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Abstract

In recent years, a large number of photovoltaic (PV) systems
have been added to the electrical grid as well as installed as
off-grid systems. The trend suggests the deployment of the
PV systems will continue to rise in the future. Thus, accurate
forecasting of PV performance measure is critical for the reli-
ability of PV systems. Due to complex non-linear variability
in power output of the PV systems, forecasting PV power is a
non-trivial task. The variability affects the stability and plan-
ning of a power system network, and accurate forecasting of
the performance of the PV system can reduce the uncertainty
caused during PV operation. In this work, we leverage spa-
tial and temporal coherence among the power plants for PV
power forecasting. Our approach is motivated by the obser-
vation that power plants in a region undergo similar environ-
mental exposure. Thus, one power plant’s performance can
help improve the forecast of other power plants’ power values
in the region. We utilize the relationship between PV plants
to build a spatiotemporal graph neural network (st-GNN) and
train machine learning models to forecast the PV power. The
computational experiments on large-scale data from a net-
work of 316 systems show that spatiotemporal forecasting of
PV power performs significantly better than a model that only
applies temporal convolution to isolated nodes. Furthermore,
the longer the future forecast time, the difference between
the spatiotemporal forecasting and the isolated network when
only temporal convolution is applied increases further.

Introduction
Due to the rapid increase in installation of commercial PV
power plants having 25 years or longer lifetimes, the oper-
ation and planning for their reliable performance is a cru-
cial challenge (Yang, French, and Bruckman 2019). Ensur-
ing reliable performance includes monitoring the slow loss
of electricity output and effectively planning based on the
PV power output. We can achieve the required reliability
when we accurately forecast power output.

To our knowledge, no work using st-GNNs is published
for forecasting PV power output. However, st-GNNs have
been used successfully in addressing other forecasting prob-
lems such as traffic forecasting (Guo et al. 2019; Yu, Yin,
and Zhu 2018; Diao et al. 2019). Researchers’ advantage
in using st-GNNs for forecasting traffic variables is that the
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traffic features at a particular intersection are correlated with
the nearby traffic intersections, thus resembling the spatial
and temporal coherence, which can help improve the predic-
tion of future values. Similarly, in PV power forecasting, the
PV power plants located in the same region will have sim-
ilar power output patterns due to commonalities in weather
and solar irradiance. Thus, a GNN model in which nodes of
the graph represents power plants and pair of nodes in the
same region is connected such that connected power plants
are useful in improving the power forecasting accuracy.

Related Work
A large number of research studies have been published on
forecasting PV power timeseries using various methods (Wu
et al. 2020; Sobri, Koohi-Kamali, and Rahim 2018; Das
et al. 2018). ARIMA, a conventional statistical method, is
typically used to solve these kinds of problems. To make
the statistical models reliable against non-stationary and
highly nonlinear timeseries, recent forecasting approaches
exploit neural network models (Cococcioni, D’Andrea, and
Lazzerini 2012; Nespoli et al. 2019). The multi-layer per-
ceptron artificial neural network (ANN) is more robust to
non-linearity and sharp dips or rises in values. Radial ba-
sis function used in a neural network approach modeled
the PV modules’ electrical characteristics (Bonanno et al.
2012). The recurrent neural network (RNN) is a technique
widely used in timeseries modeling, and it has been used
in PV power output correction with high accuracy (Yona
et al. 2013). Classification of timeseries into cloudy, rainy,
and clear sky is an another improvement to enhance the ac-
curacy of the learning model (Shi et al. 2012; Yang, Thatte,
and Xie 2015).

Another set of approaches relies on functions and equa-
tions from physical models, clarifying the association be-
tween measurement values and environmental factors (Das
et al. 2018). Numerical Weather Prediction (NWP) models
are another approach for forecasting PV power output (Lar-
son, Nonnenmacher, and Coimbra 2016). Some of the re-
search for forecasting power generation uses ensemble ap-
proaches of the methods mentioned above. The hybrid mod-
els try to maximize the benefits of different models and min-
imize their limitations (Wu, Chen, and Abdul Rahman 2014;
Gigoni et al. 2018). For example, hybrid models work bet-
ter when a specific period of the year may cause more error



depending on solar irradiance variability. Similarly, hybrid
models perform better when some geographical locations
have more fluctuating weather conditions leading to higher
variability in solar irradiance.

