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ABSTRACT
Graph machine learning algorithms are being commonly applied
to a broad range of prediction tasks in systems biology. These
algorithms present many design choices depending on the specific
application and available data, making it difficult to choose from
different options. An important design criterion in this regard is
the definition of “topological similarity" between two nodes in a
network, which is used to design convolution matrices for graph
convolution or loss functions to evaluate node embeddings. Many
measures of topological similarity exist in network science literature
(e.g., random walk based proximity, shared neighborhood) and
recent comparative studies show that the choice of topological
similarity can have a significant effect on the performance and
reliability of graph machine learning models.

We propose GraphCan, a framework for computing canonical
representations for biological networks using a similarity-based
Graph Convolutional Network (GCN). GraphCan integrates mul-
tiple node similarity measures to compute canonical node embed-
dings for a given network. The resulting embeddings can be utilized
directly for downstream machine learning tasks. We comprehen-
sively evaluate GraphCan in the context of various link prediction
tasks in systems biology. Our results show that GraphCan con-
sistently delivers improved prediction accuracy over algorithms
that directly use the adjacency matrix of the input network, and
the integration of multiple similarity measurements improves the
robustness of the framework. The implementation of GraphCan
can be found in https://github.com/Meng-zhen-Li/Similarity-based-
GCN.git.
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• Computing methodologies→ Neural networks; • Applied
computing→ Bioinformatics; •Theory of computation→Graph
algorithms analysis.
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1 INTRODUCTION
Mining knowledge from large-scale biological networks has be-
come very popular in a broad range of applications in systems
biology and molecular medicine. Biological systems are composed
of interacting cellular components, e.g. genes, proteins, or metabo-
lites. The associations among the cellular components are modeled
as biological networks[12], including protein-protein interaction
networks[23, 25], drug-drug interaction networks[27], etc.

Network embedding techniques have been useful in applying so-
phisticated machine learning techniques to prediction tasks in net-
work biology[21, 24]. Network embeddings provide low-dimensional
representations of the nodes in the network to extract features that
represent the topological characteristics of the network. The repre-
sentations in the embedding space reflects the similarities of the
nodes in the network topology[6].

Network embedding is an efficient approach for omic data anal-
ysis. Multiple tasks can be done by network embedding, e.g. link
prediction, node classification, etc. When applied to biological net-
works, network embedding techniques are shown to be effective
in many biomedical prediction tasks. Mapping biological networks
into a low-dimensional space enables effective application of ma-
chine learning methods in the downstream tasks. Applications of
network embedding are becoming ubiquitous in biological data
analysis, including identification of cell types[18], prioritization of
candidate disease genes[2], and prediction of disease-gene associa-
tions [10].

Graph convolutional networks(GCN)[15] have become ubiqui-
tous in many machine learning tasks. It is also shown effective
in computing network embeddings. GCN takes a feature matrix
and the adjacency matrix of the graph as input, and outputs a
low-dimensional representation of each node.

Any network embedding or graph convolution based machine
learning technique takes as input the raw input network and per-
forms learning on this raw network. An important drawback of the
raw input networks is the skewness of the degree distribution [14],
as well as the distribution of network density across different lo-
calities of the network [5]. In graph analysis tasks, this causes
imbalance in the distribution of flow across the network, creating
or enhancing bias in the resulting models [8]. A solution that is
commonly applied to address these issues is to use an alternate
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graph representations to represent the topological information of
input network(s), e.g. similarity graphs for graph convolution [5].

In this article, we propose GraphCan, which learns canonical
graph representations for biological networks, in which the topo-
logical relationships between the nodes are preserved while edge
weights are distributed uniformly across the network. Instead of
defining canonical graphs based on a single measure of topolog-
ical similarity, it can be useful to integrate multiple measures of
similarity that capture different aspects of network topology. The
proposed framework (i) integrates a multitude of topological sim-
ilarity measures, (ii) computes low-dimensional embeddings rep-
resenting these similarity measures using a Graph Convolutional
Network (GCN), (iii) computes consensus embeddings from these
embeddings using canonical correlation. The computed canonical
representation can be utilized directly for downstream machine
learning tasks.

We comprehensively evaluate GraphCan in the context of vari-
ous link prediction tasks in systems biology. Our results show that
GraphCan outperforms other network embedding methods that
directly use the adjacency matrix of the input network, and is ro-
bust against missing edges from the input graph. The integration of
multiple similarity measures increases the robustness of the model.

