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Abstract

Motivation: Protein phosphorylation is a key regulator of protein function in signal transduction pathways.
Kinases are the enzymes that catalyze the phosphorylation of other proteins in a target specific manner.
The dysregulation of phosphorylation is associated with many diseases including cancer. Although the
advances in phosphoproteomics enable the identification of phosphosites at the proteome level, most of the
phosphoproteome is still in the dark: more than 95% of the reported human phosphosites have no known
kinases. Determining which kinase is responsible for phosphorylating a site remains an experimental
challenge. Existing computational methods require several examples of known targets of a kinase to make
accurate kinase specific predictions, yet for a large body of kinases, only a few or no target sites are
reported.
Results: We present DeepKinZero, the first zero-shot learning approach to predict the kinase acting on a
phosphosite for kinases with no known phosphosite information. DeepKinZero transfers knowledge from
kinases with many known target phosphosites to those kinases with no known sites through a zero-shot
learning model. The kinase specific positional amino acid preferences are learned using a bidirectional
recurrent neural network. We show that DeepKinZero achieves significant improvement in accuracy for
kinases with no known phosphosites in comparison to the baseline model and other methods available. By
expanding our knowledge on understudied kinases, DeepKinZero can help to chart the phosphoproteome
atlas.
Availability and implementation: The source codes are available at https://github.com/

Tastanlab/DeepKinZero.

Contact: otastan@sabanciuniv.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Protein kinases are a large family of enzymes that catalyze the
phosphorylation of other proteins (Hunter, 1995). Phosphorylation involves
the transfer of a phosphoryl group to the side chain of an amino acid residue

in the substrate. The amino acid residue that receives the phosphoryl
group is called the phosphorylation site, or briefly a phosphosite. The
phosphosite is usually one of the three amino acids, serine, threonine, and
tyrosine; also, other amino acids, such as histidine, are reported to act as
phosphosites (Fuhs and Hunter, 2017). Phosphorylation events can lead to
the activation or deactivation of proteins, modify the targets’ interactions
with other proteins, direct them to subcellular localization, or target them
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Table 1. Kinase coverage of state-of-the-art sequence-based methods for
predicting kinase-substrate associations. For each method, the middle
column reports the number of kinases and kinase families for which the method
can predict target phosphosites. The right column reports the criteria employed
by the method for being able to make predictions for a kinase or family.

Method
Number of kinases or

kinase families
Criteria for inclusion

MusiteDeep(Wang et al.,
2017a)

5 families Families with > 100 sites

PhosphoPredict(Song
et al., 2017)

8 families Families with ≥ 50 sites

Li et al.(Li et al., 2010) 8 families Families with ≥ 50 sites
PhosphoPICK(Patrick
et al., 2014)

59 human kinases Kinases with > 10 sites

PKIS (Zou et al., 2013) 56 human kinases Kinases with > 10 sites
KSRPred(Wang et al.,
2017b)

103 human kinases Kinases with ≥ 15 sites

KinomeExplorer (Horn
et al., 2014)

222 kinases covered but
accuracy assessed for 14
kinases

Kinases with ≥ 20 sites

for destruction (Pawson and Scott, 2005). Since they are the key regulators
of protein function in a broad range of cellular activities, aberrant kinase
function is implicated in many diseases (Gaestel et al., 2009), particularly
in cancer (Blume-Jensen and Hunter, 2001; Müller et al., 2015). Several
pathogenic human mutations also lie on known phosphorylation sites
(Needham et al., 2019). Kinases, therefore, are also major drug targets
(Klaeger et al., 2017; Ferguson and Gray, 2018). To this end, understanding
the associations between kinases and phosphorylation sites holds the key
to understand the signaling mechanisms in the healthy and diseased cells.

Advances in mass spectrometry-based phosphoproteomics has enabled
the identification and quantification of phosphosites at the proteome level
(Mann et al., 2002; Huttlin et al., 2010; Lundby et al., 2012). Many
computational models have also been developed to predict phosphosites
in a given input protein sequence (recently (Horn et al., 2014; Dou et al.,
2014; Patrick et al., 2014; Ismail et al., 2016; Wang et al., 2017b; Song
et al., 2017; Qin et al., 2016; Wang et al., 2017a) and earlier methods
reviewed in (Trost and Kusalik, 2011)). Once a phosphosite is identified,
either experimentally or computationally, determining the kinase that is
responsible for catalyzing the phosphorylation of this site becomes the
key question. With 518 identified kinases in the human genome (Manning
et al., 2002) and the transient nature of kinase-substrate interactions, it
is still an experimental challenge to determine the kinase that targets a
given site. As underlined by a recent review (Needham et al., 2019), most
of the phosphoproteome is uncharted: more than 95% of reported human
phosphosites have no known kinase or associated biological function.