The major limitation of all the existing PV forecasting
models is that they only use the data from one system while
ignoring the information or the data recorded by the neigh-
boring PV plants. The spatiotemporal graph neural network
(st-GNN) based forecasting models have the potential to
leverage temporal and spatial coherence among PV sys-
tems for the forecasting models. In graph theory, a graph
is a structure in which individual pairs of objects or enti-
ties are related in some manner. A spatiotemporal graph is a
structure that constitutes a temporal sequence of individual
entities and interactions between them over a time period.
In recent years, Graph Neural Network (GNN) techniques
are starting to be widely used for use cases where signals
from the neighboring nodes can be used to predict a par-
ticular node’s values. GNN is a generalized form of a struc-
tured two-dimension Convolutional Neural Network (CNN),
which has successfully been used in the classification and re-
gression models where the input data is structured, such as
images (Krizhevsky, Sutskever, and Hinton 2012; Lawrence
et al. 1997; LeCun et al. 1989). CNN has been successfully
used to classify and quantify the degradation of PV cells ex-
posed to harsh exposure conditions using electroluminescent
images (Karimi et al. 2019, 2020). In the generalized form,
each pixel in CNN can be represented as a node in the GNN.
Several advances in GNN models have been proposed; some
of the widely used GNN models are (Niepert, Ahmed, and
Kutzkov 2016; Kipf and Welling 2017; Hamilton, Ying, and
Leskovec 2017).

Dataset
The dataset consists of power timeseries of 316 PV systems
represented by points on the map shown in Figure 1. The
dataset’s time interval is 5 minutes, and the length is two
years, amounting to 210,240 datapoints for each timeseries.
Some of the weather sensor data from the power plants are
of 15 minute time intervals, so they are imputed with a cubic
spline to increase data frequency to 5 minutes. There were
few systems with one minute time interval datasets, and we
sampled those to 5 minutes interval. The missing values of
less than one hour were imputed using a linear fit model,
and for gaps longer than 1 hour were imputed with month-
by-month PV power prediction method (Curran et al. 2019).
The dataset is partitioned into training, validation, and test-
ing set as 690, 20, and 20 days respectively.

Architecture of st-Graph Neural Network
In this section, we will first describe a method to build a
graph of otherwise isolated PV systems.

Graph is a prerequisite for the design of st-GNN model.
The design of the GNN architecture is guided by the train-
ing method by which model will learn. There are sev-
eral variants of GNN such as graph generative networks,
graph auto-encoders, graph recurrent neural networks, spa-
tial graph neural network, and spectral graph neural network.

(a)

(b)

(c)

Figure 1: The distribution of PV systems across the United
States and the graph model used in representing the rela-
tionships between PV systems. (a) All PV systems in our
dataset are shown by red circles on the map. (b, c) Graph
showing the proximity of PV systems in which edges are in-
cluded between PV systems that are proximate according to
a low/moderate proximity threshold (ε = 0, ε = 0.5) is ap-
plied.

The spectral graph neural network applies graph convolution
in spectral domain (Kipf and Welling 2017), and the st-GNN
model described below is inspired by it.

PV Network Representation

Building a graph of PV systems is equivalent to assigning
edges between the nodes. We use Gaussian kernel (Shuman
et al. 2013) and a threshold value to assign edges. The value
of the kernel function varies in between 0 and 1, and the
threshold cutoff (εc) will determine density or sparsity of
a graph. The aim is to find the optimal neighborhood of a
PV system or, in other words, find a value of εc such that
the GNN model gives the highest forecasting accuracy. For
a pair of PV systems “x” and ”y” represented by two nodes
on a graph, we calculate the distance between them. Let latx
and lonx represent latitude and longitude of node x respec-
tively. Then for nodes “x” and “y”, the distance between
them is calculated by the law of cosines for sphere (Goodwin
1905), also known as Haversine equation shown by Equation



1 and 2.

a = sin(latx)sin(laty)+

cos(latx)cost(laty)cos(lonx − lony)
(1)

d = R×cos−1(a) (2)
where R = 6371 is the radius of the earth. After the

distance is calculated between all pair of nodes, according
to Equation 3, nodes which are closer will have high Wi,j

value. For edge to exist between two nodes theWi,j between
them should be higher than ε. The reason for choosing dis-
tance as a metric for edge detection is that we know from
the literature the climate zone has one of the strongest effect
on PV power output(Bonkaney, Madougou, and Adamou
2017). The nodes in a neighborhood will have similar cli-
mate zone thus their power output also has similar pattern
and will be connected.

