
Consensus Embeddings for
Networks with Multiple Versions

Mengzhen Li and Mehmet Koyutürk

Department of Computer and Data Sciences
Case Western Reserve University, Cleveland, OH, USA

Abstract. Machine learning applications on large-scale network-structured data
commonly encode network information in the form of node embeddings. Net-
work embedding algorithms map the nodes into a low-dimensional space such
that the nodes that are “similar" with respect to network topology are also close
to each other in the embedding space. Many real-world networks that are used
in machine learning have multiple versions that come from different sources,
are stored in different databases, or belong to different parties. Due to effi-
ciency or privacy concerns, it may be desirable to compute consensus embed-
dings for the integrated network directly from the node embeddings of indi-
vidual versions, without explicitly constructing the integrated network. Here,
we systematically assess the potential of consensus embeddings in the con-
text of processing link prediction queries on user-chosen combinations of dif-
ferent versions of a network. For the computation of consensus embeddings,
we use linear (singular value decomposition) and non-linear (variational auto-
encoder) dimensionality reduction methods. Our results on a large selection of
protein-protein interaction (PPI) networks (eight versions with 255 potential
combinations) show that consensus embeddings enable real-time processing
of link prediction queries on user-defined combinations of networks, without
requiring explicit construction of the integrated network. We observe that lin-
ear dimensionality reduction delivers better accuracy and higher efficiency
than non-linear dimensionality reduction. We also observe that the perfor-
mance of consensus embeddings is amplified with increasing number of net-
works in the database, demonstrating the scalability of consensus embeddings
to growing numbers of network versions.

Keywords: node embedding, dimensionality reduction, link prediction

1 Introduction

Large-scale information networks are becoming ubiquitous. Mining knowledge from
these information networks has become very popular in a broad range of applica-
tions. Learning a representation of networks is useful for many network analysis ap-
plications[16], including social network analysis[10, 24] and bioinformatics [2, 21].

With the increase in the quantity and variety of network datasets, effective in-
tegration of different data sources is becoming a popular and challenging task for
researchers [19]. Many networks have multiple versions, as different data providers
may gather their data from different sources, some of the data may not be shared due
to privacy concerns [11], or the data that is available may evolve over time.

2 Mengzhen Li et al.

An important task in analyzing integrated networks is the computation of node
embeddings, i.e. learning low-dimensional representation of integrated networks[24,
18]. Node embeddings aim to map each node in the network to a low dimensional
vector representation to extract features that represent the topological characteris-
tics of the network. Many techniques are developed for this purpose [8, 1, 22, 15], and
these techniques are shown to be effective in addressing problems such as link pre-
diction [23, 3], node classification [4], and clustering [17].

Different versions of a network have the same set of nodes and different sets of
edges. These different sets of edges may represent identical semantics but differ-
ent sources (e.g., protein-protein interaction (PPI) networks obtained from differ-
ent databases) or different semantics (e.g., physical PPIs vs. genetic interactions). In
many settings, it may not be possible or desirable to superpose multiple versions of
a network. For example, in integrated querying of networks from multiple databases,
computation of embeddings for all possible combinations may not be feasible or ef-
ficient [6]. Cho et al.[5] develop a method that uses random walk diffusion states of
individual networks to compute the node embedding of the integrated network. In
their method, node embeddings are learned from multiple n ×n matrices of proba-
bilities. However, the learning has to be performed at query time. From the perspec-
tive of efficiency and real-time query processing, computation of node embeddings
at query time is not desirable. A potentially more efficient approach is to use the
node embeddings of different versions to compute the embeddings of the integrated
network (as opposed to computing embeddings using the integrated network).

