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Abstract

Background: As Genome-Wide Association Studies (GWAS) have been increasingly used with data from various
populations, it has been observed that data from different populations reveal different sets of Single Nucleotide
Polymorphisms (SNPs) that are associated with the same disease. Using Type II Diabetes (T2D) as a test case, we
develop measures and methods to characterize the functional overlap of SNPs associated with the same disease
across populations.

Results: We introduce the notion of an Overlap Matrix as a general means of characterizing the functional overlap
between different SNP sets at different genomic and functional granularities. Using SNP-to-gene mapping, functional
annotation databases, and functional association networks, we assess the degree of functional overlap across nine
populations from Asian and European ethnic origins. We further assess the generalizability of the method by applying
it to a dataset for another complex disease – Prostate Cancer. Our results show that more overlap is captured as more
functional data is incorporated as we go through the pipeline, starting from SNPs and ending at network overlap
analyses. We hypothesize that these observed differences in the functional mechanisms of T2D across populations can
also explain the common use of different prescription drugs in different populations. We show that this hypothesis is
concordant with the literature on the functional mechanisms of prescription drugs.

Conclusion: Our results show that although the etiology of a complex disease can be associated with distinct processes
that are affected in different populations, network-based annotations can capture more functional overlap across
populations. These results support the notion that it can be useful to take ethnicity into account in making personalized
treatment decisions for complex diseases.

Keywords: Cross-population analysis, Overlap analysis, Type II diabetes, T2D single nucleotide polymorphism, Functional
annotation, Network analysis

Background
Genetic variations constitute an important part of the
factors that contribute to many complex diseases. To
identify genetic variations that are associated with spe-
cific complex diseases, Genome-wide and whole-genome
association studies have been widely performed in recent
years. These studies have identified many germline vari-
ants (in particular, single nucleotide polymorphisms or
SNPs) associated with complex diseases in many

different populations. Most of these identified variants
exhibit subtle disease associations, and these variants
usually have limited predictive power in risk assessment
[1].
While the effect of a single genetic variation, like a

SNP, could be small or large, the collective effect of
many variations, and their relationships, provide valuable
information into the mechanisms of complex diseases.
To this end, there is an eminent need for studying the
collective effect of many SNPs and their interrelation-
ships as we try to characterize the functional under-
pinnings of the relationship between genotype and
phenotype. One useful source of information in this
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regard is the disease associations identified by GWAS on
different populations.
Since many genomic variants can be population-spe-

cific and their distribution can follow geographical pat-
terns, GWAS on different populations offer different [2]
and potentially complementary disease associations,
which may enrich our understanding of disease mecha-
nisms. Furthermore, rare variants, which are often
thought to be the causal variants for many complex
diseases, are usually population-specific [1]. Therefore,
elucidation of the functional relationship between rare
variants identified in different populations can be useful
for the design of personalized treatment strategies in
precision medicine. In the future, the comprehensive
knowledge we collect from the use of multiple popu-
lations in whole-genome association studies can be
utilized by healthcare systems in smoothing out and
gradually eliminating health disparities [3, 4].
Systems biology uses computational and mathematical

approaches to model the complex interactions among
genetic variations as related to a phenotype. Such a
holistic approach of characterizing and integrating the
widespread genetic variations and the interplay between
them yields a more intuitive understanding of complex
diseases. Type II Diabetes (T2D) is one of the complex
diseases, where most disease-associated variants identi-
fied by GWAS are different across different populations.
Since variants identified on different populations can be
linked to T2D through similar functional mechanisms,
trying to annotate the significant SNPs from each popu-
lation separately will not fully utilize the information
obtained from different populations. Furthermore, since
there are distinct underlying disease processes and treat-
ment regimens for T2D, analyzing the functional overlap
between variants identified on different populations can
shed light into the differences between different popu-
lations in terms of disease mechanisms.
In this paper, we propose a computational pipeline to

systematically assess the functional overlap between
genomic markers of complex diseases that are identified
on different populations. For this purpose, we use T2D
as a suitable model disease, and we compile results from
GWAS that have been performed on 9 different popu-
lations across the globe. These results mainly represent
genomic loci that are found to be associated with T2D
on samples collected from these nine populations. Inter-
estingly, there is little overlap between disease associated
loci identified on different populations.
To systematically assess the functional overlap between

these different sets of SNPs, we develop computational
algorithms and statistical frameworks, expecting that the
variants identified in certain populations correspond to
similar biological processes. For this purpose, we de-
velop a multi-layered framework, where genomic loci,

protein-coding genes, biological pathways in which
these proteins are active, and networks of physical
and functional interactions between these proteins are
systematically evaluated for potential overlap. Figure 1
illustrates the framework. Our results show that the
overlap between different populations grow as the
level of abstraction coarsens from genomic location to
biological function. More interestingly, our results
also show that differences in the biological processes
that are implicated in different populations align with the
targets of T2D first-line therapy in each population.
To further assess the generalizability of our methods,

we repeat the same pipeline of analyses on datasets for
another complex disease, prostate cancer as a second
test case. Our results on prostate cancer also show that
more functional overlap can be detected among popu-
lations as the level of abstraction coarsens.