Wi,j =


exp
(
− dist(i,j)2

σ2

)
, i6=j and

exp
(
− dist(ialph,j)2

σ2

)
>= ε

0; otherwise

(3)

where, σ is normalizing constant and ε constants which con-
trols the sparsity of the graph. The threshold value of ε is
called threshold cutoff (εc). The value of ε varies between 0
and 1. Figure 1 (b) represents the graph for εc = 0 while Fig-
ure 1 (c) represents the graph for εc = 0.5 where the nodes
in a region are connected by edges. There are several factors
that affect the optimal value of εc such as dataset, number of
PV plants, and their locations .

st-Graph Neural Network Model
GNNs have been proposed to extend deep learning for graph
analysis (Wu et al. 2020; Hamilton, Ying, and Leskovec
2017). GNN takes an input feature representation F = (X,
A),where X is an n-dimensional feature matrix (each row
is a feature vector for each node in a graph), and A is the
graph’s adjacency matrix. The goal is to transform F into a
proper vector representation that minimizes a loss function L
specified by downstream tasks. The GNN model is made up
of convolution layers and temporal layers. The convolution
layers in the GNN adopts a neighborhood aggregation archi-
tecture to learn a discriminative vector representation h(v)
for each node v (called “node embedding”) across multiple
transformation layers. The new layer hi(v) takes a node em-
bedding hi−1(v) (h0(v) is X(v) from input feature matrix)
and updates its embedding hi(v) by aggregating the embed-
dings from its neighbors:

hi(v)← σ concat(hi−1(v), agg(hi−1(v′) : v′ ∈ N (v))).
(4)

In the spectral domain, the graph convolution of filter
kernel g with signal x is represented as (Kipf and Welling
2017):

g ? x = Ug U̇Tx (5)
where, UTx is a Fourier transform of x, U is a matrix of
eigenvectors of normalized graph Laplacian matrix L =

I −D− 1
2AD−

1
2 . Eigendecomposition of L = U∧UT , such

that ∧ is diagonal matrix of eigenvalues. Since calculating U

is expensive we chose k and θ so as get around U. Accord-
ing to (Hammond, Vandergheynst, and Gribonval 2011), an
approximation of Equation 5 can be written as Equation 6
by substituting a value of a filter:

g ? x ≈
K∑
k=0

θ′kTk(L̃)x (6)

where L̃ = 2
λmax

L− IN , θ′ ∈ RK is a coefficient of Tk(x)
(polynomial of order k), such that, Tk(x) = 2xTk−1(x) −
Tk−2(x), T0(x) = 1, and T1(x) = x. The above equation is
K localized or its value depend on nodes upto K hops away
from the center node.

The temporal convolution layers are 1-D convolution with
a one dimensional kernel filter followed by sigmoid gated
linear unit to provide non linearity. The sigmoid function
chooses the relevant elements from the input for captur-
ing complex structure and variances in the timeseries. The
graph neural network shown in Figure 2 is a series of graph
convolutional layers and temporal convolutional layers on
timeseries which gives a building block of learning frame-
work called spatiotemporal block (Yu, Yin, and Zhu 2018;
Gehring et al. 2017), to capture the spatial and temporal
dynamic behavior of each PV system. The spatiotemporal
block is a technique which can extract the most useful tem-
poral features and capture the most appropriate spatial fea-
tures concurrently (Yu, Yin, and Zhu 2018). The representa-
tion of st-GNN architecture for training and forecasting the
PV model is shown in Figure 2. We use L2 loss function as
an objective function so that loss should be minimized over
the period of time.

