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Abstract—Lifetime performance and degradation analysis of
laboratory and field deployed PV modules is paramount to
the continued success of solar energy. Image characterization
techniques capture spatially resolved macroscopic manifestations
of microscopic mechanistic behavior. Automated data processing
and analytics allow for a large-scale systematic study of PV mod-
ule health. In this study, degradation features seen in periodic EL
images taken during test-to-failure damp-heat, thermal cycling,
ultra-violet irradiance, and dynamic mechanical loading accel-
erated exposures are extracted and classified using supervised
and unsupervised methods. Image corrections, including planar
indexing to align module images, are applied. On extracted cell
images, degradation states such as busbar corrosion, cracking,
wafer edge darkening, and between-busbar dark spots can be
studied in comparison to new cells using supervised and un-
supervised machine learning. The systematic feature groupings
provide a scalable method without bias to quantitatively monitor
the degradation of laboratory and commercial systems alike. The
evolution of these degradation features through varied exposure
conditions provides insight into mechanisms causing degradation
in field deployed modules. The supervised algorithms used in
this application are Convolutional Neural Networks (CNN) and
Support Vector Machines (SVM). With the increase in data and
diversity of features, unsupervised learning can be employed
to find relations between inherent image properties. Feature
extraction techniques help identify intrinsic geometric patterns
formed inthe images due to degradation. Principal component
analysis is then applied to the extracted set of features to filter
the most relevant components from the set, which are then
passed to an agglomerative hierarchical clustering algorithm.
Google’s Tensorflow library was utilized to enhance the com-
putational efficiency of the CNN model by providing GPU-
based parallel matrix operations. Using supervised methods
on 5 features an accuracy greater than 98% was achieved.
For unsupervised clustering, the classification was done into
two clusters of degraded and non-degraded cells with 66%
coherence.

Index Terms—computer vision, electroluminescence imaging,
feature extraction, machine learning, PCA, supervised classifi-
cation, unsupervised clustering,

I. INTRODUCTION

The power output from a photovoltaic (PV) module is the
most important metric for the measurement of performance
of PV. The expected lifetime of a field deployed photovoltaic
(PV) module is over two decades, but the power output
decreases gradually over a system’s lifetime due to multi-

ple degradation factors.[1], [2]. Factors that affect the long
term stability of PV modules include mechanical stresses
during the transportation and field installation which can
lead to cell cracking [3]. Environmental variables such as
moisture, temperature and it’s fluctuation, and wind contribute
to degradation features which can be expressed in module
characterization data.

Different strategies are used for determining the degrada-
tion in PV panels. Particular insight into mechanistic behavior
can be captured using imaging systems such as electrolumi-
nescence (EL), which provides spatially resolvable informa-
tion through the front side of the module [4]. Supervised and
unsupervised machine learning approach can be employed
in classification of features in cell EL images. Supervised
machine learning: Application in which the dataset consists
of feature vectors as well as target vectors/labels and the goal
of an algorithm is try to learn a target function such that
every feature vector is assigned a correct predefined label.
Unsupervised machine learning: When the dataset consists
of feature vectors but are devoid of labels, the aim of an
algorithm is to identify groups/clusters with examples of
similar characteristics.

In our previous work [5], we have introduced advanced
image processing techniques to analyze EL images of solar
modules and cells. Supervised machine learning algorithms
were used to classify cells as cracked, busbar corroded or
in a new/featureless state. In this work, we have broadened
the supervised classification algorithms to study more cell
degradation features. We also present feature extraction and
unsupervised clustering technique to correlate intrinsic pat-
terns existing in the images with supervised labels. The idea
behind unsupervised learning is to reduce the amount of time
needed for human labeling of thousands of cell images into
different categories. In addition, human judgment in attaching
labels introduces subjectiveness in dataset groupings. Growth
of patterns and characteristics of the cell images due to
degradation are leveraged for feature extraction. Clustering
is done based on the distance matrix calculated from the
extracted features of cell images. Some of the new patterns
observed in the images include darkening of the edges and
cell areas between busbars.
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We provide an overview of the experimental study, data
collection and computational tasks like image processing,
feature extraction and machine learning algorithms in section
II. In section III, we present the results and discussion of
various classification algorithms. The final section contains
conclusions of the research.