Results
Populations and datasets for type II diabetes
We use nine T2D Genome Wide Association datasets
representing nine populations of Asian and European
ethnic origins. The basic statistics of these studies and
their results are shown in Table 1. The first two datasets
are case-control studies for which the genotypes for all
samples and genotyped loci are available. The other
seven datasets are published results of case-control
studies. These datasets consist of the list of significant
loci that are identified by the study and the associated
statistical significance figures.
The nine datasets are the following:

1. Wellcome Trust Case Control Consortium –
WTCCC (W) T2D SNP data which has genotyped
495,477 SNPs genotyped for 1999 case and 1504
control samples obtained from the UK population
[5]. The control samples represent individuals who
were born in 1958.

2. The database of Genotypes and Phenotypes –
dbGAP (D) which has genotyped 561,656 SNPs for
1007 case and 983 control samples obtained from
other parts of Europe and US [6].

3. A Finnish (F) population case-control study which
genotyped 329,091 SNPs for 1161 case and 1174
control samples collected in Finland [7, 8].

4. A French (Fr) population case-control study which
has genotyped 392,365 SNPs for 679 case and 697
control samples collected in France [9].

5. Saudi (S) population studies that pooled 48 Saudi
T2D SNPs implicated in previous experiments for a
total of 2207 case samples and 2276 control
samples collected in Saudi Arabia [10–12].

6. A Korean (K) population case-control study
which has genotyped 2,188,613 SNPs for 462
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Fig. 1 Workflow of multi-level functional overlap analysis for disease-associated genomic variants identified in different populations. The
computational pipeline takes as input a set of genomic loci that are found to be significantly associated with a disease of interest in each of the
populations that are considered. It then maps these loci to functional elements with coarser granularity, first considering linkage disequilibrium,
then mapping loci to protein-coding genes, subsequently mapping these genes to biological pathways, and finally identifying functionally
associated subsets of these genes via network analysis. At each level, the resulting functional elements that are found to be associated with the
disease are compared across populations, to systematically characterize the overlap between different populations

Table 1 Descriptive statistics of the T2D studies, datasets, and results used in this study. The letter code shows the population from
which the samples were obtained, Significant tagSNPs shows the number of tagSNPs that were found to be significantly associated
with T2D at the significance threshold applied by the corresponding study (also shown in the table). Significant tagSNPs+LD shows
the total number of these significant SNPs and the number of SNPs that are in linkage disequilibrium with these SNPs, but were not
screened by the corresponding study

Populations # Cases # Controls # Screened SNPs # Significant tagSNPs Significance Threshold (P-value) # Significant tagSNPs + LD

British (W) 1,999 1,504 495,477 482 < 1e −5 1,831

American +
European (D)

1,007 983 561,656 350 < 1e −8 1,686

Finnish (F) 1,161 1,174 317,503 157 < 5 x1e − 7 898

French (Fr) 679 697 392,365 4 < 7 × 1e −4 71

Saudi (S) 2,207 2,276 48 41 < 0.05 297

Korean (K) 462 456 2,188,613 395 < 1e −5 1,859

Japanese (J) 23,399 31,722 7,521,072 211 < 1e −8 668

Chinese (C) 684 955 2,900,000 33 < 2.6 x 1e−8 361

Lebanese (L) 1,902 1,384 5,891,794 23 < 1e −5 61
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case samples and 456 control samples collected
in South Korea [13, 14].

7. A Japanese (J) population case-control study which
has genotyped 7,521,072 SNPs for 23,399 case and
31,722 control samples collected in Japan [15, 16].

8. A Chinese (C) population case-control study which
has genotyped 2,900,000 SNPs for 684 case and 955
control samples collected in China [17, 18].

9. A Lebanese (L) population case-control study which
has genotyped 5,891,794 SNPs for 1902 case and
1384 control samples collected in Lebanon [19].

Functional overlap among genomic variants found to be
associated with T2D in different populations
In this section, we present the overlap between T2D-as-
sociated SNPs at five different functional levels. For each
functional level, we compute (i) an overlap matrix and
(ii) a cumulative overlap function. Each overlap matrix is
a k × k matrix that represents the pairwise overlap be-
tween the disease-associated loci in pairs of popula-
tions based on a certain notion of functional overlap,
where k is the number of populations. Each cumula-
tive overlap function is a function in the form f:{1, …,
k}→ [0,1], assessing the fraction of biological entities
(individual loci, loci in LD, genes, functions, subnet-
works) that are found to be associated with the dis-
ease in at least a given number of the populations.
We hierarchically cluster the populations using each of

the five overlap matrices and visualize the overlap matri-
ces as heatmaps with hierarchical clustering. To assess the
statistical significance of the overlap functions, we report
the results of permutation tests obtained through 1000
permutations (the procedure we use for the permutation
tests is described in Methods). We compare the overlap
function computed on the original dataset against the
distribution of overlap functions computed using permu-
tation tests, representing one thousand simulated runs.
The SNP overlap matrix and the SNP overlap function

for T2D-associated SNPs in the nine populations are
shown in Fig. 2(a) and Fig. 3(a), respectively. As seen in
the figures, the overlap between any pair of populations
is considerably low, but there is some overlap between
pairs of populations (Chinese and Saudi Arabian, French
and Lebanese, Finnish and Korean, Lebanese and
Japanese). Although the pairwise overlap between
T2D-associated SNPs is considerably low, the permu-
tation test for the overlap function for k = 2 (two popu-
lations) suggests that the pairwise overlap is statistically
significant (z-score = 23.8, p < 3.82E-125). In other
words, a SNP that is found to be associated with T2D in
one population is likely to be found to be associated
with T2D in at least one other population. However, for
values of k larger than 2, the overlap between T2D-asso-
ciated SNPs is not statistically significant, i.e. the

