ
(j)
vi and ξ

(i)
vj by projecting βvi

and βvj
on the dimensions specified by D(i,j). We compute

the sparsity based topological similarity of nodes based on the

Pearson correlation of ξvi and ξvj , and use this score as an

indicator of the likelihood of the emergence of a link between

vi and vj .

IV. RESULTS

In this section, we systematically evaluate the performance

of the proposed dimensionality reduction techniques. We start

by describing the datasets and our experimental setting. Next,

we analyze the performance of the two dimensionality reduc-

tion techniques and the effect of parameters. Subsequently,

we compare the performance of our proposed methods with

random walk with restart based link prediction and global

topological similarity without dimensionality reduction.

A. Datasets

We test and compare the proposed methods on two com-

prehensive sets of real-world collaboration networks extrac-

ted from DBLP Computer Science Bibliography [23] 2. For

training data, we consider authors who have published papers

between 2006 and 2008. In these networks, the authors are

represented by nodes and there is a undirected link if two

authors published at least one paper from 2006 to 2008. As

test data, we use new co-author links that emerge between

2009 and 2010. These datasets are described in Table I.

DBLP-1 The first DBLP dataset consists of 15 repres-

entative conferences in 6 computer science research areas

(Databases, Data Mining, Artificial Intelligence, Information

Retrieval, Computer Vision and Machine Learning) [23].

DBLP-2 The second DBLP dataset is constructed from 16

representative conferences in the 6 different computer science

fields namely (Algorithms and Theory, Natural Language

Processing, Bioinformatics, Networking, Operating Systems

and Distributed and Parallel Computing) [23].

2http://www.informatik.uni-trier.de/ley/db/
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Figure 4. Comparison of the distribution of prediction scores for positive
and negative node pairs: The distribution of prediction scores for the positive
node pairs is shown in red, the mean of 10 randomly chosen negative test of
equal size to the positive set is shown in blue. This figure is generated using
the DBLP-1 dataset.

B. Experimental Setting

The objective of link prediction is to predict links that

will emerge in the network in the future. For this reason, a

“positive” label in this setup refers to a new link that emerges

in the future version of a network, whereas a “negative” label

refers to two nodes that remain unconnected in the future

version. Since the real-world networks are highly sparse, the

number of negative pairs is much larger than the number of

positive pairs. To have a balanced set of positive and negative

labels in the test data, we subsample negatives to construct our

test set. Namely, letW denote the set of authors who published

at least one paper in the testing interval [2009, 2010], but have

not published together in the training interval ([2006, 2008]).

We construct our positive and negative node pairs from this

set as follows:

• The positive test set P is composed of u, v ∈ W such

that u and v published a paper between 2009 and 2010.

• The negative test set N is composed of |P| randomly

chosen pairs u, v ∈ W such that u and v did not publish

a paper in 2009 and 2010.

• We generate 100 negative test sets N (1), N (2), ..., N (100)

and perform all experiments in each of the positive and

negative test pair sets (P vs. N (i) for 1 ≤ i ≤ 100).

• For all experiments, we report the mean and the standard

deviation of the performance figures among these 100

runs.

To evaluate the performance of different methods in scoring

the testing pairs for link prediction, we use the area under ROC

curve (AUC) as the performance criterion.

Comparison to other algorithms. We compare the per-

formance of the proposed methods against random-walk with

restart based link prediction (RWR) [24] and global topolo-

gical similarity based link prediction without dimensionality

reduction (GLOBAL) [12]. RWR is selected for comparison

since it is shown to outperform local network topology based

link prediction algorithms [24]. We also compare against
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Figure 5. The performance of global topological similarity based link
prediction using sparsity and modularity based dimensionality reduction, as
compared to random walk with restarts and global topological similarity
without dimensionality reduction, on the DBLP-1 dataset.
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Figure 6. The performance of global topological similarity based link
prediction using sparsity and modularity based dimensionality reduction, as
compared to random walk with restarts and global topological similarity
without dimensionality reduction, on the DBLP-2 dataset.

GLOBAL to assess the contribution of dimensionality reduc-

tion to the performance of this algorithm.

C. Performance Evaluation

Performance of dimensionality reduction techniques. We

first compare the distribution of prediction scores for the

positive and negative test pairs for each algorithm. The results

of this analysis are shown in Figure 4. As can be seen

in the figure, the scores assigned to negative and positive

pairs by both RWR and GLOBAL are highly overlapped

around 0, making it very difficult to distinguish the scores of

positive and negative pairs. The scores computed using both

the sparsity and modularity based dimensionality reduction
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Figure 7. Effect of restart probability α on the predictive performance of link
prediction methods for data set DBLP-1. Optimal values of α are respectively
0.9, 0.6, 0.1, 0.1 for modularity-based, sparsity based, RWR and GLOBAL
methods.

provide a wider distribution, making the separation between

the positive and negative sets more visible.