II. METHODOLOGY

A. Test-to-failure Study

90 full-size commercial modules spanning 5 brands were
split into 6 groups equally representing each brand. Each of
these 6 groups were exposed to a different IEC indoor accel-
erated test [6]. These included damp-heat, thermal-cycling,
ultra-violet irradiance, dynamic mechanical loading, potential
induced damage (PID) +1000 V, and PID -1000 V. For the
work outlined herein, the PID biased modules were not used
as they did not contain enough degraded cells to be useful to
the analysis.

Damp-heat modules underwent 4200 hours of total expo-
sure with current-voltage (I − V ) curves and electrolumi-
nescence (EL) images being measured every 500 hours until
3000 hours and every 300 hours after 3000 hours. Thermal-
cycling exposed modules underwent 1000 cycles in total with
I−V and EL measurements were taken every 200 cycles until
600 cycles and every 100 cycles after 600 cycles. Ultra-violet
(UV) exposed modules underwent 90 kWh of irradiance with
measurements taken every 30 kWh. And lastly, the dynamic
mechanical loading tests applied 2 rounds of dynamically
actuated loading. These tests induced a myriad of degradation
features to be analyzed.

The OpenCV [7] Python library was used extensively
for image processing. Some of the functions for machine
learning applications were used from the scikit-learn and
scipy Python libraries [8], [9]. We implemented Google’s
TensorFlow library with Graphical Processing Unit (GPU)
support to increase computational efficiency over our previ-
ous work [10][5]. TensorFlow provides an abstraction over
learning classifiers and is an efficient image analysis library
for a large dataset having numerous feature vectors, especially
for computationally expensive matrix operations such as Deep
Neural Networks (DNN).

B. Image Pre-processing

A sample of a raw EL image of a PV module is shown in
Figure 1(a). As outlined in previous work [5], an automated
image processing pipeline has been developed in Python
and enhanced further to reduce noise and planar index the
module in the image (Figure 1(b)). The processed image
allows extraction of individual cells from the module image
[5]. Figure 2 outlines the salient stages in the processing
pipeline. The original images are filtered using a median filter.
A custom algorithm built using the open-source language
Python is then employed to find the edges of the module
in the EL image and then a perspective transform of the
module into the image plane with consistent dimensions for
streamlined analysis. The cell images in Figure 3, which are

studied herein, are then sliced from the planar indexed images
[5]. Cell images were rotated by 180o as a part of image
augmentation process for increasing the training set.

(a)

(b)
Fig. 1. Figure (a) is a raw EL image captured by electroluminescence
imaging method, and (b) is the processed image post filtering and planar
indexing.

C. Supervised Classification

The first step in training a supervised learning algorithm is
to have a well defined, large, training set. After assessing and
identifying the characteristics, we decided to label dataset into
five feature groups: cracked, busbar corroded, edge darkened,
between-busbar darkened and new/featureless, which can be
seen with their representative images in Figure 3. Sorting
resulted in 6264 images across all brands and 4 accelerated
exposure conditions.

Two supervised machine learning algorithms, Convolu-
tional Neural Networks (CNN) and Support Vector Machine
(SVM), were compared to determine which was best for PV
cell dataset.[11] Stochastic gradient descent was used for
convergence of the model, and a cross-validation technique
was used to increase confidence in the results.

1) Convolutional Neural Network: CNN is a feed-forward
DNN classifier, and is the state-of-the-art training model
architecture particularly for image classification problems. In
this method, a series of filters are applied to the raw images
to extract and learn high level intrinsic features, which the
model can then use for classification purposes [12]. CNNs
typically have three sets of layers:
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Fig. 2. Flowchart showing various stages in our image processing pipeline.