T2D-associated SNPs do not tend to be shared across 3
or more populations.
The linkage disequilibrium (LD) SNP overlap matrix

and the LD-SNP overlap function for T2D-associated
SNPs in the nine populations are shown in Fig. 2(b) and
Fig. 3(b), respectively. When we take linkage disequili-
brium into account (thereby considering loci with corre-
lated genotypes as overlapping), we observe considerably
larger overlap between pairs of populations in the cor-
responding heatmap. In particular, the Lebanese and
French populations cluster together with very high over-
lap. Another cluster is formed by the Chinese, Japanese,
Finnish, and Saudi Arabian populations. This cluster also
exhibits considerable overlap with the French-Lebanese
cluster. The permutation test for the LD-SNP over-
lap function suggests statistically significant overlap
(p < 4.27E-17) for up to 7 populations – thus we can
conclude that, at such genomic level, there is some
overlap between the T2D-associated loci among most
of the populations that are considered.
The gene overlap matrix and the gene overlap function

for T2D-associated genes in the nine populations are
shown in Fig. 2(c), Fig. 3(c), respectively. Here, a gene is
considered T2D-associated in a population if at least
one SNP in the genes’ region of interest (ROI) is found
to be significantly associated with T2D in that popu-
lation. As seen in the heatmap, when genes are consi-
dered, more overlap is detected between pairs of
populations, as compared to LD Analysis, e.g., there is
solid pairwise overlap between populations like the
Lebanese and French as well as the Chinese and Saudi
Arabian. However, when more than two populations are
considered, less overlap is detected in genes than in
LD-SNPs – and no gene that is common to 6 popula-
tions is identified. This is shown by the distribution of
the values of the overlap function for the permutation
test, but the gene overlap is statistically significant for
k = 2,3,4,5 populations (p < 1.1E-245).
The functional overlap matrix and the functional over-

lap function for T2D-associated functions in the 9 popu-
lations are shown in Fig. 2(d) and Fig. 3(d), respectively.
As seen in the heatmap, there are no functions that are
enriched in SNPs found to be associated with T2D in
the French and Lebanese populations, so the two popu-
lations are eliminated from further analysis. There is an
improved statistically significant pairwise overlap
(z-score = 433.8, which corresponds to a very small
p-value), between the Finnish and Korean populations,
however the extent of overlap decreases to less than five
populations as shown by the distribution of the values of
the overlap function for the permutation test. In other
words, a function that is found to be associated with
T2D in one population is likely to be found to be associ-
ated with T2D in another three populations. However,
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for values of k larger than 4, the overlap between
T2D-associated functions is not statistically significant
i.e. the T2D-associated functions do not tend to be
shared across 5 or more populations.
The network overlap matrix for T2D-associated sub-

networks and the network overlap function for the seven
populations (excluding Fr and L) are shown in Fig. 2(e)
and Fig. 3(e), respectively. As seen in the heatmap, the
amount and extent of overlap between populations is
considerably higher than all previous overlap analyses.
There is very high overlap between the Saudi and Chin-
ese populations, populations of European ethnic origin
represented by UK, US and other parts of Europe, and

between the Finish and Korean populations. Moreover,
there is highly statistically significant overlap (z-score >
1294, which corresponds to a very small p-value) be-
tween up to 6 populations. This is suggested by the dis-
tribution of the values of the overlap function for the
permutation test. In other words, a subnetwork that is
found to be associated with T2D in one population is
likely to be found associated with T2D in almost all of
the populations that are considered.
In order to visualize the functional overlap across the

populations from a different perspective, we input the
entire set of loci from all populations to the Prix-Fixe
network analysis tool [20]. This tool outputs the most

Fig. 2 Overlap matrices at five functional levels for the genomic variants that are found to be associated with Type II Diabetes in 9 different
populations. The plots from (a) to (e) show the overlap matrices for SNP, LD SNP, gene, functional and network overlap matrices respectively,
depicted as heatmaps. Each heatmap has hierarchical clustering of the 9 populations (D = dbGAP, W=WTCCC, J = Japanese, F=Finish, K=Korean,
Fr = French, L = Lebanese, C=Chinese, S=Saudi). The color intensity from white to brick, shows the degree of overlap, with brick being the highest
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significant functionally coherent subnetwork across all
seven populations. Subsequently, we plot the resulting
protein-protein interaction (PPI) network, color coded
for different populations. The T2D PPI network across
seven populations is shown in Fig. 4. As shown in the
figure, the resulting most functionally coherent sub-
network has some strong inter-population interactions
between T2D-associated proteins and the strength of
interaction, represented by the width of the edges, sug-
gests a strong overlap between the Asian populations;
specifically Chinese, Saudi, Korean, Japanese and Finnish
populations and some overlap between the Finnish and
British as well as between the American and other

European and the Korean populations. This conforms to
the previous results from network analysis.