Next, we compare the prediction performance of the four

methods using ROC curves. The results of this analysis for

both datasets is shown in in Figures 5 and 6. The results

reported in these figures are the best results provided by each

algorithm based on optimization of the relevant parameters (re-

start probability, threshold on retaining dimensions, number of

clusters). As seen in the figure, the prediction performance of

the two dimensionality reduction techniques on both datasets

is similar, but sparsity based dimensionality reduction achieves

best performance on larger dataset. Both methods drastically

outperform RWR and GLOBAL, showing the value of using

the global view of the nodes along with dimensionality re-

duction. Strikingly, GLOBAL performs poorly as compared

to RWR on these datasets, showing that the global view based

approach does not provide any value in predictive performance

unless dimensionality reduction is performed.

Effect of restart probability α. Since the prediction scores

computed by all link prediction methods considered depends

on the restart probability (the parameter α) in the random walk

with restarts, we also evaluate the effect of this parameter on

the performance evaluation. The results of this analysis for

both datasets are shown in Figures 7 and 8. As can be seen

in the figures, the performance of RWR is most robust to the

value of α, but the performance of this method slightly goes

down at larger values of α (i.e., when the topology of the

network weighted less) This is consistent with other previous

studies [12]. Interestingly, the performance of modularity-

based dimensionality reduction improves with increasing α,

with a slight decline at very large values. The performance of

sparsity-based dimensionality reduction peaks around α = 0.6
and declines on either direction, suggesting that the value of
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Figure 8. Effect of restart probability α on the predictive performance of link
prediction methods for data set DBLP-2. Optimal values of α are respectively
0.9, 0.6, 0.1, 0.1 for modularity-based, sparsity based, RWR and GLOBAL
methods.

this parameter needs to be carefully optimized for sparsity

based dimensionality reduction. This is expected because large

values of α restrict RWR-based proximity to the immediate

neighborhood of nodes, whereas smaller values of α bias

RWR-based proximity with overall centrality, diminishing the

specificity of individual nodes.

Effects of sparsity threshold and the number of clusters.
We also investigate the threshold values for harvesting useful

global topological profiles for sparsity based dimensionality

reduction, as well as the number of clusters for modularity-

based dimensionality reduction. The results of these analyses

are respectively shown in Figures 9 and 10.

As seen in Figures 9, we obtain best performance for

sparsity based reduction with threshold value ε = 0.01.

Namely, when dimensionality reduction is very conservative

(ε = 0.1), the prediction performance of this method is

worse than random prediction, i.e., valuable information on

the position of the nodes in the network is left out at this value

of ε. However, when ε is sufficiently flexible, the performance

of the method is highly robust to the value of ε, with a slight

decline in performance as ε becomes more flexible (i.e., as

more dimensions are considered). Also note that, for all the

threshold values except ε = 0.1, which prunes out valuable

global views most, this method significantly improves over

global topological profile method.

As seen in Figure 9, the performance of modularity-based

dimensionality reduction depends on the number of clusters in

a way similar to the dependence of sparsity-based dimension-

ality reduction on ε. The performance is relatively poor if too

few clusters are used, the performance peaks when a moderate

number of clusters is used, and the performance declines

steadily with growing number of clusters (i.e. growing number

of dimensions) after this point. Interestingly, the performance
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Figure 9. The effect of the parameter ε on the performance of sparsity-
based dimensionality reduction in link prediction. Best performance is
obtained for ε = 0.01 for both DBLP-1 and DBLP-2datasets
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Figure 10. The effect of number of clusters on the link prediction performance
of modularity-based dimensionality reduction for the DBLP-1 and DBLP-2
datasets

is optimized for both datasets when the average number of

nodes in each cluster is around 50 (namely, ≈ 10704/256 for

DBLP-1 and ≈ 6250/100 for DBLP-2).

V. CONCLUSION

In this paper, we investigate the link prediction problem for

collaboration networks in a restricted perspective of global

views. The global view based link prediction methods ignore

the fact that the large-scale network is in sparse form, and

treat each links’ view equally on a node without considering

how negligible they may be. In this paper, we proposed

two dimensionality reduction techniques, namely sparsity and

modularity based dimensionality reduction, which capture

the nodes’ intrinsic global views patterns from their global

topological profile and elaborate only those restricted views.

Experiments on the DBLP collaboration network demon-

strate that the judicious choice of threshold and cluster num-

bers in sparsity and modularity based reduction methods

renders these methods to drastically outperform existing link

prediction methods based on global network topology. Our

proposed methods are better able to capture the true proximity

between node pairs based on the modular structure of the

network and improve the performance of unsupervised link

prediction methods.
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