The network has a series of three blocks, two spatiotem-
poral (ST) blocks, and the third block is an output layer
block. Each ST block has a spatial layer sandwiched be-
tween two temporal convolutional layers. The output block
has two temporal layers connected in series, followed by a
fully connected output layer. The GNN model’s input data
dimension is RH×N×C , where H is the number of previous
data points of the time series used in the model, N is the
total number of PV systems and C is the number of chan-
nels in the input. The output of the model is of the form
RMXN where M is the number of future time points for
which model will forecast.

TensorFlow (Abadi et al. 2016) library was used for build-
ing the GNN model and the model was trained and tested
on Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, 48 GB
memory, 12 CPU cores, and 12 GB Nvidia GeForce RTX
2080 GPU card.

Local Solar Time Alignment
Local solar time is a term which corresponds to time accord-
ing to the position of the sun in the sky relative to specific
position on the ground such that local solar noon always hap-
pen when the sun is directly over head. On the other hand,
”clock time” is the standardized/artificial time that we use in
our day-to-day life to standardize our time measurements. In
the clock time, nearby locations use the same time so sun is
not always at the top for all locations at the noon time. This



Figure 2: Architecture of spatiotemporal graph neural network . The dimension of input layer is H×N×C, where H is the
number of previous data points in timeseries. If 2 hours of previous data points are used and the frequency is 5 minutes then the
value of H becomes 24. N is number of PV systems or nodes in a graph (316 PV systems) and C is number of channels in the
input dataset.

Figure 3: (a) Illustration of movement of sun in a day from
sunrise to sunset. Solar noon is defined as the time when
the sun is directly over the head at any specific location.
(b)Figure shows the Pmp values of a two sample of PV sys-
tems for a day. (i) Plot of the timeseries of two PV systems
before local solar noon alignment. (ii) Plot of the timeseries
of two PV systems after local solar noon alignment.

lead to different power timeseries curve to peak at different
clock time as shown in Figure 3 (b). Clock time variation
brings asynchronicity which makes it difficult to model the
timeseries. Local solar time addresses the problem of asyn-
chronicity and can be seen in Figure 3(a), in which sun is
exactly overhead at local solar noon time.

The plots in Figure 3 show the example of time series of
two PV systems before and after local solar noon alignment.
It can be seen in Figure 3 (b)(i), the timeseries peaks at some
time after the 12 o’clock. Since, both the PV systems are lo-
cated in different areas but in same timezone so they peak
at different times. The local solar time alignment as shown
in Figure 3 (b)(ii) makes all timeseries to peak at 12 o’clock
which brings synchronicity in the dataset. This approach in-

Figure 4: Schematic representation of the data workflow.
The figure shows various data sources, and a program pe-
riodically executed by a cron job collects the datasets from
these sources onto the Hadoop cluster. rcradletools and py-
cradletools are two packages developed internally to provide
the functionality to interact with HBase and perform data
processing tasks on the R or python environment, respec-
tively.

duces a more linear relationship among the timeseries of the
different PV systems.

Proposed Application Deployment
The path to application deployment involves two major
steps: 1) Data management system, 2) Machine learning
modeling and deployment.

Data Management: This step includes data acquisi-
tion, processing, and storage similar to the steps presented
in our earlier work (Arash Khalilnejad et al. 2020). For data
acquisition, the majority of data for this work comes from
various commercial PV companies, PV research sites, and
weather data. We collect these datasets using web APIs, se-
cure shell FTP, or receive them as CSV files over the cloud
as encrypted zip files. The data from different sources have



a different format, so the data sets are extracted using partic-
ular file parsers, which are scheduled to run as cron jobs. As
soon as the data is collected, the first task is to anonymize the
proprietary information and save the anonymized data on the
Hadoop cluster, shown as a schematic representation in Fig-
ure 4. In the data processing step, timeseries from the HDFS
are read and passed through validation, tidying, and uniform
structuring. Numerical fields are checked for missing val-
ues or anomalies and assigned the quality score. The time-
series having a large number of missing values or anomalies
receive a low-quality score. Low score timeseries are then
passed through data imputation functions to improve data
quality. Finally, all the PV power timeseries that receives
high quality the score is ingested into HBase. Metadata of
the PV systems are generated based on their properties are
also saved in HBase. Data in HBase are stored in a cell such
that the value in a cell is uniquely identified by row, col-
umn family, column qualifier, and timestamp. Thus, every
cell is freighted with a large overhead, and the problem be-
comes more intense when there are millions of rows. So, the
database should be designed such that each cell contains a
large amount of data compared to its unique identifier, and
in our design, we keep one month of data as a string in a
cell. Once the data is ingested in the database, we query the
timeseries with over two years of data and are in the same
timeperiod. For this work, we received 316 PV timeseries
located across different regions in the U.S.