Correspondence between genes identified in different
populations and T2D subtypes
According to Cantley J and Ashcroft [21], there are two
main molecular mechanisms that underlie the etiology
of T2D; insulin secretion deficiency and insulin resis-
tance. Prasad and Groop [22] classify T2D associated
genes according to their roles in these two subtypes. To
investigate the correspondence between the genes that
are found to be associated with T2D in each population
and their association with these subtypes, we refined our

Fig. 3 Cumulative overlap functions at five functional levels for the genomic variants that are found to be associated with Type II Diabetes in 9
different populations The plots from (a) to (e) show the SNP, LD SNP, gene, functional and network cumulative overlap functions respectively.
Each plot also provides a comparison to the corresponding cumulative overlap function computed over 1000 random permutations
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analysis to the gene-based and network-based levels.
The results of the analysis is shown in Fig. 5. In the
figure, the number of genes that are found to be asso-
ciated with T2D (based on the mapping of the variants
identified in each population to the genes’ regions of
interest) is stratified according to T2D subtypes. Since
analysis at the network level provides system-level in-
formation, we also repeat this analysis at the network level
and we observe increased overlap with network-based
analysis. At the network level, we consider a gene to be
identified in a population if the most significant sub-
network identified in that population contains the gene.
Therefore, a gene that does not have a significant variant
in a population can be found to be associated with T2D in
that population, if it is functionally associated with other
genes that harbor significant loci. Similarly, a gene that

harbors a significant locus in a population may not be
considered as associated with T2D at the network level, if
its network neighborhood is not enriched in genes that
are significant in that population.
As seen in Fig. 5, the genes identified in Asian

populations are mostly associated with insulin secre-
tion deficiency at both levels of genomic granularities,
as opposed to European and American populations,
in which insulin resistance seems to be the prevailing
predisposing genetic factor for T2D, at both individ-
ual gene and network levels. For example, the US,
UK, and other European populations have no insulin
secretion-implicated genes at the genetic-level of the
analysis, while the Finnish population shows an equal
share of both at the genetic-level. However, at the
network-level, all European populations including the
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Finnish population, are dominated by insulin
resistance-implicated genes, while having some share
of insulin secretion deficiency-related genes inter-
acting with them. On the other hand, the Asian
populations have more insulin secretion deficiency-
implicated genes at the level of individual genes, ex-
cept for the Korean population, which shows an equal
share of insulin secretion deficiency and insulin
resistance-implicated genes. At the network level, all
Asian populations show more insulin secretion defi-
ciency as opposed to insulin resistance, including the
Korean population. Interestingly, none of the insulin

resistance associated genes are identified to be asso-
ciated with T2D in the Japanese population, according
to the network level analysis.

Application to prostate Cancer
In this section, we present the results obtained by apply-
ing the proposed framework to prostate cancer data. We
use published results of Prostate Cancer Genome Wide
Association Studies for seven populations representing
seven ethnic origins. The basic statistics of these studies
and their results are shown in Table 2. The seven
datasets are the following:

Fig. 5 The correspondence between genes identified as associated with Type II Diabetes in different populations and their role in T2D subtypes.
The top panel shows the distribution of the genes that are found to be associated with T2D in each population with respect to their association
with two common T2D subtypes. For each population, among the genes that are found to be associated with T2D in that population, yellow
bars represent the number of genes that are associated with Insulin Secretion Deficiency, red bars represent the number of genes associated
with Insulin Resistance subtype and the orange bars represent the number of genes that are associated with both subtypes. The bottom panel
shows the corresponding distribution for network-based overlap, where a gene is considered to be identified in a population if it is in the most
significant subnetwork identified by network analysis on that population. The color codes used in the right panel are identical to that in the left
panel. The rightmost bar shows the number of all other T2D genes that were identified in at least one population, color-coded for
the population
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1. A European population represented by pooled
results of European Prostate Cancer GWAS for
more than 10.5 million genotyped SNPs and for a
total of 90,843 case samples and 72,487 control
samples of European ethnic origin [23–27].

2. A Hispanic population represented by the study of 49
haplotyped-tagged SNPs genotyped from 196 case and
472 control samples of Hispanic ethnic origin [28].

3. A Japanese population represented by the results of
case-control studies which pooled a total of > 6,779,114
genotyped SNPs for a total of 6167 case and 12,187
control samples of Japanese ethnic origin [29, 30].

4. A Chinese population represented by the results of
case-control studies which pooled a total of 942,613
genotyped SNPs for a total of 1912 case and 1648
control samples of Chinese ethnic origin [31–34].

5. A Korean population study that genotyped 60,276
SNPs from 1515 case and 3189 control samples of
Korean ethnic origin [35].

6. An African American population study that genotyped
199 SNPs from 5869 case and 5615 control samples of
African American ethnic origin [36].