Motivated by this observation, we introduce the notion of "consensus embed-
dings" as node embeddings for the integrated network that are computed from the
embeddings of separate versions. To compute consensus embeddings, we use lin-
ear (singular value decomposition) and non-linear (variational autoencoder) dimen-
sionality reduction. Using multiple versions of protein interaction networks, we sys-
tematically assess the accuracy and efficiency of concensus embeddings in the con-
text of combinatorial link prediction queries. Our results show that use of consensus
embeddings in processing link prediction queries significantly improves computa-
tional efficiency, without significantly compromising the accuracy of link prediction.

2 Methods

2.1 Node Embedding
Node embedding aims to learn a low-dimensional representation of nodes in net-
works[16]. Given a graph G = (V ,E), a node embedding is a function f : V −→ Rd that
maps each node v ∈ V to a vector in Rd where d ¿ |V |. A node embedding method
computes a vector for each node in the network such that the proximity in the em-
bedding space reflects the proximity/similarity in the network.

In the last few years, many methods [8, 1, 22, 15] have been developed to compute
node embeddings in a given network. Methods usually differ in terms of how they
formulate the similarity between nodes (or the objective function that specifies the
correspondence between the embedding and network topology). Node embedding
methods can also be roughly divided into community-based approaches and role-
based approaches [16]. Community based approaches aim to preserve the similarity

Consensus Embeddings 3

Fig. 1: The proposed framework for the computation of consensus embeddings us-
ing dimensionality reduction methods. The graphs labeled Version i represent mul-
tiple versions of a network with a fixed node set and different (possibly overlapping)
edge sets. The objective is to compute node embeddings for the network obtained by
superposing these versions. At the absence of the integrated network, we compute
the consensus embedding by computing separate embeddings for each version and
then using dimensionality reduction to compute a common reduced-dimensional
space for these embedding spaces. Finally, we use the resulting consensus embed-
dings to perform downstream machine learning tasks on the integrated network.

of the nodes in terms of the communities they induce in the network. In contrast,
role based approaches aim to capture the topological roles of the nodes and map
nodes with similar topological roles close to each other in the embedding space. As
representatives of these different approaches, we here consider node2vec [8] as a
community-based approach and role2vec [1] as a role-based approach.

2.2 Consensus Embeddings

In this section, we formalize the problem of integrating multiple networks and com-
puting node embeddings. Let G1 = (V ,E1), G2 = (V ,E2), ...,Gk = (V ,Ek) be k versions
of a network with the same set of nodes and different sets of edges, i.e., all the ver-
sions have the same set of n nodes. We consider the integration of these k net-
works through superposition of their edges, i.e., we define the integrated graph as
G = (V ,E), where E =⋃k

i=1 Ei).

Assume that d-dimensional node embeddings Xi for Gi are given for 1 ≤ i ≤ k,
where Xi are n×d matrices and Xi (j) is a d-dimensional vector representing the em-
bedding of node v j ∈V according to graph Gi . Our objective is to use Xi to compute
d-dimensional node embeddings Xc for G , without using any other information on
each of the Gi s or G . We call Xc a consensus embedding.

This framework is illustrated in Figure 1, in which node embeddi ng can be
any method for the computation of node embeddings (we here use node2vec and

4 Mengzhen Li et al.

(a) SVD(Singular Value Decomposi-
tion)

(b) Autoencoder

Fig. 2: Illustration of dimensionality reduction methods used to compute consensus
embeddings.

role2vec), and di mensi onal i t y r educti on can be any dimensionality reduction
method (we here use SVD or variational autoencoder).

2.3 Computing Consensus Embeddings
The input to the computation of consensus embeddings is k n×d matrices X1, X2, ..., Xk .
To integrate these embeddings, we first create an n ×kd matrix X by concatenating
these k matrices. We then use dimensionality reduction on this matrix to compute
an n ×d matrix Xc , which represents the consensus embedding for G .

Singular Value Decomposition(SVD): Singular Value Decomposition(SVD) is a ma-
trix decomposition method for reducing a matrix to its constituent parts. The singu-
lar value decomposition of an m ×p matrix M , whose rank is r , is a factorization of
the form U SV T , where U is an m×r unitary matrix, S is an r ×r diagonal matrix, and
V is an p × r unitary matrix. S is a diagonal matrix and the diagonal values of S are
called the singular values of M .