Several computational methods have been proposed to identify
phosphorylation sites on protein sequences (Yaffe et al., 2001; Li et al., 2008;
Wong et al., 2007; Qin et al., 2016; Xue et al., 2010; Koenig and Grabe, 2004;
Saunders et al., 2008; Wang et al., 2017b; Song et al., 2017; Wang et al.,
2017a; Blom et al., 1999; Gao et al., 2010; Patrick et al., 2014; Horn et al.,
2014; Zou et al., 2013). Since these methods can also provide kinase specific
predictions, they can be used to predict associated kinases of a known
phosphosite. A majority of these methods utilize consensus sequence motifs
or position specific scoring matrices to estimate the position preferences
of each kinase. This approach requires a reasonable number of previously
known targets to be able to estimate the positional preferences of a kinase
accurately. Other tools employ supervised machine learning models that
use a collection of established kinase-phosphosite associations. They model
the relationship between the properties of kinases and the properties of their
target phosphosites in a supervised classification setting. The application
of such tools is limited to kinases for which a substantial number of target
phosphosites are available for training. For example, MusiteDeep (Wang
et al., 2017a) uses deep learning to predict binding sites for kinases, and
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Fig. 1. The distribution of the number of experimentally validated target phosphosites
for kinases in the human kinome. The histogram is based on data obtained from
PhosphositePlus database experimentally validated phosphosite-kinase interactions.

it exclusively focuses on kinase families with at least 100 experimentally
verified phosphosites. Recently, the use of phosphorylation data to predict
kinases has been proposed, but these methods also require knowledge of
target sites for a kinase to make predictions for that kinase (Ayati et al.,
2019). Some of the recently developed tools and the number of kinases
and/or kinase families they predict are shown in Table 1 along with the
number of sites required for a kinase to be included.

A particular problem that has been overlooked in the literature is
the prediction of target phosphosites for kinases with few or no known
phosphosites. Despite the central role of kinases in cellular signaling
cascades and their importance as potential drug targets, a large fraction of
the kinome is understudied (Fedorov et al., 2010; Ferguson and Gray, 2018;
Needham et al., 2019). PhosphositePlus, a database of experimentally
validated phosphosites, provides phosphosite annotations for only 364
human kinases. For nearly 200 of 364 annotated kinases, there are at most
10 experimentally validated target sites (Figure 1).

In this study, we introduce DeepKinZero, a zero-shot learning approach
to predict kinase-substrate associations for kinases with no known target
sites. Zero-shot learning is a machine learning approach that has received
significant attention, particularly in the field of computer vision. It
handles recognition tasks for classes for which no training examples are
available (Palatucci et al., 2009; Larochelle et al., 2008; Lampert et al.,
2014; Romera-Paredes and Torr, 2015; Akata et al., 2016). The key to
making predictions for classes with no training data (referred to as unseen
or zero-shot classes) is to have side information which can be used to relate
the classes. Based on these relations, it becomes possible to transfer the
knowledge obtained from classes that have training samples (referred to as
seen class)(Akata et al., 2016) to the previously unseen classes.

As exemplified by Yu et al. (Yu et al., 2018), it is difficult for an image
classification system to recognize an okapi when there are no images of
okapi in the training set. Yet, if the visual descriptions such as – zebra-
stripes, four legs, brown torso, a deer-like face – can be learned from the
seen classes (zebra, deer, horse, etc.) and if the system has side information
indicating that okapis have these attributes, it becomes possible for the
algorithm to recognize an okapi even without any prior exposure to an
okapi visual. This is accomplished by detecting these visual descriptors and
relating these descriptors to the side information on okapis. Similarly, even
if we do not know any phosphosites that are associated with an understudied
kinase (unseen class) in training, the zero-shot learning framework enables
us to recognize a target site of this kinase by transferring knowledge from
well-studied kinases to the rare kinases. This can be achieved by establishing
a relationship between the kinases using relevant auxiliary information,
such as functional, sequence, and structural characteristics of kinases. It
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is important to note that, in the application of zero-shot learning to the
prediction of kinase-substrate associations, phosphosites are represented as
“instances" and kinases are represented as “classes" (i.e., kinase predictions
are made for a given phosphosite). This is indeed the set-up that is relevant
in many practical applications since the researchers who experimentally
identify a phosphorylation site are interested in identifying kinases targeting
that phosphosite.

Given a predicted or experimentally identified phosphosite,
DeepKinZero predicts the most likely zero-shot kinase that can
phosphorylate this particular site by using the local protein sequence
centered at this site. DeepKinZero learns the phosphosite sequence features
via a bi-directional recurrent neural network. Therein the kinases are
represented based on functional and sequence information. Through
learning a compatibility function that establishes relationships between the
representations of the phosphosite sequences and the kinases, DeepKinZero
transfers knowledge from kinases with many known phosphosites to those
kinases with no known sites. We also consider alternate representations
of the phosphosite sequence and the kinase embeddings and asses their
effectiveness. For kinases with no known target sites (i.e., kinases for which
it is not possible to make predictions using other supervised methods),
DeepKinZero provides predictions with 30-fold increase in accuracy as
compared to random guess.

DeepKinZero offers a scalable and flexible approach annotating sites
with kinases with no prior information on their target sites. DeepKinzero
is implemented in Python using Tensorflow library (Abadi et al., 2015)
and is provided as an open source tool at https://github.com/
Tastanlab/DeepKinZero.