7. A Tunisian population study that genotyped
534,781 SNPs from 90 case and 131 control
samples of Tunisian men [37].

We report the results of the five cumulative overlap
functions assessing the fraction of biological entities (in-
dividual loci, loci in LD, genes, functions, subnetworks)
that are found to be associated with prostate cancer in
at least a given number of the populations. We compare
the overlap function computed on the original dataset
against the distribution of overlap functions computed
using permutation tests, representing one thousand sim-
ulated runs (the procedure we use for the permutation
tests is described in Methods). The results in Fig. 6(a-e)
show that more significant overlap between populations
is realized as the level of abstraction coarsens, from gen-
omic location to biological function.

The permutation test for the overlap function for k = 2
(two populations) suggests that the pairwise overlap is
statistically significant (Fig. 6(a), z-score = 43.151). In
other words, a SNP that is found to be associated with
prostate cancer in one population is likely be associated
with prostate cancer in at least one other population.
However, for values of k larger than 2, the overlap
between prostate cancer associated SNPs is not statis-
tically significant, i.e. the prostate cancer associated
SNPs do not tend to be shared across 3 or more pop-
ulations. In Fig. 6(b) the permutation test for the
LD-SNP overlap function suggests statistically signifi-
cant overlap for up to 3 populations (z-score =
281.63). In Fig. 6(c) the distribution of the values of the
gene overlap function for the permutation test, suggests
that the overlap is statistically significant for up to 3 popu-
lations (z-score = 489.521). In Fig. 6(d) the distribution of
the values of the functional overlap function for the
permutation test suggests that the overlap is statistically
significant for up to 4 populations (z-score = 489.031) and
in Fig. 6(e) the distribution of the values of the network
overlap function for the permutation test, suggests that
the overlap is statistically significant for up to 5 popu-
lations (z-score = 361.762).

Discussion
According to literature [38, 39], most T2D treatment regi-
mens are based on one of two groups of medications. The
first of these two groups is Sulfonylureas; used to improve
insulin secretion, by targeting the ABBC8 and KCNJ11
genes and the other is Metformin, which is used to im-
prove insulin sensitivity and targets the PRKAB1 [40–43].
The drug targets for Sulfonylureas are implicated in the
Asian populations of this study, as well as the Finnish
population. The drug target for Metformin and the genes
that interact with it (PRKAG2 and PRKAG1) are im-
plicated in the European, American and the Korean
populations.

Table 2 Descriptive Statistics for the genomic variants associated with Prostate Cancer. Significant tagSNPs shows the number of
tagSNPs that were found to be significantly associated with Prostate Cancer at the significance threshold applied by the
corresponding study (also shown in the table). Significant tagSNPs+LD shows the total number of these significant SNPs and the
number of SNPs that are in linkage disequilibrium with these SNPs, but were not screened by the corresponding study

Populations # Cases # Controls # Screened SNPs # Significant tagSNPs Significance Threshold
(P-value)

# Significant tagSNPs+LD

European 90,843 72,487 > 10.5 M 161 < 10–8 9047

Hispanic 196 472 49 12 < 10–4 487

Japanese 6167 12,187 6,779,114 32 < 10–7 2487

Chinese 1912 1648 942,613 25 < 0.05 2178

Korean 1515 3189 60,276 10 < 10–7 644

African American 5869 5615 199 27 < 10–2 765

Tunisian 90 131 534,781 14 < 10–4 350
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In Fig. 7, we show the interrelationship between T2D
subtypes, genes identified in each population in this
study, first line T2D treatments in these populations, the
drug targets of these first line treatments, and their im-
plications in T2D subtypes. It is interesting that the first
line treatment for T2D in each of the populations in this
study conform to the population’s unique T2D mecha-
nisms. For example, literature confirms that decreased
insulin secretion capacity takes a bigger role in the de-
velopment of T2D in the Japanese population than insu-
lin resistance. Furthermore, Sulfonylureas have been the
most prescribed class of drugs, and has been the first
line treatment in Japan until recently when it started to
be supplemented with glucose lowering medications as

well [44–46]. In China, the majority of oral anti-diabetic
drugs belong to the Sulfonylureas class. This is the old-
est of the anti-diabetic drug classes and the majority of
hypoglycemic medicines on China’s 2012 EDL are within
this category in spite of the availability of new classes
[47–51]. Sulfonylureas has consistently been the first line
treatment for T2D in Korea, with no competition until
2010, when Metformin started getting popular in the
Korean market and its consumption and sales increased
by 2013 [52].
In contrast to the Asian populations, we found that

the genes identified in the Finnish, European, and
American populations are mostly related to insulin
resistance. The Saudi population is also characterized, as

Fig. 6 Cumulative overlap functions at five functional levels for the genomic variants that are found to be associated with Prostate Cancer in 7
different populations. The five cumulative overlap functions for prostate cancer, with increasingly statistically significant overlap as we go down
the pipeline of analyses from SNP to Network Overlap analysis
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well as many Arab countries, by Adipocyte dysfunction
which associates obesity to insulin resistance and dia-
betes [53]. Research shows that Metformin is the first
line treatment for T2D in USA, UK, Finland and Saudi
Arabia [54–57]. In fact Metformin has been on the list
of the top ten prescription drugs in the USA for years,
ranking four in 2018 and 2019 [58] and on the list of
top 100 most prescribed drugs in the UK [59] and ranks
fifth on the list of most prescribed drugs in Saudi Arabia
from 2010 to 2015 [60].
In 2017, Metformin had the highest average antidiabetic