(a) Good (b) Good

(c) Corroded (d) Cracked

e) Between
Busbar Darkening (f) Edge Darkening

Fig. 3. These 6 cells are examples of the 5 cell types used for this
classification model: (a-b) good, (c) busbar corrosion, (d) cracked, (e)
between busbar darkening and (f) cell edge darkening.

Fig. 4. General architecture of convolutional neural network.

1) Convolutional layers: A specified number of convolu-
tional filters are applied to the images. Each filter is
a kernel of a typical shape of 5x5 grid pixels, which
convolves across an image. For each subregion the
kernel covers, the layer performs a set of mathematical
operations to produce a single value in the output
feature map. A Leaky-ReLU (Rectified Linear Unit)
activation function is applied on the output value to
introduce non-linearity into the model.

2) Pooling layers: Placed between the convolutional layers,
the purpose of pooling layer is to reduce the spatial
dimension and avoid over-fitting. The most common
type of pooling methods are max pooling and average
pooling, which takes the maximum or the average value
respectively of the pixels covered by the kernel.

3) Fully Connected (FC) layers: Also known as dense
layers, are similar to regular neural network where each
input node is connected to each output node. These final
learning layers map extracted features to visual output.
FC layers help correlate features across a complete
image.

In Figure 4, we have shown a general architecture of a CNN.
The first layer is a 3-channel input image, then any number
of inner layers can be added into the model depending on the
classification problem, with care taken to avoid over-fitting in
the model. The output layer has a size equal to the number
of classes in the dataset.

2) Support Vector Machine: SVM classifiers are based
on the decision function that divides the hyperspace into
two classes by a hyperplane [13] given by an equation
wx + b = 0 where w ε IRn, b ε IR and n is the number
of feature vectors. The two-class classifier is extended to a
multiclass classifier using one-versus-rest classifier, and for
a datum we select a class which gives the largest margin.
There are many kinds of kernel substitution methods in SVM,
here we have used the radial basis function (RBF) kernel.
The regularization parameter in a kernel function lets user
avoid over-fitting, kernel function takes low dimensional input
space and transforms the input to higher dimensional space
making separable boundaries,and kernel method also eases
the calculations by simplifying the optimization problem in a
higher dimension space.
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D. Feature Extraction

Feature extraction is a process by which hidden patterns
are extracted by analyzing neighboring pixels in an image.
In this step, cell images of 250x250 pixels, examples shown
in Figure 3, were taken as input. Then fourteen Haralick
features[14] were calculated from the images, in four different
directions called 0o, 45o, 90o, 135o as shown in Figure 5.
These features give the details of textural patterns in the
images. In Table I, all the extracted features are listed with
their description [15].

TABLE I
FEATURES EXTRACTED FROM THE PV CELL IMAGES

Features Description
Energy/

Angular Second Moment
(ASM),

∑Ng

i,j p(i, j)
2

Ng is the no. of gray scale levels

ASM is also called energy, it’s
value is 1 for constant image

& range [0,1]. p(i, j) is (i, j)th

value in a normalized gray-tone

Contrast,
∑Ng

i,j (i− j)2p(i, j)
Measure of contrast in

intensity between adjacent
pixels

Correlation,∑
i,j

(i.j)p(i,j)−µxµy

σxσy
µ and σ are mean

and std. deviation of px py

Measure of how correlated a
pixel to it’s neighbor in an
image. px, py are marginal

probabilities
Sum of square,∑
i,j(i− µ)2p(i, j)

squared distance from
the mean pixel intensity

Inverse Difference Moment∑
i,j

p(i,j)

1+(i−j)2

Also called Homogeneity,
measures values by the inverse

of the contrast weight
Sum Average,∑2Ng

k=2 kp(i+j)(k)
sum of the average values of

whole image

Sum Variance,∑2N
k=2(k − µx+y)2p(x+y)(k)

sum of the variance values
of whole image. N

is number of distinct gray level

Entropy,
−

∑N
i=1

∑N
j=1 P (i, j)logP (i, j)

measure of randomness that
can be used to characterize the

texture of the input image.
Sum Entropy,

−
∑2n
k=2 p(x+y)(k)log(px+y(k))

sum of the entropy.