2 BACKGROUND
2.1 Network Embedding
Network embedding aims to learn a low-dimensional representa-
tion of nodes in networks[22]. Given a graph 𝐺 = (𝑉 , 𝐸), a node
embedding is a function 𝑓 : 𝑉 −→ R𝑑 that maps each node 𝑣 ∈ 𝑉

to a vector in R𝑑 where 𝑑 ≪ |𝑉 |. The representation is learned
such that the proximity in the embedding space reflects the proxim-
ity/similarity in the network. Nodes that are similar in the network
are close to each other in the embedding space. There are different
types of approaches to define the proximity of the nodes, and thus
different mapping functions from network topology to embedding
space.

2.2 Graph Convolutional Networks and Graph
Auto-Encoders

Graph Convolutional Network(GCN) is a scalable approach for
semi-supervised learning on graph-structured data that is based
on an efficient variant of convolutional neural networks which
operate directly on graphs[15]. Graph structures are encoded as
a neural network model 𝑓 (𝑋,𝐴), where 𝑋 ∈ R𝑛×𝑘 is a matrix of
node feature vectors(𝑘 is the number of features) and 𝐴 ∈ R𝑛×𝑛 is
the adjacency matrix of the graph. If no node features are available,
𝑋 is an identity matrix of the same size as 𝐴.

Graph Autoencoder(GAE) is a framework for unsupervised learn-
ing on graph-structured data based on the variational auto-encoder
(VAE)[16]. Given an unweighted and undirected graph 𝐺 = (𝑉 , 𝐸),
GAE learns an embedding 𝑍 ∈ R𝑛×𝑑 using a graph-based neu-
ral network with a two-layer GCN encoder and an inner-product
decoder. The inner product of the embedding 𝑍 reconstructs the
adjacency matrix: 𝐴 = 𝜎 (𝑍𝑍𝑇 ) where 𝜎 is the sigmoid activation
function. The learned GAE embedding can be applied to graph
learning tasks like link prediction.

3 METHODS
We propose GraphCan, a graph convolutional network (GCN)
based framework to compute a canonical representation for an
input network, by integrating multiple measures of topological
similarity between pairs of nodes.

3.1 Workflow of GraphCan
Figure 1 shows the workflow of the proposed framework, which
can be roughly divided into three parts: (i) the GCN-based encoder,
(ii) the inner-product decoder, and (iii) computation of consensus
embedding. The encoder consists of two GCN layers, and a fully-
connected neural network layer. The decoder computes the inner
products of the encoded embeddings to reconstruct similarity ma-
trices that capture node similarities based on different measures of
topological similarity. Once separate embeddings representing each
similarity measure are computed, a consensus embedding (Section
3.5) is computed to integrate the learned embeddings.

The input to GraphCan is the adjacency matrix𝐴 ∈ R𝑛×𝑛 of the
input network 𝐺 = (𝑉 , 𝐸), a dimensionality parameter 𝑑 , and a set
of topological similarity measures. An example list of the similarity
measures that are used in our experiments are shown in Figure 1.
Using the input similarity measures, we compute “true" similarity
matrices 𝑆1, 𝑆2, . . . , 𝑆𝑘 ∈ R𝑛×𝑛 from𝐴, each representing a different
similarity measure. Using these 𝑘 similarity measures, GraphCan
learns 𝑑-dimensional embeddings for the nodes in 𝑉 , such that
proximity in the embedding space is associated with similarity
according to the multiple similarity measures that are specified in
the input.

To compute individual embeddings, GraphCan uses the feature-
less version of GCNs. The two GCN hidden layers generate an em-
bedding 𝑍 ∈ R𝑛×𝑑 , and the separate embeddings 𝑍1, 𝑍2, . . . , 𝑍𝑘 ∈
R𝑛×𝑑 for respective similarity matrices 𝑆1, 𝑆2, . . . , 𝑆𝑘 are computed
with a fully-connected hidden layer. The inner product decoder
uses the inner product 𝑍𝑖𝑍𝑇𝑖 of as the reconstruction of the similar-
ity matrices. The loss function for the neural network is the mean
square error between these inner products and similarity matrices,
thus the separate embeddings are optimized to minimize the differ-
ence between the “true" and reconstructed similarity matrices. The
consensus embedding of the separate embeddings is the learned
canonical representation 𝑍𝐺𝑟𝑎𝑝ℎ𝐶𝑎𝑛 ∈ R𝑛×𝑑 .