2 Methods

2.1 Problem Formulation

The residues flanking the central phosphosite is critical for kinase
specificity(Ubersax and Ferrell Jr, 2007). Thus, the local sequence
surrounding the phosphorylation site has been a common input in the
computational prediction of kinase-phosphosite associations. In this study,
we use sequences of 15 residues (i.e., 7 residues flanking on each side of
the phosphosite in addition to the phosphosite) as input and we denote these
as the phosphosite sequences. Lengths of 15 or shorter have been shown
to be useful in previous approaches(Hornbeck et al., 2014; Wagih et al.,
2015; Trost and Kusalik, 2011). Let X represent the space of phosphosite
sequences and Y represent the set of all identified kinases in human. The
problem of kinase-phosphosite association prediction is defined as follows:
given a phosphosite sequence x ∈ X , identify which kinase y ∈ Y is most
likely to catalyze the phosphorylation of this site. The problem is formalized
as a multi-class classification problem with many classes, where each input
phosphosite sequence is associated with a single kinase. This one-to-one
mapping, in reality, does not always hold; a phosphosite occasionally can
indeed be phosphorylated by more than one kinase. However, these cases
occur rarely and in this study, whenever the predicted kinase is among the
kinases known to phosphorylate a given phosphosite, we accept it as a true
positive.

Some kinases are well-studied for which many target sites have been
identified. On the other hand, many kinases lack formerly identified target
sites. We refer to the kinases with known target sites in the training data as
common kinases, these kinases constitute the training classes. We denote
this set of kinases as Ytr ⊂ Y . We call the kinases with few phosphosite
annotation as rare kinases and denote the set of rare kinases as Yte ⊂ Y .
Yte constitutes the zero-shot test classes. By definition, the sets of common
and rare kinases are disjoint, i.e., Ytr ∩Yte = ∅. Note that the generalized
zero-shot learning is a more open setting where all the classes (seen and
unseen) are available as candidates for the classifier in the testing phase
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Fig. 2. Overview of the application of zero-shot learning to the prediction of kinase-
phosphosite associations. The phosphosites and the kinases are embedded into multi-
dimensional vector spaces using the information on sites and kinases, respectively. The
training data comprise common kinases and their sites. The parametersW of the function
F (x, y;W ) are estimated from the training data such that the compatibility between
phosphosite embedding θ(x) and kinase embeddings φ(y) is maximized. For a new
phosphosite at test time (shown as the black dot), the rare kinase that maximizes F for
the input site’s embedding is picked by using F and the learned parameters Ŵ .

(Chao et al., 2016). This is a much harder problem which we do not tackle
here and leave it as future work.

The training data contains only pairs for common kinases, Dtr =

{(xi, yi), i = {1, . . . , Ntr}}, where yi ∈ Ytr . Since there are no
positively labeled data for the rare kinases, (y ∈ Yte), during the training
phase, it is not possible to use traditional supervised methods to build
a model for mapping sites to such rare kinases. However, it is known
that some kinases are related to each other functionally, evolutionarily, or
structurally (Manning et al., 2002). Thus, using zero-shot learning, the
known relationships between kinases can be exploited to learn a predictive
model for rare kinases. In the next section, we elaborate on this approach.

2.2 The Zero-Shot Learning Model

Following the work by Akata et al. (Akata et al., 2016), we assume that a
vector space representation, called class embedding or kinase embedding,
can be constructed for each kinase. Therefore, an m-dimensional “kinase
embedding" vector φ(y) ∈ Rm can be computed for each kinase y ∈ Y .
We expect âŁœsimilarâŁž classes to be close to each other with respect to the
Euclidean metric in this embedded space. Similarly, for each phosphosite
x ∈ X , we compute the phosphosite embedding vector, θ(x) ∈ Rd, that
represents the phosphosite sequence in a d-dimensional space. We discuss
the computation of phosphosite and kinase embeddings in Sections 2.2.1
and 2.2.2 in greater detail.
The DeepKinZero Model. To accomplish transfer learning between the
common and rare kinases, we learn the association between the phosphosite
and the kinase embeddings. This idea is illustrated in Figure 2. Following
the work in structured output prediction (Tsochantaridis et al., 2005) and
prior work in zero-shot learning (Xian et al., 2017; Akata et al., 2016;
Romera-Paredes and Torr, 2015; Frome et al., 2013; Akata et al., 2015;
Kodirov et al., 2017; Sumbul et al., 2018), we use a compatibility function
F : X × Y → R to model the mapping between the input and output
embeddings. In this model, F takes a phosphosite - kinase pair (xi, yj) as

https://github.com/Tastanlab/DeepKinZero.
https://github.com/Tastanlab/DeepKinZero.
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Fig. 3. The DeepKinzero framework. First, the embedded vectors of phosphosites are passed to a 2-layer bidirectional LSTM network, and then the results after passing through an
attention layer are input to the ZSL model. The whole model is trained end-to-end over the common kinases.

input and returns a scalar value which is proportional to the confidence of
associating the site, xi, with kinase yi. In this model, the probability that a
given site is a target of a given kinase is calculated logistically from the
bi-linear compatibility function F :

p(y|x) =
exp(F (x, y))∑

y′∈Yte
exp(F (x, y′))

(1)

As in (Sumbul et al., 2018), we use the following bi-linear compatibility
function for input x and y :

F (x, y) =

d∑
i=1

m∑
j=1

Wi,j [θ(x)]i[φ(y)]j

+

d∑
i=1

Wi,m[θ(x)]i +

m∑
j=1

Wd,j [φ(y)]j + b

(2)

which can be written in matrix notation as:

F (x, y) = [θ(x)> 1]W [φ(y)> 1]>. (3)