drug prescriptions per physician in Finland which also falls
under the top 10 most commonly prescribed medicine
categories [61]. The Finnish Medicine Agency – Fimea [62]
estimates what proportion of the population theoretically

receives Metformin; in terms of drug daily dose per 1000
inhabitants per day. The Fimea 2017 report shows
that Metformin consumption is highest among all
antidiabetic drugs between 2014 and 2017 (31.65,
31.65,30.95 and 31.61 respectively with an increasing
gap with Sulfonylureas; the latter shows a decreasing
daily consumption of 3.94, 3.15, 2.38 and 1.76 for the
same 4 years respectively). Metformin has also been asso-
ciated with a good change in the gut microbiota, which
improves insulin sensitivity [63].
T2D has a heterogeneous and multifactorial etiology,

with many associated factors including gut microbiome,
and possibly genetic subtypes that are yet to be un-
covered. Although T2D treatments work at different
degrees of efficiency from one person to another, the

Fig. 7 Interrelationship between subtypes, populations, first line treatments and drug targets for Type II Diabetes. The figure shows the triangular
interrelationships between T2D subtypes, genes identified in each population in this study, first line T2D treatments in these populations, the
drug targets of these first line treatments, and their implications in T2D subtypes. For example, in the US, insulin resistance is the most common
T2D subtype and Metformin is the first-line T2D treatment. The drug target of Metformin is PRKAB1 which is implicated in insulin resistance and
is harbored by the US population in this study
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above analysis confirms previous research [64, 65] indicat-
ing that, of the currently known T2D subtypes, certain
subtypes seem to be most common in certain ethnicities,
and that Asian populations are more characterized by
decrease in insulin secretion capacity as opposed to
American, European, and other Caucasian populations
which have insulin resistance as the most common reason
for T2D [66, 67]. Also, the network-based T2D subtype
analysis (Fig. 5) shows more overlap between the two sub-
types of T2D than the gene-based analysis, which supports
our results and previous findings [68].
The experimental results we obtained using prostate

cancer data show consistency to T2D results in the sense
that more statistically significant overlap is realized as we
go through the pipeline from SNP to network overlap
analysis, which supports our hypothesis and demonstrates
the generalizability of the methods.

Conclusions
In this work, we developed computational algorithms
and statistical frameworks to assess the functional
overlap between disease-associated variants in diffe-
rent populations, expecting that the variants identified in
certain populations correspond to similar biological pro-
cesses. For this purpose, we developed a multi-layered
framework, where genomic loci, protein-coding genes,
biological pathways in which these proteins are active,
and networks of physical and functional interactions
between these proteins are systematically evaluated
for potential overlap.
Our results, show that the overlap between different

populations grow as the level of abstraction coarsens from
genomic location to biological function. More interes-
tingly, we were able to show that differences in the
biological processes that are implicated in different
populations align with the targets of first-line treatments of
T2D in each population. We were also able to assess the
generalizability of our method by testing its applicability to
another complex disease. To this end, our results represent
an innovative and potentially significant tool for prevent-
ing, curing, and treating disease, in that population-specific
functional annotation of disease-associated genes can
be used to design personalized treatment strategies in
precision medicine.
It is important to note that the results presented here

do not conclusively show a causal link between the
genomic markers identified via GWAS and the first-line
T2D treatments in these populations. Establishment of
such a link would require further quantitative analysis to
understand whether specific types of diabetes II are over
represented in specific populations, and whether the
medicine that was prescribed for each patient was
appropriate. Furthermore, the prevalence of a specific
kind of medicine in a country may not be related to the

etiology of disease, but can rather be due to historical or
political reasons. Further research is required to answer
these questions.

Methods
Overlap matrices and cumulative overlap functions
The objective of this study is to characterize the
functional overlap between loci that are identified to
be significantly associated with a complex disease
based on samples from different populations. To
address this problem, we assume that we are given a col-
lection L = {L1, L2, …, Lk} of sets of genomic loci identified
to be associated with the disease across k populations (in
this study, we have k = 9), such that the set Li contains the
loci that are found to be significant based on the samples
obtained in the ith population. Based on this information,
we compute five overlap matrices and five cumulative
overlap functions. Each overlap matrix is a k × k matrix
that represents the pairwise overlap between the disease-
associated loci in pairs of populations based on a certain
notion of functional overlap. Each cumulative overlap
function is a function in the form f:{1, …, k}→ [0,1],
assessing the fraction of biological entities (individual
loci, loci in LD, genes, functions, subnetworks) that
are found to be associated with the disease in at least
a given number of the populations.
We compute the following overlap matrices:

1. SNP Overlap Matrix [Σij]kxk assesses the overlap
between the loci that are found to be associated
with the disease in populations i and j, where k is
the number of populations.

2. LD SNP Overlap Matrix [Λij]kxk assesses the overlap
between the loci that are found to be associated
with the disease in populations i and j, such that
two loci are considered to be overlapping if they are
in linkage disequilibrium.

3. Gene Overlap Matrix [Γij]kxk assesses the overlap
between genes that harbor loci that are found to be
associated with the disease in populations i and j.

4. Functional Overlap Matrix [Φij]kxk assesses the
overlap between the biological processes that are
enriched in genes harboring loci that are found to
be associated with the disease in populations i and j.