Letting M = X in this formulation, we obtain n × r dimensional matrix U , r × r
dimensional matrix S, and nd × r dimensional matrix V , where r denotes the rank
of X and X = U SV T . Our objective is to compute a d-dimensional matrix Xc such
that Xc X T

c approximates X X T well. If we set our objective as one of choosing n ×
kd dimensional matrix Y with rank d to minimize the Frobenius or 2-norm of the
difference ||X −Y ||, then the optimal solution is given by the truncation of SVD to
the largest d singular values (and corresponding singular vectors) of X . Namely, let
U ′, S′, and V ′ denote the n ×d , d ×d , and kd ×d matrices obtained by choosing the
first d columns (also rows for S) of respectively U , S, and V . Then the matrix Y =
U ′S′V ′T provides the best rank-d approximation to X . Consequently, V ′ provides an
optimal mapping of the kd dimensions in X to d-dimensional space. Based on this
observation, SVD-based dimensionality reduction sets

X (SV D)
c = X V ′T , (1)

Consensus Embeddings 5

i.e., it maps the kd-dimensional concatenated embedding of each node of the graph
into the d-dimensional space defined by the SVD of X . Figure 2(a) shows the dimen-
sions of matrices when computing the consensus embeddings via SVD.

Variational Autoencoder: An autoencoder is an unsupervised learning algorithm
that applies backpropagation to obtain a lower-dimensional representation of data,
setting the target values to be equal to the inputs. The use of a convolutional autoen-
coder for dimensionality reduction in the context of computing consensus embed-
dings is shown in Figure 2(b). As seen in the figure, the autoencoder is a neural net-
work with kd inputs, each representing a column of the matrix X (i.e., a dimension
in one of the k embeddings spaces). The layer(s) on the left (encoder) map these kd
inputs to d latent features shown in the middle, which are subsequently transformed
into the kd output by the layer(s) on the right (decoder). While training the network,
each row of the matrix X (i.e., the embedding of each node) is used as an input and
the respective output. The neural network is trained using this loss function:

L(X ,Y) = ‖X −Y ‖2
F , (2)

where Y denotes the n ×kd matrix whose rows represent the outputs of the network
corresponding to the inputs that represent the rows of X . Thus the idea behind the
variational autoenconder is to learn an encoding of the kd input dimensions into the
d latent features (shown in the middle) such that the kd inputs can be reconstructed
by the decoder with minimum loss. Observe that this loss function is identical to
that of SVD; however, the use of neural networks provides the ability to perform non-
linear dimensionality reduction. Once the neural network is trained, we perform di-
mensionality reduction by retaining the d-dimensional output of the encoder that
corresponds to each of the n training instances (rows of the matrix X or nodes in V).
These n d-dimensional vectors comprise the matrix X (V AE)

C , i.e, consensus embed-
dings of the nodes in V computed by variational autoencoder.

In our implementation, we use a convolutional autoencoder [14]. Same as a stan-
dard autoencoder, a convolutional autoencoder also aims to output the same vectors
as the input. The convolutional autoencoder contains convolutional layers in the en-
coder part of the autoencoder. In every convolutional layter, there is a filter that slides
around the input matrix to compute the next layer. Convolutional autoencoder also
have pooling layers after each convolutional layer. In the decoder part, there are de-
convolutional layers and unpooling layers that recovers the input matrix.

2.4 Link Prediction

Link prediction is an important task in network analysis [13]. Given a network G =
(V ,E), link prediction aims to predict the potential edges that are likely to appear
in the network based on the topological relationships between pairs of nodes. Link
prediction can be supervised [7] or unsupervised [9]. For supervised link prediction,
the known links serve as positive samples and disconnected pairs of nodes serve as
negative samples. The embedding vectors of nodes are treated as feature vectors and
used to train the classifiers [23]. For unsupervised link prediction, the distances be-
tween pairs of vectors can be used to predict the proximity between nodes in the
network and thus predicts the potential edges by ranking the distances [3].