Difference Variance,∑2n
k=2(k − µx−y)2p(x−y)(k)

Difference between the variance.

Difference Entropy,
−

∑2n
k=2 p(x−y)(k)log(px−y(k))

Difference between the entropy.

Information Measure
of Correlation I,
HXY−HXY 1
max(HX,HY )

HX and HY are entropies
of PxandPy
HXY =

−
∑
i

∑
j p(i, j)

log(p(i, j))
HXY 1 =

−
∑
i

∑
j p(i, j)

log(px(i)py(j))
Information Measure

of Correlation II,
(1−

exp[−2.0(HXY 2−HXY )])
1
2

HXY 2 =
−

∑
i

∑
j px(i)py(j)

log(px(i)py(j))

Maximum Correlation coefficient
Q(i, j) =

∑ p(i,k)p(j,k)
px(i)py(k)

Method for identifying shape
or numerical parameter

for probability distribution

After deriving features from the images, singular value
decomposition (SVD) [16] is applied on the extracted feature
matrix to get the most prominent principal component (PC)

Fig. 5. Adjacent pixels for the calculation of haralick features in four
directions a) 0, b) 45 c) 90 and d) 135 degrees of orientation.

vectors in a direction that explains the variability most in
the dataset. To find the most dominant set of PCs, we use
Equation 1 to get the three matrices.

U, D, V T = SV D(X) (1)

where U is a set of left singular vectors, V is a set of right
singular vectors and V T is a transpose of V, D is a diagonal
matrix whose singular values are in a descending order with
largest at the top of matrix and X is the features dataset
on which the decomposition is applied. The singular values
in diagonal matrix D give the contribution of each PCs in
explaining the variability of the dataset.

In Principal Component Analysis (PCA)[17], 14 PCs are
calculated from 14 Haralick features by taking the product of
matrices UT and X as given in Equation 2.

Z = UTX (2)

where Z is a matrix in which columns are principal compo-
nent vectors. PCs are vectors in a domain different from the
original feature space and are in the direction of maximum
variation in the dataset. When X is represented by PCs, it
helps to minimize noise and makes it easier to observe the
broader structure in the dataset. We found PC1 and PC2
were the two most dominant components from the 14 PCs
calculated in Equation 2.

E. Unsupervised Algorithms

Unsupervised machine learning was applied to the Haralick
features extracted in the above section. The agglomerative
hierarchical clustering [18] algorithm was applied to cluster
all degradation types vs. good/featureless cells as shown in
Figure 3. The benefit of a hierarchical clustering over other
algorithms is that we don’t need to know the number of
groups available in the datasets prior to running the algorithm.
Important steps in the algorithm are:

• All the data points in the algorithm are assigned to their
own clusters, such that for N points there will be N
number of clusters.

• Calculate the similarity measure between all the clusters
from above step.

• Merge the two closest pairs, so that total number cluster
reduces by 1.

• Repeat steps 2 & 3 until all data points belong to one
cluster.
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In this algorithm, the dissimilarity measure was a Euclidean
distance metric between the feature vectors.

III. RESULTS AND DISCUSSION

The results obtained from two supervised classification
algorithms and agglomerative unsupervised clustering are
presented below.

A. Supervised

For supervised methods, five-fold cross validation was used
to confirm the stability of the algorithms. 80% of the data
was used for training and the remaining 20% was used for
validation. For the RBF kernel function in SVM, grid search
is applied on the regularization parameter (C) and gamma
value (γ). The optimum value of the model was chosen to be
50 for C and 1e−5 for the gamma.