Machine Learning Modeling and Deployment: The
project’s goal is to build and deploy ML models that can en-
hance PV power forecasting for commercial power plants.
Acquisition and processing of real-time data at regular in-
tervals are critical for power forecasting, so the deployment
of a production pipeline will need to have an integrated and
automated connection with the data management and infer-
ence modules. Data from the HBase will be retrieved using
pycradletools, a python package developed internally pro-
viding an interface between the data management system
and inference models. All the data analytics and ML train-
ing will happen on the data center side, causing inherent lag
from the real-time, so we aim for a near real-time solution.
Having more features such as temperature and irradiance can
enhance the performance of the forecasting model. We will
add more channels corresponding to each feature in the pro-
duction models. The deployed ML models will be based on
the proposed st-GNN model’s architecture presented in the
above section. The ML models’ forecasting will be saved in
a result table, and the results will be shared with the power
plants using a cloud-based API.

Results
In this section, we will present the results of st-GNN mod-
els. We compare the spatiotemporal model with 1-D tempo-
ral convolution model and show that spatiotemporal models
outperfoms model having only temporal convolution. The
results of the GNN models are computed on 20 days of the
test dataset. Mean absolute percentage error (MAPE) is cal-
culated for each PV system using their observed value from

the test data and forecasted value from the models. Table
1 compares the accuracy of the model for the spatiotempo-
ral model (εc = 0.375 or nodes in the neighborhood of the
network are optimally connected) with the network when
the nodes are isolated and only 1-D convolution, or tempo-
ral convolution is applied. Table 2 compare the two models
when there are 316 PV systems and when only 77 PV sys-
tems were selected to show that the model performs better
when there are more PV systems in the network. The tables
show mean and standard deviation (sd) of MAPE values.
The variability of the results can be ascertained by the vi-
olin/boxplots of Figure 5. The width of the violin plot shows
the density of data points. Box plots inside the violin plots
show median lines of MAPE score for 316 PV systems, and
the height of boxes shows the two quartile range.

MAPE for 316 systems
s-t convolution temporal convolution

Forecast εc=0.375 εc=1.0
(minute) mean sd mean sd

120 11.01 5.04 18.98 5.15
105 9.31 4.36 15.63 4.57
90 8.39 3.87 13.62 4.07
75 7.67 3.36 11.78 3.54
60 7.24 2.87 10.12 2.96
45 6.28 2.61 8.42 2.45
30 4.68 2.48 6.65 2.13
15 2.75 2.37 3.92 2.01

Table 1: Mean and standard deviation of MAPE values for
temporal convolution (standalone) vs spatiotemporal convo-
lution for PV systems with optimum εc for st-GNN network.

Forecast 77 systems 316 systems
(minute) mean sd mean sd

120 12.92 4.33 11.01 5.04
105 11.68 4.16 9.31 4.36
90 10.77 3.97 8.39 3.87
75 10.37 3.77 7.67 3.36
60 9.87 3.30 7.24 2.87
45 9.23 3.12 6.28 2.61
30 7.96 3.62 4.68 2.48
15 5.16 3.32 2.75 2.37

Table 2: Mean and standard deviation of MAPE value for
forecasting 77 PV systems and 316 PV systems for optimum
value of εc for 15 minutes to 120 minutes.