Here, [θ(x)]i and [φ(y)]j respectively denote the i-th and the j-th
entries of the phosphosite and kinase embedding vectors, respectively. W
denotes the (d + 1) × (m + 1) compatibility matrix, where Wi,j for
1 ≤ i ≤ d and 1 ≤ j ≤ m specifies the contribution of the correspondence
between the i-th dimension in the phosphosite embedding space and the
j-th dimension in the kinase embedding space to the compatibility of
the phosphosite and kinase pair. Wd+1,i and Wj,m+1 weights evaluate
the information provided by the phosphosite and kinase embeddings
individually. Wi,m+1 for 1 ≤ i ≤ d specifies the weight of the i-th
dimension in the phosphosite embedding space, Wd+1,j for 1 ≤ j ≤ m
specifies the weight of the j-th dimension in the kinase embedding space.
Finally, Wd+1,m+1 = b denotes the bias term of the model.

We represent the 15-residue phosphosite sequences centering on each
phosphosite with multi-dimensional vectors in Euclidean space, such
that the embeddings of similar sequences are close to each other in this
space. To learn phosphosite embeddings, we use Bi-directional Recurrent
Neural Network (BRNN) (Schuster and Paliwal, 1997) model with an
attention mechanism over the training data. Recurrent Neural Networks

(RNNs) constitute a class of neural networks that exhibit state-of-the-art
performances for modeling sequential data (Rumelhart et al., 1986). At
each time step, which corresponds to the current position in the sequence,
RNN accepts an input sequence vector. The hidden state of the RNN
is then updated via non-linear activation functions to predict the target
class, which, in our case, is the associated kinase. BRNN contains 512
LSTM cells (Hochreiter and Schmidhuber, 1997) on each direction. This
number of cells is chosen to ensure the best compromise between memory
requirements and accuracy performance on validation and training data.

We also employ a dot attention mechanism (Luong et al., 2015) over
the output of the BRNN model to enable the model to focus on the more
important positions of the input sequence. For this, we multiply the output
vectors of BRNN with the attention vectorA, which isD×1.D is the size
of the BRNN output embeddings, which is 1024 since we have 512 nodes
on each side. Let H = [h1, h2, . . . , hT ] denote the whole output of the
BRNN. To calculate the attention value for each position, we multiply the
attention vector with the output vector for the position i, denoted by hi. We
apply softmax to the output of this multiplication to normalize them within
the range 0-1. αi = softmax(hiA). αi is the attention weight for position
i. Finally, the phosphosite embedding vector φ(x), is the weighted average
of the positions by the attention weights: φ(x) =

∑T
i=1 αihi.

Training DeepKinZero. Given training data Dtr = {(xi, yi), i =

1, . . . , Ntr}, where yi ∈ Ytr denote the training kinases, learning process
for the zero-shot-learning model involves learning of the compatibility
matrix W and the BRNN model parameters. Assuming that the training
data contain independently and identically distributed samples, we estimate
W that minimizes the negative log likelihood of observing the training
data:

Ŵ = argmin
W∈R(d+1)×(m+1)

∑
yi∈Ytr

− log p(yi|xi) (4)

The class posterior probabilities above are provided in Equation (1).
Maximizing the likelihood is equivalent to minimizing the cross-entropy
loss. We train the model end-to-end by connecting the BRNN model to
ZSL model (Figure 3). In this way, the BRNN model learns phosphosite
embeddings specifically useful for the ZSL model and classification of
kinases. To avoid overfitting, we employ drop-out regularization with a 0.5
keep probability (Srivastava et al., 2014). We apply batch normalization
in LSTM cells(Ba et al., 2016) to normalize the embeddings passed onto
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the ZSL model. We initialize the W matrix randomly from a uniform
distribution and minimize the cross-entropy loss function using Adam
optimizer (Kingma and Ba, 2014) with learning rate 10−4. The attention
weights are also initialized randomly from a normal distribution with
a mean of 0 and standard deviation of 0.05. The learning rate and the
number of iterations are optimized on validation data (see Section 3.1 for
an explanation of the validation data). To reduce the variance of the model,
we ensemble 10 models each of which trained with different initializations
of the model parameters. The final class probabilities are obtained by
averaging output probabilities over the ensemble.
Making Predictions with DeepKinZero. The estimated Ŵ is used at the
test time; given a specific input phosphosite, the predicted kinase class, y∗,
is assigned by maximizing F over the test classes:

y∗ = argmax
y∈Yte

F (x, y; Ŵ ) (5)

This is equivalent to getting the class with the highest posterior
probability as the posterior probability given in Equation (1).