In CNN modeling, two convolutional layers, three pooling
layers and three fully connected layers were chosen and
the model is shown in Figure 6. The first layer is the 2D
convolutional layer which has 32 filters, so the output from
the first layer is an object of shape 250x250x32. The second
layer is a pooling layer with a filter kernel of size 5x5 with
stride (1,1), meaning that in each step, the kernel filter will
convolve 1 pixel from its original position in the horizontal
or vertical direction. We again add a similar pooling layer to
reduce the spatial dimension to 63x63x32. The next layer is
a convolutional layer with output of 128 channels followed
by a pooling layer. In the end, there are two fully connected
layers and the output result layer.

The accuracy and standard deviation of the results for
the above two models are shown in Table II. The other
performance measures[19] of the two models are shown in
Table III. The three measures are defined as follows: Precision
is defined as fraction of the relevant class predicted correct.

Precision =
True Positive

True Positive+ False Positive

Recall is proportion of the actual relevant class identified
correctly.

Recall =
True Positive

True Positive+ False Negative

F-measure combines precision and recall and is the harmonic
mean of two.

F −measure =
2(Precision ∗Recall)
Precision+Recall

TABLE II
ACCURACY OF THE 2 TESTED SUPERVISED CLASSIFIER MODELS

SVM CNN
Mean Accuracy 98.95% 98.24 %

Standard Deviation 0.67 1.8

TABLE III
PERFORMANCE MEASURES OF TWO TESTED SUPERVISED MODELS

Precision Recall F-measure
SVM 0.97 0.99 0.98
CNN 0.96 0.98 0.97

Fig. 6. CNN model applied for classification.

B. Unsupervised

In unsupervised clustering, features are extracted
from the cell images in four different orientations of
0o, 45o, 90o, and 135o as shown in Figure 5. The means of
all fourteen features in four orientations were used for SVD
decomposition and PCA feature calculation. Eigenvalues
from the matrix D in Equation 1 are plotted in Figure 7.
We observe from the large eigenvalues of the first two PCs
that the maximum variability of the data is captured between
them.

Thus, the first two principal features were used for cluster-
ing the dataset. A threshold of the Euclidean distance was
considered as a similarity measure to cluster the datasets.
In Figure 8, we have shown a scatter plot of PC1 vs PC2.
Each data point represents a cell image extracted from the PV
module, the points are colored into two groups of degraded
and good/non-degraded. We can also observe two clusters in
the plot reflecting the degraded and good/non-degraded cells.
It suggests that PC1 and PC2 are the good representation
of the 14 features extracted earlier. Hierarchical clustering
coherence is calculated to be 66%, i.e. 66% of cell images
were clustered in the group that was labeled same as the
image. A perfect cluster would haves a coherence value of
1, which means all of the data in the cluster belongs to the
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Fig. 7. Eigen values plot for all 14 feature vectors.

Fig. 8. PCA showing scatter plot of principal component 1 vs principal
component 2.

same label.

IV. CONCLUSION

Supervised machine learning classification algorithm was
trained to classify five different degradation types found in PV
cells with SVM and CNN using TensorFlow as the classifiers.
Tensorflow implementation with Graphical Processing Unit
(GPU) efficiently reduced the computations time of CNN
from hours to minutes. Identifying a good CNN model is
not straightforward, multiple permutations and combinations
of layer need to be tested before deciding on the model that
gives the good result on both training and test dataset. To
verify the robustness of the algorithm, we performed 5-fold
cross-validation and observed that the standard deviation of all
the results is near the mean values. We explained the feature
extraction method to identify intrinsic patterns in the images,
which were helpful in clustering. PCA method was used to

filter the most dominant features from the Haralick features
set. We also implemented an unsupervised algorithm to cluster
images into degraded and non-degraded groups. Results show
promising values for application on larger datasets which
can be expanded to more diverse degradation features in the
future.
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