6 Mengzhen Li et al.

In our experiments, we use BioNEV [23] to test the performance of the link pre-
diction accuracy of the consensus embeddings. It is a supervised method that aims
to systematically evaluate embeddings. It outputs the AUC scores of the link predic-
tions using the embeddings.

2.5 Processing Combinatorial Link Prediction Queries for Versioned Networks

Consider the following scenario: A graph database houses k versions of a network (as
formulated at the beginning of this section). These k versions may either come from
different resources (e.g., different protein-protein interaction databases) or repre-
sent semantically different types of edges between a common set of nodes (e.g., ge-
netic interactions vs. physical interactions vs. functional association among human
proteins). In this setting, a “combinatorial" link prediction query can be formulated
as follows: The user chooses (i) a node q ∈ V , and (ii) a subset S ⊆ {G1,G2, ...,Gk }
of networks. The query seeks to identify the nodes that are most likely to be as-
sociated with the query node q based on the topology of the integrated network
G (S) = (V ,E (S)), where E (S) =⋃

i∈S Ei . Such a flexible query framework is highly useful
in the context of many applications, since the relevance and reliability of different
network versions can be variable, and different users may have different needs and
preferences.

The above framework defines a “combinatorial" query in the sense that a user
can select any combination of networks to integrate. This poses a significant com-
putational challenge as the number of possible combinations of networks is expo-
nential in the number of networks in the database, i.e., the user can choose from
2k − 1 possible combinations of networks. As we discuss in Section 2.4, there are
many different ways of processing the link prediction queries. Among existing ap-
proaches, embedding-based link prediction techniques method demonstrated suc-
cess in the context of many applications [23, 12]. Furthermore, embedding based
link-prediction can facilitate the development of effective solutions to the combina-
torial challenge associated with combinatorial link prediction queries, because link
prediction algorithms using node embeddings do not need to access to the network
topology while performing link prediction. By computing and storing node embed-
dings in advance, it is possible to efficiently process link prediction queries while
giving the user the flexibility to choose the combination of networks to integrate.

Two possible approaches to addressing the combinatorial challenge represent
two ends of the pre-processing/storage vs. query runtime trade-off:

– Exhaustive Pre-Computation: Compute the embeddings for each possible com-
bination, store those embeddings. When the user selects a combination, use the
embeddings for that combination directly. This approach minimizes query pro-
cessing time while maximizing storage and pre-processing cost.

– Network Integration at Query Time: Store the individual network versions in
the database without computing any embeddings before query. When the user
selects a combination, construct the integrated network, compute the embed-
dings, and then use the embeddings to process the query. This approach avoids
computing and storing an exponential number of embeddings, but performs all
computations during query processing.

Consensus Embeddings 7

Table 1: The description and size of the human protein-protein interaction (PPI)
networks used in our experiments.
Version: G1 G2 G3 G4 G5 G6 G7 G8

Interaction
Type:

Affinity
Capture-
MS

Affinity
Capture-
RNA

Affinity
Capture-
Western

Negative
Genetic

Positive
Genetic

Synthetic
Growth
Defect

Synthetic
Lethality

Two-
hybrid

Edges: 13472 3160 6132 65369 13018 9295 6842 4202

Consensus embeddings provide an alternate solution that can render storage fea-
sible while enabling real-time query processing for very large networks and large
number of versions:

– Consensus Embedding at Query Time: Compute and store the embeddings for
each network separately. When the user selects a combination, compute a con-
sensus embedding for that combination and use it to process the query.