2.2.1 Phosphosite Embeddings
In learning the phosphosite embeddings, we experiment inputting the
phosphosite sequence with three different vector representations into the
BRNN:
i) One-hot encoded vector: Each residue of a peptide sequence is coded
with a 21-dimensional vector with binary entries. 20 of these dimensions
encode for each of the amino acids and one extra entry is used to encode
for non-extant residues. This may happen if the phosphosite is too close
to the N-terminal (or the C-terminal) of the protein such that the peptide
sequence is shorter than 15 residues. Eventually, with one-hot encoding,
each phosphosite sequence is embedded into a 21×15 = 315-dimensional
binary vector.
ii) Physical and chemical characteristics of amino acids: We also
use a reduced alphabet that represents each sequence based on the
physicochemical properties of the amino acids (AA Prop) in the sequence.
We consider the charge, polarity, aromaticity, size, and electronic-property
of each amino acid. The categorization of each amino acid into groups
based on these five properties are obtained from (Ganapathiraju et al., 2008)
and is also listed in Supplementary Table 1. Using this categorization,
we code each sequence based on property-based one-hot encoded vectors
and concatenate them. Charge, size and aromaticity properties can each
take 3 different values, polarity can take 2 and electronic property can
take 5 different values. Therefore, the resulting one-hot encoded vector is
15× 16 = 240-dimensional.
iii) ProtVec: Motivated by the demonstrated success of word embedding
techniques in natural language processing (e.g., Word2Vec (Mikolov et al.,
2013)), unsupervised embedding models have been developed to represent
protein sequences, as well. Among these models, ProtVec (Asgari and
Mofrad, 2015) provides a continuous representation of protein sequences
and is trained on sequences from Uniprot-SwissProt using a Skip-gram
neural network (Bairoch et al., 2005). ProtVec converts each 3-gram in
input sequence into a vector of length 100. There are 13 3-grams in a
peptide of 15 residues, thus, our ProtVec representation of each sequence
is 13× 100 = 1300-dimensional.

2.2.2 Kinase Embeddings
The key to zero-shot learning is to know, for each unseen class, the
relationship with the formerly seen classes. To establish this relationship
between common and rare kinases, we create four different class embedding
vectors, which are then concatenated to form a kinase embedding vector,
φ(y) in Equation (3). Supplementary Figure 1 summarizes the size of the
kinase embedding vectors when all the sources are used. We experiment
the utility of some of the vectors through computational experiments and

drop those that are not informative in the final model. Below, we give a
detailed account of the sources and the way they are deployed to arrive at
the desired kinase embeddings:
i) Kinase hierarchy: We use the classification proposed by (Manning et al.,
2002). The data is obtained from the website Kinase.com (downloaded
in June 2018). Supplementary Figure 2 shows this hierarchy. In this
classification, there are 10 groups, and 116 families. We convert this to a
binary vector by representing families, groups and individual kinases as
one-hot encoded vectors. In the end, we attain a binary vector with a size
of 583.
ii) EC classification of kinases: An alternative source of kinase
categorization is the Enzyme Comission(EC) classifications provided by the
ENZYME database (Bairoch, 2000)(downloaded in June 2018). According
to this classification scheme, kinases are grouped into 6 main categories
based on their functions. The two largest categories of kinases are the
tyrosine-specific protein kinases and serine/threonine kinases. The main
categories are further divided into subcategories (as shown in Supplementary
Figure 3).
iii) Kin2Vec: As kinases can be related through their kinase domain
sequences, we use a ProtVec representation of kinase domain sequences
just as we do for the input phosphosite sequence. To differentiate the two,
we refer to them as Kin2Vec. ProtVec creates vectors of length 100 for
each 3-gram in the sequence and since for each kinase, the kinase domains
can be of different lengths, we average the ProtVec vectors generated for
each 3-gram into one vector with 100 components.
iv) KEGG pathways: To capture the relatedness of kinases in the biological
functional space, we create kinase vectors based on the pathways in
which the kinases participate. The human pathways are obtained from
KEGG database (Kanehisa and Goto, 2000; Kanehisa et al., 2015, 2016)
(downloaded in April 2018). Cumulatively, there are 190 KEGG pathways
in which at least one of the kinases participate. Each kinase vector is formed
as a 190-element binary vector based on its participation in each of the
cellular pathways.

3 Results

3.1 Evaluation Protocol

We train and evaluate our models on the experimentally validated
kinase-phosphosite associations obtained from the PhosphoSitePlus
database(Hornbeck et al., 2014) (downloaded in March 2018). We
exclude iso-form and fusion kinases. The dataset includes 13,426
experimentally identified phosyphorylation sites and their associated 343
kinases. Following the evaluation protocol suggested by Xian et al. (Xian
et al., 2017), we keep the zero-shot kinases well apart from the rest of
the classes in learning the models and parameter tuning. We split the
data into training, validation and test data based on the number of sites
that are associated with each kinase. Kinases with more than 5 sites are
considered as training classes. There are 214 such kinases. DeepKinZero is
trained on this set, which contains kinase-substrate associations of 12,901
phosphorylation sites with these 214 kinases. The validation set includes the
kinase-phosphosite associations of 17 kinases for which there are exactly 5
phosphorylation sites. This validation set includes 80 phosphorylation sites
associated with these 17 kinases. The remaining 112 kinases with less than
5 positively labeled examples constitute the test or zero-shot classes. The
test data includes these 112 kinases and kinase-phosphosite associations
involving 237 phosphorylation sites.

3.2 Performance Criteria

To assess the overall performance, we use hit@k accuracy. This metric
evaluates performance in terms of the number of times in which the correct
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class is among the top k predicted classes, where k is a parameter. If the true
class is within the top-k predicted classes, it is considered a true positive
prediction. We report results for values of k=1,3 and 5. In cases for which
a phosphosite is associated with more than one kinase, we consider the
prediction to be a true positive if the model predicts one of these kinases for
the corresponding phosphosite in the top k prediction. In our test dataset,
215 phosphosites are associated with a single kinase, 16 phosphosites are
associated with 2 kinases, and 2 phosphosites are associated with 3 kinases.
Thus, multi-class instances are rare.