3.2 Topological Similarity Measures
Node similarity measures aim to quantify the similarity between
a pair of nodes in a network in terms of their topological prop-
erties and/or location in the network[20]. There is a multitude
of topological similarity measures in the literature, used for tasks
ranging from link prediction and denoising to community detection
and network visualization. Each topological measure captures a
different aspect of the topological relationship between a pair of
nodes, including the overlap between neighbors, distance in the
network, multiplicity of the paths connecting the two nodes, or the
association between their proximity profiles [9].

Our objective here is to generate a comprehensive view of the
pairwise relationships between the nodes of a network - one that
can be reliably used for downstream machine learning applications.



Canonical Representation of Biological Networks BCB ’23, September 3–6, 2023, Houston, TX, USA

Input

GCN
Hidden
Layer 1

...

ReLUReLU

GCN
Hidden
Layer 2

...

ReLU

General
Embedding

Hidden
Layer

Separate
Embeddings

...

Inner
Product

Reconstructed
Similarities

...

True
Similarities

...

Compute
Similarity
Matrices:

-Common Neighbor
-Adamic Adar[1]
-Random Walk with Restart[26]
-Von Neumann[13]
-Adjacency Matrix

MSE

Consensus
Embedding

Canonical
Embedding

Figure 1: Illustration of GraphCan. The input is the adjacency matrix of the network. The general embedding is generated using
a two-layer GCN, and the separate embeddings are generated by a hidden neural network layer. The reconstructed similarity
matrices are the inner products of the separate embeddings. The final output embedding is the consensus embedding of the
optimized separate embeddings. The loss function is the Mean Square Error(MSE) betweeen true similarities and reconstructed
similarities.

For this purpose, we propose to integrate multiple similarity mea-
sures, thereby enabling multiple similarity measures to complement
each other to extract reliable relationships between pairs of nodes.
While GraphCan can be trained with any set of similarity mea-
sures, for proof-of-concept we here utilize a small set of measures
that span both direct neighbor based (local) and propagation-based
(global) approaches:

• Common Neighbor measures the overlap between the
neighbors of two nodes:

𝐶𝑁 (𝑥,𝑦) = |𝑁 (𝑥) ∪ 𝑁 (𝑦) | (1)

where 𝑁 (𝑥) and 𝑁 (𝑦) respectively denote the sets of neigh-
bors of 𝑥 and 𝑦.

• Adamic Adar[1] is based on the premise that common
neighbors with many neighbors are less informative on the
relationship between two nodes as compared to common
neighbors with a small number of neighbors. It refines the
notion of common neighbor by assigning more weight to
less-connected common neighbors:

𝐴𝐴(𝑥,𝑦) =
∑︁

𝑢∈𝑁 (𝑥 )∩𝑁 (𝑦)

1
𝑙𝑜𝑔 |𝑁 (𝑢) | (2)

• RandomWalk Based Proximity is a network propagation
method that considers a random particle that transmits to
neighbors with the probability that is proportional to their
edge weights[26], and there is a probability for the particle to

restart at each stage. Starting from a node 𝑥 , the probability
distribution of the particle being at each node at time 𝑡 can
be computed as:

𝑅𝑊𝑅
(𝑥 )
𝑡+1 = (𝛼𝑊 )𝑅𝑊𝑅𝑡 + (1 − 𝛼)𝑅𝑊𝑅

(𝑥 )
0 (3)

where𝑊 ∈ R |𝑉 |× |𝑉 | denotes the matrix of transition prob-
abilities of a random walk between each pair of nodes, ob-
tained by colum-normalizing𝐴. 𝑅𝑊𝑅

(𝑥 )
0 is the restart vector

with all entries zero except for𝑅𝑊𝑅
(𝑥 )
0 (𝑥) = 1 and 𝛼 denotes

the probability of restart. The random-walk based proxim-
ity between nodes 𝑥 and 𝑦 is computed as (𝑅𝑊𝑅 (𝑥 ) (𝑦) +
𝑅𝑊𝑅 (𝑦) (𝑥))/2.