Plots in Figure 5 (a-d) shows that the optimum value of
the network sparsity can be found empirically by varying
the value of εc in the range of [0-1]. Consider Figure 5 (a), it
shows 9 violin plots, corresponding to 9 different values of
εc between 0 and 1. Each violin plot represents the MAPE
values of 316 PV systems at a time point of 15 minutes in
the future calculated for a specific value of εc. It is observed



that the optimum value of εc for this model is 0.375, which
is a value between 0 and 1. In Figure 5, we also observe that
the difference between the error values of an optimum spa-
tiotemporal network (εc = 0.375) and only temporal net-
work (εc = 1) increases as the forecast time in future in-
creased from 15 minutes to 120 minutes.

Figure 6 illustrates the MAPE results for the power pre-
diction when the number of previous data points (H) used in
the model is varied between 24 (2 hours) to 72 data points (6
hours) with the interval of 12 data points (1 hour). Figure 6
(a) shows the results of MAPE when the forecast future time
is 15 minutes and Figure 6 (b) shows the MAPE value when
the future time is 120 minutes.

Discussion
In this work, we leverage the st-GNN technique based on the
motivation that spatial and temporal coherence among PV
power plants can help improve forecasting. The local solar
noon alignment method improved the power plants’ tempo-
ral coherence by shifting all timeseries to local solar time.
Solar noon alignment improves the model performance be-
cause it reduces the non-linearity among PV time-series. The
result in Figure 5 shows the forecast values from 15 minutes
to 120 minutes and εc from 0 to 1 for one-channel st-GNN
model. The εc = 0.375 is an optimum value which con-
sistently gives the highest accuracy for the model or least
MAPE values. The optimum value of εc = 0.375 suggests
that neither a graph with all pairs of nodes connected nor the
ones having no edge are best, but a partially connected graph
in between the two extremes gives the best performance. In
other words, the signals from the nearby power plants are
useful in predicting future values of a particular system, but
not all PV systems are useful. In Figure 5, the difference be-
tween MAPE values of st-GNN network with isolated nodes
(εc = 1) and an optimal value of εc increases, indicating that
the effect of spatiotemporal coherence is especially signifi-
cant when predicting the values longer in the future. In the
plots of Figure 6, we show the prediction values from the
st-GNN models where previous data points ranging from 24
points (2 hours) up to 72 points (6 hours). In Figure 6 (a)
& (b), the plots show power forecast at 15 minutes and 120
minutes in the future. The prediction error or MAPE value
does not change significantly even after increasing the num-
ber of previous data points; this suggests that for predicting
future values, historical data of 2 hours is sufficient. How-
ever, we see the MAPE are less scattered when we increase
the number of previous data points in the model.

Table 2 shows that the increasing the number of PV plants
help improve the overall accuracy of the model by lowering
the MAPE values. In Table 1, we see that the spatiotemporal
coherent st-GNN model outperforms the st-GNN model in
which the nodes are isolated.

Conclusion
In this work, we have demonstrated the advantage of the st-
GNN network that uses the spatial and temporal coherence
over the network with isolated nodes in which only temporal
or 1D convolution is applied. Local solar time alignment im-

Figure 5: The four plots show performance of st-GNN fore-
casting models. Mean absolute percentage error (MAPE) on
y-axis when predicting future values (a) 15 minutes to (d)
120 minutes. The x-axis corresponds to threshold cutoff ε
value while building the graph of PV system locations, ep-
silon value of 0 indicates all nodes are connected and epsilon
value of 1 indicates no edge exists in the graph and only tem-
poral convolution is applied.

proves the temporal coherence among the timeseries as the
peak of the timeseries for every system, and each day oc-
curs at 12 o’clock. The effect of temporal coherence is more



Figure 6: The plots show performance of spatiotemporal
forecasting models when the number of previous data points
are increased from 24 (2 hours) to 72 (6 hours). (a) shows
the plot when forecasting 15 minutes in the future and (b)
shows the plot when forecasting 120 minutes in the future.

evident when the future forecast time is longer, i.e., more
than 100 minutes. Increasing the number of PV systems im-
proved the overall accuracy of the systems, suggesting in-
creasing the nodes in the network contributes information
that improves the overall accuracy of the model. The Error
or the models’ MAPE decreases from 19% in an isolated
network to 11% for an optimally connected network having
εc equals 0.375 when forecasted for 120 minutes in the fu-
ture.
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