3.3 Zero-Shot Learning Results

The representations of the site sequences and the kinases are critical
components of the model and they can greatly influence prediction
performance. For this reason, we assess the performance of DeepKinZero
by comparing the prediction performance of DeepKinZero with different
phosphosite and kinase embeddings.

3.3.1 The Effect of Different Phosphosite Representations on Accuracy
of Predictions
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Fig. 4. The effect of phosphosite representations on the accuracy of predictions. The
hit@1, hit@3, and hit@5 performance of DeepKinZero (percentage of phosphosites for
which the top kinase is respectively among the top 1, 3, and 5 predictions) with six different
phosphosite embedding methods (one-hot, amino-acid properties, ProtVec, each with or
without a Bi-Directional Recurrent Neural Network(BRNN)) are shown. For reference, the
hit@1, hit@3, and hit@5 of a random guess (the only existing alternative for the kinases
tested) performance are also shown.

To thoroughly asses the effectiveness of different phosphosite
representations, DeepKinZero is trained with three different input
representations: One-Hot, Amino Acid Properties (AA Prop) and ProtVec
with and without using BRNN. When a BRNN is employed, the BRNN is
trained with the specified site sequence embeddings and the final layer of
the BRNN is used as the final sequence embedding and directly input to
the zero-shot classifier. Figure 4 summarizes the results of using different
phosphosite sequence embeddings. As shown in Figure 4, with respect to
hit@1 and hit@3 metrics, the model trained with a BRNN coupled with
ProtVec vectors performs the best, where the true kinase is predicted as the
top kinase for more than 20% of the sites, and it is among the top 3 for more
than 30% of the sites. With respect to hit@5 metric, the input representations
have less effect on the prediction performance, where amino acid properties
with BRNN delivers the highest hit@5 accuracy with the true kinase being
among the top 5 for more than 40% of the sites. Additionally, we observe
that the use of BRNN model improves the performance. The model without
BRNN embeddings that uses One-Hot sequence embedding as input only

returns the true kinase as the top prediction in 10.55% of the test cases.
On the other hand, the model with BRNN and ProtVec site embeddings
predict the right class with 21.52% accuracy. Note that these numbers are
highly impressive since it would not be possible to train predictive models
for these kinases due to the inadequacy of training samples, and random
guess will achieve only 0.89% accuracy since there are 112 test classes.

To probe the usefulness of the representations learned by BRNN, we use
nonlinear dimension reduction. We visualize the BRNN embeddings in a
lower nonlinear dimension reduction to visualize the BRNN embeddings in a
lower dimensional space using t-distributed stochastic neighbor embedding
(t-SNE) (Maaten and Hinton, 2008). Supplementary Figure 4 shows that the
BRNN can separate the examples in the case of kinase groups better than
the ProtVec representations, hinting that it successfully captures additional
critical information about kinases.

3.3.2 Effect of Kinase Embbeding on Accuracy of Predictions
The performances of models trained with different kinase embeddings is
shown in Table 2. In these experiments, for phosphosite embedding, we
use a BRNN trained on ProtVec and compare different combinations of
class embedding features with each other. To establish a baseline, the first
row shows the accuracies attained using a random guess. The second row
lists the performance of the model when we input the one-hot vector of
kinases as class embeddings; this model is effectively a model that does not
transfer knowledge between different kinases. As shown in the table, the
performance of this model is worse than a random guess, demonstrating
that learning is non-trivial if the class embeddings are not included. The
next four rows in the table show the results of the models trained with
kinase embedding vectors of individual data sources. Thus, they portray the
strength of each source in isolation from the others. Among the four possible
kinase embeddings, the kinase hierarchy is the leading contributor to the
accuracy of the model, achieving 17.72% accuracy when used as the sole
auxiliary information source. As this hierarchy reflects the functional and
evolutionary information (based on sequence similarities) on the kinases,
it is expected that they carry valuable information about kinase similarities.
When used in isolation of other sources, Kin2Vec is found to be the least
useful source.

The next set of results display the combinations of two sources. In all
classes, combining family hierarchy with another information improves the
model’s performance the most. The model achieves 18.99% hit@1 accuracy
by combining family hierarchy with Kin2Vec. Furthermore, combining
family hierarchy with EC classification or Kin2Vec vectors increases hit@5
accuracy from 37.55% to 38.82% and 40.08% respectively. Also among
all combinations, its removal from the model affects the accuracy most
adversely(for example second to the last row in the table).

Overall, the best performance is achieved by using family hierarchy,
EC classification and Kinase2Vec vectors, which achieves 21.52% on
hit@1 accuracy, 33.76% on hit@3 and 39.24% on hit@5 accuracy. Adding
pathway vectors into this combination degrades the hit@1, hit@3 and
hit@5 accuracies significantly, although the use of pathways alone is the
second best (fourth row) when used individually as an embedding and it
improves the hit@10 accuracy. It is possible that the information provided
by pathway membership may not be sufficiently specific to contribute
additional information on the relationships between kinases. When hit@5
or hit@10 is used, all the models except those that ignore the family
hierarchy performs relatively well. The best performance is achieved when
all the available information is included in the model (48.1 %).