• Von Neumann Proximity is also a network propagation
method. For a given maximum path length 𝑡 , it can be com-
puted by the following expression:

𝐴𝑠 = 𝐴 ⊘
√︁
𝐷𝑟 ⊙ 𝐷𝑐 (4)

𝑉𝑁 =

𝑡∑︁
𝑖=1

𝛼𝑖𝐴𝑖
𝑠 (5)

where 𝐷𝑟 ⊙𝐷𝑐 indicates the element-wise dot product of the
row and column degrees in matrix form(𝐷𝑟 (𝑢, 𝑣) = |𝑁 (𝑢) |,
𝐷𝑐 (𝑢, 𝑣) = |𝑁 (𝑣) |), and ⊘ is the element-wise divide op-
eration. 𝐴 is the adjacency matrix and 𝛼 is the diffusion
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factor[13]. The Von Neumann proximity between nodes 𝑥
and 𝑦 is defined as 𝑉𝑁 (𝑥,𝑦) = 𝑉𝑁 (𝑦, 𝑥).

• TheAdjacencyMatrix can also be considered as a similarity
measure by itself (i.e., two nodes are considere similar if they
are connected in the network). An identity matrix is added
to the adjacency matrix when used as a similarity matrix.

For a given input network, we compute five similarity matrices
using these five similarity measures. We then use the similarity
matrices as the “labels" for the graph convolutional network, i.e.,
we train the GCN to learn embeddings that can reconstruct these
similarity matrices.

3.3 Similarity-Based Graph Convolutional
Network

For generality, let 𝑘 denote the number of similarity matrices that
are utilized by GraphCan. In this paper, we have 𝑘 = 5 (we also
use 𝑘 = 1 in Experimental Results for comparison purposes).

The graph convolutional network of GraphCan can be consid-
ered as a variational graph autoencoder with one input and multiple
outputs. The encoder of GraphCan consists of a two-layer GCN:

𝐺𝐶𝑁 (𝑋,𝐴) = ReLU(�̃�ReLU(�̃�𝑋𝑊0)𝑊1) (6)

where 𝑋 denotes feature matrix for the nodes, which is an identity
matrix of the same size as 𝐴 since our networks are featureless.
�̃� = 𝐷− 1

2𝐴𝐷− 1
2 is the symmetrically normalized adjacency matrix,

where 𝐷 is the degree matrix of 𝐴. The output of the encoder is
a general embedding 𝑍 ∈ R𝑛×𝑑 where 𝑑 is the size of the second
GCN layer.𝑊0 and𝑊1 are the weights of the two GCN layers.

The decoder consists of two parts, a hidden layer and an inner-
product decoder. The hidden layer is a fully-connected neural net-
work layer:

𝑍𝑠 = 𝑍𝑊2 (7)

where𝑊2 ∈ R𝑑×𝑘𝑑 denotes the weight matrix of the hidden layer.
Then the output 𝑍𝑠 ∈ R𝑛×𝑘𝑑 is splitted to 𝑘 blocks, 𝑍1, 𝑍2, . . . , 𝑍𝑘 ∈
R𝑛×𝑑 , each of which denote the separate embeddings to reconstruct
the 𝑘 similarity matrices. The inner product decoder computes the
inner products of the separate embeddings, which are also the
reconstructed similarities for 1 ≤ 𝑖 ≤ 𝑘 :

𝑆𝑖 = 𝑍𝑖𝑍
𝑇
𝑖 . (8)

3.4 Loss Function and Optimization
To optimize the separate embeddings, the model minimizes the
Mean Squared Error (MSE) between each reconstructed similarity
and the true similarity:

𝐿 =

𝑘∑︁
𝑖=1

∑︁
𝑢,𝑣∈𝑉

(𝑆𝑖 (𝑢, 𝑣) − 𝑆𝑖 (𝑢, 𝑣))2 (9)

Because of the sizes of the weights, optimizing all the weights
together is expensive and time-consuming, especially when there
are many similarity measures. If we split𝑊2 into multiple parts
and optimize separately, the optimization will be faster and dis-
tributed(parallel) learning can be applied(computing the gradients
of all blocks at the same time and compute the average of the gra-
dients for𝑊0 and𝑊1. Therefore, the loss of each pair of 𝑆𝑖 and 𝑆𝑖

is computed and optimized separately:

min
𝑊0,𝑊1,𝑊2𝑖

∑︁
𝑢,𝑣∈𝑉

(𝑆𝑖 (𝑢, 𝑣) − 𝑆𝑖 (𝑢, 𝑣))2 (10)

where𝑊2𝑖 ∈ R𝑑×𝑑 is computed by dividing𝑊2 (Equation7) into 𝑘
blocks. In each iteration, we compute the gradients for𝑊0,𝑊1, and
𝑊2𝑖 for each 𝑖 so that we get 𝑘 gradients for𝑊0 and𝑊1, and one
gradient for each𝑊2𝑖 . After we compute all gradients for all 𝑖 , the
gradients of𝑊2𝑖 can be concatenated to construct the gradient of
𝑊2, and the gradients of𝑊0 and𝑊1 are computed as the average
of the 𝑘 gradients of𝑊0 and𝑊1.