5. Network Overlap Matrix [Νij]kxk assesses the
overlap between the subnetworks of protein-protein
interaction networks that are enriched in genes
harboring loci that are found to be associated with
the disease in populations i and j.

In the following discussion, we explain how we compute
each of these overlap matrices. The notation used in this
section is provided in Table 3.
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SNP overlap matrix
We define the SNP Overlap Ratio Σij between two popula-
tions i and j as the Jaccard coefficient of the overlapping
SNPs between the populations, i.e., the fraction of com-
mon significant tagSNPs in the two populations among
the number of significant tagSNPs in the two populations:

Σij ¼j Si∩ S j j = j Si ∪S j j

Where Si and Sj denote the sets of tagSNPs that are
found to be significantly associated with the disxeases in
populations i and j, respectively.
In order to quantify the overall overlap between the k

populations, we define the cumulative SNP overlap func-
tion σ(l) for 1 ≤ l ≤ k as follows:

σ lð Þ ¼j Sl j = j S j
Where Sl denotes the set of tagSNPs that are found to

be significantly associated with the disease in at least l
populations. Observe that 0 ≤ σ(l) ≤ 1, σ(1) = 1, and σ(l) is
a monotonically non-increasing function of l. All cumu-
lative overlap functions we define below also exhibit
these properties.
Since several probes map to the same SNP, while com-

puting the sets Si for 1 ≤ i ≤ k, we first remove duplicate
SNP lists in every population. For the same reason, we
also compute the overlap ratio for a pair of populations
as the number of common tagSNP over the number of
all unique tagSNPs in the populations combined.

LD SNP overlap matrix
We define the linkage disequilibrium (LD) SNP over-
lap ratio Λij between two populations i and j as the
fraction of common significant tagSNPs in the two
populations that have significant LD partners in the
other population among the number of significant
tagSNPs in the two populations :

Where Lij denotes the set of tagSNPs that are found to
be significantly associated with the diseases in popu-
lation i and have significant LD partners in the other
population j, and Lji denotes the set of tagSNPs that are
found to be significantly associated with the diseases in
population j and have significant LD partners in the
other population i.
In order to quantify the overall overlap between the k

populations, while using LD to expand the definition of
tagSNPs, we define the cumulative LD SNP overlap
function λ(l) for 1 ≤ l ≤ k as follows:

λð1Þ¼ j Ll j = j S j

Where Ll denotes the set of tagSNPs that have LD
partners found to be significantly associated with the
disease in at least l populations.
To find SNPs that are in linkage disequilibrium (LD),

we input each population’s tagSNPs into SNPsnap [69]
for LD search using HapMap3 release 2 [70] dataset. For
this purpose, we use the European panel (CEU) for the
European and American populations (W and D), European
and Toscani in Italia (TSI) for the French and Lebanese
populations, and the Japanese and Chinese panels
(JPT + CHP) for Finland and the Asian populations.
We consider two SNPs to be in LD if they have an r2

of at least 0.5 and they are within 500Kbs of each
other on the genome.

Gene overlap matrix
We define the Gene Overlap Ratio Γ ij between two popu-
lations i and j as the fraction of common genes that har-
bor significant tagSNPs (in a region of interest of 100 kb

Table 3 Notation Used in this Paper

S Set of tagSNPs

Si(j) Set of tagSNPs in population i(j)

Lij Set of tagSNPs in population i that have significant LD partners in population j

Lji Set of tagSNPs in population j that have significant LD partners in population i

Gi(j) Set of genes in population i(j)

Fi(j) Set of functions in population i(j)

Νi(j) Set of genes constituting most significant subnetwork in population i(j)

Sk Set of tagSNPs that are significant in at least K populations

Lk Set of tagSNPs that have significant LD partners in at least K populations

Gk Set of genes that are associated with at least K populations

Fk Set of functions that are associated with at least K populations

Nk Set of genes, constituting the most significant networks, that are associated with at least K populations

Λij ¼j Lij∪Lji j = j Si∪S j j

Elmansy and Koyutürk BMC Bioinformatics 2019, 20(Suppl 12):320 Page 13 of 17



upstream and 10 kb downstream) in the two populations
among the number of genes in the two populations, i.e.:

Γ ij ¼j Gi∩Gj j = j Gi∪Gj j

Where Gi and Gj denote the sets of genes that harbor
significant tagSNPs that are found to be significantly
associated with the diseases in populations i and j,
respectively.
In order to quantify the overall overlap between the k

populations, we define the cumulative gene overlap func-
tion γ(l) for 1 ≤ l ≤ k as follows:

γ lð Þ ¼j Gl j = j G j

Where Gl denotes the set of genes that harbor signifi-
cant tagSNPs that are found to be significantly associ-
ated with the disease in at least l populations.
In order to map SNPs to Genes, all Refseq transcripts

[71] for hg38 assembly are downloaded from UCSC Table
browser and extended 100 kb upstream and 10 kb down-
stream. Refseq IDs are translated to HGNC symbols. SNPs
are mapped to their positions on hg38 assembly through
biomaRt [72] and are intersected with gene coordinates.
Such intersections result in gene lists matching each
population.