3.3.3 Comparison with Supervised Methods Augmented with Transfer
Learning

As noted before, a direct comparison between DeepKinZero and the
methods which aim to predict the common kinases (Table 1) is not possible.
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Table 2. The effect of kinase embedding on the accuracy of predictions. The hit@1, hit@3, hit@5, and hit@10 performance of DeepKinZero using all possible
combinations of four different kinase embeddings are shown. Each row shows a model with a specific combination of kinase embeddings, where the check marks
indicate that the corresponding kinase embedding is included in the model. For reference, the performance of random guess and an embedding that only uses the
identity of individual kinases (thus does not transfer information between kinases) is also shown.

Family
Hierarchy

Pathways
EC

Classification
Kin2Vec hit@1 hit@3 hit@5 hit@10

Random Guess 0.89 2.70 4.50 9.30

One-hot vector of kinases as class embedding 0.84 1.69 2.95 7.59

3 17.72 31.65 37.55 46.84
3 8.02 13.5 16.03 21.52

3 5.06 13.5 17.72 30.8
3 1.27 5.91 8.02 16.03

3 3 14.77 27.85 35.02 46.84
3 3 19.41 29.96 38.82 47.68
3 3 18.99 33.33 40.08 47.26

3 3 8.86 11.39 19.41 28.69
3 3 8.02 13.5 16.46 21.94

3 3 6.75 14.77 19.83 32.49

3 3 3 15.19 25.74 35.86 46.84
3 3 3 15.61 30.38 36.29 45.99
3 3 3 21.52 33.76 39.24 47.68

3 3 3 10.55 18.14 24.05 32.91
3 3 3 3 16.88 29.11 34.18 48.10

Table 3. Performances of augmenting existing methods with transfer learning. Percent hit@k accuracies are given. For reference, the results achieved by
DeepKinZero with the best embeddings are provided.

Model Transfer method hit@1 hit@3 hit@5
DeepKinZero Zero-shot learning 21.52 33.76 39.24

PhosphoPICK(Patrick et al., 2014)
Sequence similarity 5.49 10.13 11.39
Cosine similarity of embedding vectors 4.64 9.70 11.39

KinomeExplorer (Horn et al., 2014)
Sequence similarity 12.66 14.77 15.61
Cosine similarity of embedding vectors 13.51 15.61 16.46

These methods will never predict the rare kinases since their candidate
kinase set only comprises the common kinases. To be able to compare
DeepKinZero with these methods, we develop a baseline transfer learning
strategy in which we augment the traditional supervised prediction with a
transfer learning step. In this baseline strategy, we first run the supervised
learning method to obtain the common kinase predictions; next, we find
the most similar rare kinase that shares the same family with that of the
predicted kinase. We transfer the predictions within the kinase family
information since this emerged as the most informative source in creating
the kinase embeddings (Table 2). We finally designate this rare kinase as
the method’s prediction. This comparison is only possible for methods that
predict kinases as opposed to the kinase families, and we are able to apply
this method to PhosphoPICK and KinomeExplorer.

To find the most similar rare kinase in the kinase family, we use two
similarity assessment methods. In the first one, we pick the rare kinase
that bears the highest sequence similarity to the predicted common kinase.
Sequence similarity is assessed over the kinase domains global alignment
(BLOSUM62, gap opening penalty of 10, and gap extension penalty of 0.5).
In the second strategy, we find the closest kinase embedding vector using
the cosine similarity of the kinase embedding vectors including ProtVec
and EC classification vectors of the kinases (see Section 2.2.2). As can be
seen, both of these results remain considerably below what DeepKinZero
can achieve (see Table 3), supporting our conclusion that zero-shot learning
is an effective approach to this problem.

3.3.4 Comparison with Other Phosphosite Prediction Methods for
Understudied Kinases

In the literature, there are no models that we can directly compare our
method against. However, there are two methods (Ellis and Kobe, 2011;
Wagih et al., 2016) that aim at a different but a related problem. These
two methods are designed to predict the phosphosites for kinases with no
known sites, which is the reverse scenario of our problem; we predict the
kinase of a given phosphosite. Predikin (Ellis and Kobe, 2011) operates
with a set of rules governing the amino acids around the phosphosites.
These rules, however, are derived from 3D structures of kinases bound
to their substrates. Therefore, the method is limited by the availability of
the protein structures and cannot be applied to kinase families without 3D
structures. Because the Predikin server was not available, we were not able
to carry out a comparison with this method.

The second method is by Wagih et al. (Wagih et al., 2016), which is
based on the idea that, as compared to a random set of proteins, interaction
partners of a kinase are more likely to be phosphorylated by that kinase.
Thus, the method finds enriched motifs in the interaction partner sequences
to predict sequences that a kinase can bind. The method is not applicable;
however, when the kinase has a low number of interaction partners and/or
the number of phosphosites on the interactors is low. Our method predicts
the kinase of a given phosphosite, whereas Wagih et al. predicts the
phosphosite of a kinase. Thus, the two methods are not directly comparable,
but still, we conduct the following comparison. For the 112 zero-shot
kinases, we predict the motifs by Wagih et al. model. If we consider the
top motif returned, the method correctly matches 11 of the phosphosites
of the 112 kinases, leading to 9.8% hit@1 accuracy. If we consider the
top 5 motifs returned for each kinase, the correct phosphosite sequence
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Fig. 5. Position and amino acid type weights (Best viewed in color) a) Average attention weights of the residue positions calculated over the ensemble BRNN model. Residue position 0
is the phosphosite position. b) Average zero-shot learning weights for each amino acid type at the phosphosite.

matches 26 phosphosites of the 112 kinase motifs leading to 23% hit@5
accuracy. These numbers are significantly lower than what DeepKinZero
can achieve (21.52% and 40.08%). We should note that this comparison
also favors Waigh et al. because DeepKinZero is evaluated based on how
many phosphosites it gets right from all the available phosphosites. This is
twice the number of kinases over which Waigh et al. was evaluated with.