3.5 Consensus Embedding
Once a separate embedding for each similarity matrix is computed,
we compute a consensus embedding from these separate embeddings
to obtain a canonical embedding for the input network. For this
purpose, we use dimensionality reduction on𝑍𝑖 ∈ R𝑛×𝑑 to compute
a𝑑-dimensional node embedding𝑍𝑐 for𝐺 . In the context of network
integration, Generalized Canonical Correlation Analysis (GCCA) is
shown to outperform other dimensionality reduction methods in
computing consensus embeddings[17], since it can accurately map
shared dimensions in different embedding spaces. The embeddings
we aim to integrate here represent similarity measures that are
expected to have many common dimensions, thus GraphCan also
computes consensus embedding using GCCA:

𝑍𝐺𝑟𝑎𝑝ℎ𝐶𝑎𝑛 = 𝐺𝐶𝐶𝐴(𝑍1, 𝑍2, . . . , 𝑍𝑘 ) (11)

where𝐺𝐶𝐶𝐴 represents the generalized canonical correlation anal-
ysis, which is shown to be effective in representing the integration
of network versions. The consensus embedding 𝑍𝐺𝑟𝑎𝑝ℎ𝐶𝑎𝑛 is the
canonical representation of graph 𝐺 and can be used to perform
downstream tasks.

4 EXPERIMENTAL RESULTS
4.1 Experimental Data and Benchmark
We apply GraphCan to biological link prediction tasks to assess its
ability to obtain meaningful representations of biological network.
For this purpose, we use the benchmarking framework provided
by BioNEV[28]. BioNEV provides four datasets representing three
different biomedical link prediction problems (Table 1). On each
of these networks, for a given network embedding, BioNEV uses
this network embedding to train a binary classifier (using logistic
regression) for each pair of node representations, which in turn is
used for link prediction. The statistics of each network is shown
on Table 1, including data types and multiple topological features.
The average clustering coefficient of bipartite graphs(DDAs) are
computed as the average square clustering coefficient[19].

In our experiments, we split the input networks into training
and testing sets, where the training set contains 80% of the edges
from the original graph, and 20% of the edges are used for testing.
The negative train sets and testing sets contain the same numbers
of random node pairs without edges as the training sets. We repeat
the train and test splits 5 times for each experiment and report the
mean and variance of performance figures across these runs.
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Dataset Network Type #Nodes #Edges Density Average
Degree

Average Clustering
Coefficient

CTD-DDA [7] drug-disease association 12,765 92,813 0.11% 7.27 0.0597
DrugBank-DDI [27] drug-drug interaction 2,191 242,027 10.08% 110.46 0.5453
NDFRT-DDA [3] drug-disease association 13,545 56,515 0.06% 4.17 0.1951
STRING-PPI [25] protein-protein interaction 15,131 359,776 0.31% 23.78 0.4279

Table 1: Statics of the biological networks used in the experiments.

Figure 2: Early precision of GraphCan in link prediction, compared to three state-of-the-art node embedding methods. Each
panel shows a different dataset. The x-axis shows the number of predictions (𝑘) from 1 to 10000, and y-axis shows the the
precision when the top 𝑘 predictions are considered as positive predictions. The curves and error show the the mean and
variance across 5 different runs. The number of dimensions of embeddings is fixed to 32 for all methods.

4.2 Baseline Node Embedding Methods
We compare the GraphCan model with three existing node em-
bedding methods of different categories:

• Node2vec [11] is a random-walk based node embedding
method. It runs random walk starting from the nodes in the
network, and use the random walk paths to preserve the
structural proximity of the network.

• GAE [16] is a neural-network based embedding method.
It learns node embeddings using a two-layer GCN and a
inner-product decoder. Here, we use the featureless version
of GAE.