Functional overlap matrix
We define the Functional Overlap Ratio Φij between two
populations i and j as the fraction of common biological
processes that are enriched in genes harboring significant
tagSNPs (+ 100 kb/− 10 kb) in populations i and j among
the number of biological processes that are enriched in
genes harboring significant tagSNPs (+ 100 kb/− 10 kb) in
the two populations, i.e.:

Φij ¼j F i∩F j j = j F i∪F j j

Where Fi and Fj denote the sets of significant bio-
logical processes in populations i and j, respectively.
In order to quantify the overall overlap between the k

populations, we define the cumulative functional overlap
function ϕ(l) for 1 ≤ l ≤ k as follows:

ϕ lð Þ ¼j Fl j = j F j

Where Fl denotes the set of biological processes that
are found to be significantly associated with the disease
in at least l populations.
To identify biological processes that are enriched in

T2D-associated SNPs for each population, we use
enrichment analysis of gene sets using the WebGestalt R
package [73, 74]. Biological Process terms are used and
False Discovery Rate (FDR) threshold is set to 5%.

Network overlap matrix
For each population, we feed the loci that are found to
be associated with the disease to the Prix-Fixe [20] net-
work analysis tool. The Prix-Fixe tool uses a network
based disease-associated subnetwork identification algo-
rithm that uses genome-scale shared function networks
to identify the most functionally coherent subnetwork of
genes spanning the disease associated loci. Using shared
function networks as a reference, the algorithm evaluates
gene combinations, constraining the choice to one gene
from each disease associated locus, for their shared func-
tion, hence similar to choosing compatible food items
from a prix fixe restaurant menu, with one dish from
each course. The algorithm outputs a list of genes, with
their disease association scores, such that the top scored
genes constitute the most coherent disease associated
subnetwork in each population.
We define the Network Overlap Ratio Νij between two

populations i and j as the fraction of common genes
constituting subnetworks of protein-protein interaction
networks that are enriched in genes harboring loci that
are found to be associated with the disease in popula-
tions i and j, among all genes in populations i and j, i.e.:

Ν ij¼ j Ni∩N j j = j Ni∪N j j

Where Ni and Nj denote the sets of genes constituting
the most significant subnetworks in populations i and j
respectively.
In order to quantify the overall overlap between the k

populations, we define the cumulative network overlap
function ν (l) for 1 ≤ l ≤ k as follows:

ν lð Þ ¼j Nl j = j N j
Where Nl denotes the set of genes constituting the

subnetworks that are found to be most significantly as-
sociated with the disease in at least l populations.

Permutation tests
To test the statistical significance of our results, we create
a thousand simulated data sets at each level of genomic
granularity (SNPs, LD SNPs, Genes, Functions, Networks)
with a simulated set size for each population matching
that of the original data set. A thousand permutations are
done and in each permutation, permuted overlap func-
tions are calculated as described above. This results in
1000 overlap function vectors for k = 1 to 9 corresponding
to each permuted data set. For each k, in each permuted
set, the minimum, maximum and mean values of the
overlap function across all permutations are calculated.
These calculations are then used to visualize distribution
of the overlap function in permuted datasets and assess
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the significance of the observed overlap based on this
distribution.

Permutation tests for SNP overlap
In order to perform the permutation tests for SNP over-
lap, we prepare a SNP pool. For each study, the genotyp-
ing array model is identified. Array annotation files are
downloaded from UCSC genome annotation database
[75]. Further, SNPs from WTCCC and dbGAP popula-
tions are extracted and pooled together with SNPs from
all arrays, this resulted in 2,028,276 unique SNPs. (Note:
Imputation data is not used, since these studies do not
provide the final imputation results after quality control).
All the populations together with their SNPs constitute a
SNP set, which is used as a pool for permutation tests.
SNP sets are then randomly sampled, with replacement
across populations, such that the size of each set matches
that of the observed SNP set for each population.

Permutation tests for LD-SNP overlap
The SNP sets generated in each iteration of permutation
tests for SNP overlap are provided to SNPsnap [69] tool
for LD SNP extraction using the parameters used for
the original data set.

Permutation tests for gene overlap
A gene pool is created from all human genes; all Refseq
transcripts [71] for hg38 assembly are downloaded from
UCSC Table browser and extended 100 kb upstream and
10 kb downstream and Refseq IDs are translated to
HGNC symbols. All HGNC symbols matching Refseq
IDs are combined and duplicates removed. The final
HGNC list served as the pool for random gene sampling.
In each of the thousand permutations, gene sets are ran-
domly sampled from the gene pool, with replacement
across populations, matching the size of the observed
gene set.

Permutation tests for functional overlap
Enrichment analysis is done for one thousand randomly
sampled gene sets. In each permutation enrichment
analysis is performed with the same parameters as the
actual enrichment analysis. At this point, two popu-
lations (L and Fr) were not enriched in any biological
processes, so the two populations were dropped from
the analysis and further analysis is done on k = 7 popu-
lations only.

Permutation tests for network overlap
The SNP sets generated in each of the permutation tests
for SNP overlap are provided to Prix-Fixe [20] network
analysis tool, which outputs the most coherent disease
associated subnetwork for each population. This results

in 1000 most coherent disease associated subnetworks
for each population.
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