3.3.5 Validation on an External Data
We also evaluated DeepKinZero on an external test data we had retrieved
from PhosphoELM database (Diella et al., 2007) (downloaded on September
2018). We first removed all the kinases and their associated phosphosites
that were in our training and validation set from PhosphositePlus dataset.
The remaining kinase-substrate associations in the PhosphoELM dataset
represent an instance that is well-suited to DeepKinZero’s objective, in that
almost all of the kinases in this dataset have very few known associations.
To be more precise, there are 52 phosphosites associated with 40 kinases
and 29 of these kinases have only one site associated with it. One of
them have 7 sites associated with it, while the other 10 kinases have 4,
3 or 2 associated sites. DeepKinZero trained on PhopsphositePlus and
evaluated on this PhosphoELM dataset achieves hit@1 accuracy of 33.96%,
hit@3 accuracy of 52.83%, 62.26% hit@5 accuracy and 77.36% hit@10
accuracy. Although the dataset is small, it provides confidence that the
model generalizes to other datasets.

3.4 Inspecting Model Weights

We further analyze the learned weights in the model to gain further insight
into the model. First, we inspect BRNN attention weights. Figure 5 a)
shows the average attention assigned to each position in the input sequence
by the BRNN model. The center residue emerges as the most important
residue. Thus the model correctly learns to assign more weight to the center,
where the phosphosite is located. The immediate neighbors and the residues
within 2 positions are the next most important residues. This aligns well
with our expectations.

Next, we investigate the importance of amino acid type at the
phosphosite. Recall that the W matrix specifies the relative contribution
of the correspondence between each dimension in the kinase embedding
space with each dimension in the site embedding space. To investigate the
weights assigned to each amino acid type at the phosphosite embedding,
we calculate the average weights assigned to different amino-acid types
for each group of kinases at the phosphosite. As clearly seen in Figure 5 b)
S, Y and T correctly receive the largest weights. Moreover, the weights
assigned to different type of amino acids in each group align well with
existing knowledge of kinase groups. For example, the TK family, which
exclusively works on thyrosine residue (Y), puts a very large positive

weight on tyrosine while other families do not. Similarly, CMGC work
predominantly on serine (S) and threonine(T) and these are the two residues
that get a large positive weight. PKL group is a diverse group that could
be the reason why neither of the residue types emerges as predominantly
predictive.

4 Conclusion and Future Work
Many kinases are understudied with no known target proteins or sites;
therefore, only a small subset of kinases dominates the annotated
phosphosite databases. DeepKinZero, unlike conventional supervised
methods can offer predictions for kinases which do not have any known
phosphosites. The zero-shot learning framework transfers knowledge from
common kinases to rare kinases, and this way, it renders the predictions for
classes that were never observed in the training phase possible. Exploring
the lesser-studied kinases and their associated substrates and sites will likely
reveal major insights into the healthy and diseased cell. Through guiding
experimental studies, we hope DeepKinZero will help in illuminating the
dark phosphoproteome.

The work presented here can also be extended in different dimensions,
which we plan to study in our future work. First of all, the ability to transfer
learning between classes is based on the ability to define the characteristics
of the kinases as vectors, which is derived from auxiliary information on
kinases, such as taxonomies of kinases or deep representation of their
kinase domain sequences (as detailed in Section 2.2.2 section). For a kinase
to catalyze a phosphorylation event on a substrate, peptide specificity on
the substrate is considered as the main determining factor. However, the
peptide specificity is not the only element. The cellular localization and the
structural domains outside the catalytic domain have also been reported
to be important factors. Thus, in deriving the kinase embeddings, other
information can be used.

We use the local peptide sequence to represent the phosphosite.
Similarly, this representation can be augmented with additional structural
and functional information available on the substrate. Structural features
have been incorporated in kinase-substrate prediction by previous studies
(Song et al., 2017), but it has been observed that these features did
not significantly improve prediction performance, likely because of the
limitations of training data. As more training data becomes available,
transfer learning algorithms like DeepKinZero will likely enable more
effective utilization of such features.

A third line of work is to extend this work to general zero-shot learning.
The zero-shot learning assumes that the testing instances are only classified
into the candidate unseen classes. In this study, we also assume that the
candidate classes at the time of testing all belong to the rare kinases.
The generalized zero-shot learning is a more open setting where all the
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classes (seen and unseen) are available as candidates for the classifier at the
testing phase (Chao et al., 2016). This is a much harder problem due to the
greater number of classes handled during testing. Additionally, the classifier
tends to assign instances into one of the previously exposed classes. This
problem needs more specific methods. In future work, we plan to extend
this framework to handle this generalized setting.
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