• GraRep [4] is amatrix-factorization based embeddingmethod.
It constructs the high-order proximity matrix based on tran-
sition probability by a randomwalk with specific length. The
model is optimized bymatrix factorization techniques(Singular
Value Decomposition).

Default parameters of baseline methods are used in all experiments.

4.3 Early Precision Performance
We first compare the performance of algorithms in terms of their
early precision in link prediction. In link prediction tasks, the focus
is on the ranking of pairs and thus the accuracy higher-ranking



BCB ’23, September 3–6, 2023, Houston, TX, USA Mengzhen Li, Mustafa Coşkun, and Mehmet Koyutürk

(a) CTD-DDA (b) DrugBank-DDI

(c) NDFRT-DDA (d) STRING-PPI

Figure 3: Link prediction performance of GraphCan compared with three state-of-the-art node embedding methods, as a
function of number of embedding dmensions. For each dataset, area under ROC curve (AUROC) is shown on the left, area under
Precision-Recall curve (AUPR) is shown on the right. The curves and error bars respectively show the average and standard
deviation of performance figures across 5 runs.

node pairs is of particular importance. Precision at 𝑘 (or early pre-
cision) is a measurement in recommendation system indicating the
percentage of true positives among the top 𝑘 ranked links:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
# true positives in top-k predictions

𝑘
(12)

In link prediction, precision at 𝑘 shows the proportion of true edges
(in the test split) between the top-𝑘 node pairs predicted by the
model.

Figure 2 shows the precision at 𝑘 in link prediction ofGraphCan
and baseline methods. As seen in the figure, GraphCan clearly
outperforms all baseline models on all datasets in terms of early pre-
cision performance. The baseline methods tend to achieve higher
precision as 𝑘 gets larges, but the highest ranking node pairs, but
they cannot reach the precision of GraphCan in most cases. There-
fore, the high-ranking links predicted byGraphCan are more likely
to be accurate than the baseline methods. Note also that the early
precision performance of graph auto-encoder (GAE) and GraRep

has high variance for smaller value 𝑘 , while the variance for Graph-
Can is lower, indicating that GraphCan provides more robust
performance for top predictions.

4.4 Effect of the Number of Dimensions
To provide a comprehensive view on the performance ofGraphCan,
we also consider area under ROC curve (AUROC) and area under
precision-recall curve (AUPR) as performance criteria. Using these
performance criteria, we assess the link prediction performance of
GraphCan as a function of the number of embedding dimensions
and compare against baseline methods. The results of these analyses
are shown in Figure 3. As seen in the figure,GraphCan outperforms
the baseline methods in most cases.

For CTD-DDA, the overall performance of GraphCan is best
among all embedding methods for all embedding dimensions, with
more performance difference for lower number of dimensions. For
Drugbank-DDI, GraphCan performs best for lower number of
dimensions according to both performance criteria, but GraRep and
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Figure 4: Robustness of GraphCan to data sparsity. x-axes show the fraction of edges that are removed from the network,
y-axes show the corresponding link prediction AUPR of each method on the resulting incomplete network. The curves show
the average of results among 5 runs, and the error bars show the standard deviation. The number of dimensions is 32 for all
experiments shown here.

node2vec catch up with increasing number of dimensions. Unlike
GraphCan, the performance of these two methodss is particularly
dependent on the number of dimensions. For NDFRT-DDA, GraRep
performs best according to AUROC, while GraphCan performs
best according to AUPR. The performance of GraphCan is quite
variable on this dataset and it is more dependent on the number
of embedding dimensions. For STRING-PPI, we also observe that
GraphCan delivers the best AUPR while as good as other methods
according to AUROC. In general, GraphCan is highly competitive
among network embedding methods in link prediction, and its
performance is particularly pronounced when AUPR is considered.

4.5 Link Prediction with Incomplete Graphs
Many biological network datasets are largely incomplete and the
sparsity of the network can degrade the performance of machine
learning algorithms that utilize these networks. One of the mo-
tivations of our proposed framework is to alleviate the effect of
data sparsity. To assess robustness of GraphCan against missing
edges in network datasets, we perform missing data analysis. For
this purpose, we remove different fractions of edges from the input
networks, and assess the link prediction performance of all meth-
ods on the incomplete graphs. Figure 4 shows the results of this

analysis. We observe that GraphCan does not have an obvious
drop in performance as the percentage of missing edges goes up
from 5% to 40%, and has higher AUC-PRs than the baseline methods
in most datasets. For the two drug-disease association prediction
problems(CTD-DDA and NDFRT-DDA), the performance of base-
line methods starts to decrease as the missing percentage increases
from 0.1 to 0.4. For DrugBank-DDI dataset, all methods including
GraphCan are robust against missing edges, and the reason might
be the graph is relatively denser than all other graphs. For STRING-
PPI, the performance of node2vec and GAE decreases a little as the
missing percentage becomes 0.4. Therefore, GraphCan is robust
against missing edges and performs a good prediction even with
incomplete graphs.

4.6 Effect of Integrating Multiple Similarity
Measures

Without integrating multiple similarity measures, GraphCan can
be considered as a variational graph autoencoder that learns an
embedding whose inner product is a similarity matrix of the input
network(consensus embedding is not needed in this case). To assess
the value added by integrating multiple node similarity measures,
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Figure 5: Integrating multiple similarity measures using GraphCan vs. using only one similarity measure. In each subfigure
(dataset), the colored bars show the AUPR of link prediction performance of the embeddings computed using a single similarity
measure. Different colors of bars represent the average performance of GraphCan using different similarity measures, and the
light blue bars are the results using all the similarity measures. The error bars show the standard deviations among 5 runs. The
number of dimensions is fixed to 32.

Datasets Average Max Min Best
Similarity GraphCan

CTD-DDA 0.9315 0.9610 0.8836 CN 0.9550
DrugBank-DDI 0.8783 0.8830 0.8730 VN 0.8768
NDFRT-DDA 0.8996 0.9230 0.8564 AA 0.9186
STRING-PPI 0.8030 0.8622 0.7264 Adj 0.8544

Table 2: The performance of GraphCan using all similarity measures compared to using a single similarity measure. The first
three columns are the results when using only one similarity meausure. The average, maximum, and minimum AUC-PRs
among experiments with different similarities are shown. The "best similarity" is the similarity that gives the maximum AUPR.
The last column is the AUPR of GraphCan when all similarities are used.

we compare the link prediction performance of the canonical em-
bedding provided by GraphCan to the embeddings obtained by
using a single topological similarity measure. Figure 5 shows the
link prediction results when using only one similarity measure com-
pared with using all of them in GraphCan. As seen in the figure, an
individual similarity measure may have quite variable performance
depending on the dataset. For example, RWR performs worst on the

CTD-DDA network, while the raw adjacency matrix delivers the
poorest peformance on the NDFRT-DDA network. The reason for
this might be different topological features, e.g. density or neigh-
borhood structures, might affect the learning process. However, we
observe in figure 5 that when using all similarity measures, the link
prediction performance can be as good as that of the best similarity
measure on each dataset. In other words, the framework provided
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by GraphCan effectively extracts and utilizes information from
different similarity measures that complement each other.

Table 2 compares the AUPR of the model using single similarities
with GraphCan. From the table, the link prediction performance of
each similarity measure varies a lot, and the best performance can
be given by different similarity measures. However, while using all
similarity measures, GraphCan performs as good as the best when
using one similarity measure, despite the lower performance for
some of the similarity measures. Therefore, by utilizing multiple
similarity measures in the model, GraphCan extracts complemen-
tary information from each similarity measure and thus delivers
more robust performance compared to using a single similarity
measure.

5 CONCLUSION
In this article, we propose GraphCan, a similarity-based graph con-
volutional network(GCN) for learning canonical representation of
biological networks. The learned representation integrates embed-
dings representing multiple similarity measures. We systematically
test GraphCan on biological link prediction tasks, and the experi-
mental results show that GraphCan outperforms other baseline
methods in terms of ranking and predicting new links. Our noise
analysis shows that GraphCan is robust against incomplete graphs
with missing edges. Furthermore, we show that by integrating mul-
tiple similarity measures, GraphCan gains a better view of the
network topology, and achieves better outcomes than using single
similarity measures. A potential limitation of the paper is that we
avoid single nodes when we split training graphs and testing sets to
make sure that all nodes exist in embeddings, thus the edge removal
process is not uniformly at random. Directions of future research
include applying GraphCan to other downstream tasks, e.g. node
classification. Another potential application of GraphCan is to
take node features into account, so that GraphCan can be used in
a broader range of machine learning settings.
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