One important consideration in the application of this idea is the “inexact" nature of
consensus embeddings, i.e., consensus embeddings may not adequately capture the
information represented by the embeddings computed on the integrated network.
In the following section, we perform computational experiments to characterize the
inexact nature of consensus embeddings on the accuracy of link prediction. We also
investigate the earnings provided by consensus embeddings in terms of the required
computational resources in processing combinatorial link prediction queries.

3 Results and Discussion

In this section, we present comprehensive experimental results on versioned net-
works in link prediction and discuss the implications of the results.

3.1 Datasets:

In our computational experiments, we use protein-protein interaction (PPI) networks
obtained from BioGRID [20]. PPI networks contain physical interactions and func-
tional associations between pairs of proteins. The dataset we use contains multiple
PPI networks separated based on experimental systems. Each network (version) con-
tains a unique type of PPI (genetic or physical). The types of the interactions repre-
sented by each network version are shown in Table 1. In order to obtain multiple
networks with the same set of nodes, we remove the nodes (proteins) that do not
exist in all versions. After preprocessing, all versions have 1025 nodes and different
numbers of edges ranging from 3160 to 65369. The type of PPI and the number of
edges for each network are shown in Table 1.

3.2 Accuracy of Link Prediction

We compare the link prediction performance of the node embeddings computed
on integrated networks and consensus embeddings computed based on the embed-
dings of individual networks. We consider two embedding algorithms, Node2vec [8]

8 Mengzhen Li et al.

and Role2vec [1], and two methods for computing consensus embeddings, SVD and
variational autoencoder. To assess link prediction performance, we use BioNEV[23],
a Python package that is developed to assess the performance of various tasks that
utilize network embeddings. Given a network and its node embeddings, BioNEV gen-
erates random training and testing sets to evaluate the link prediction performance
of the embedding. BioNEV uses the known interactions as positive samples and ran-
domly selects the negative samples. Both samples are split into a training set(80%)
and a testing set(20%). For each node pair, BioNEV concatenates the embeddings of
two nodes as the edge feature and then build a binary classifier. Using BioNEV, we
obtain the area under ROC curve (AUC scores) for the link prediction performance
of node embeddings generated using different methods.

Figure 3 shows the performance of consensus embeddings in link prediction com-
pared with the performance of the integrated networks’ embeddings. In each figure,
the AUC of link prediction is shown as a function of the number of network versions.
When there is a single version, the consensus embedding is identical to the embed-
ding of the individual network. We observe that, on average, the accuracy of link pre-
diction goes down with increasing number of versions that are integrated. However,
the performance difference between embedding of integrated network and consen-
sus embeddings becomes smaller with increasing number of versions. This observa-
tion suggests that the utility of concensus embeddings can be more pronounced for
network databases with larger number of versions. We also observe that there is con-
siderable variance of accuracy across different combinations with the same number
of versions, indicating that some combinations of PPI types are more informative in
predicting new PPIs as compared to other combinations.

As seen in Figure 3, accuracy of link prediction is improved with increasing num-
ber of dimensions in node embeddings. Importantly, with growing number of di-
mensions, the link prediction performance of consensus embeddings converge to
that of the embeddings computed on the integrated network. Across the board, con-
sensus embeddings computed using linear dimensionality reduction (SVD) deliver
more accurate link prediction as compared to those computed using variational au-
toencoder. Since the edge set of the integrated network is a union of the edges of
individual networks, the adjacency matrix of the integrated matrix can be approx-
imated with a linear combination of the adjacency matrices of the individual net-
works. This might be the reason why linear dimensionality reduction performs better
than neural networks. Finally, we observe that Node2vec delivers consistently more
accurate link prediction as compared to Role2vec. The performance of consensus
embeddings on larger numbers of networks is also better with Node2vec as com-
pared to Role2vec. This is not surprising as Node2vec is based on communities in the
network whereas Role2vec is based on roles. Integration of versions can change the
topological features (e.g. degrees or paths) of the individual versions, and thus can
have a stronger effect on the "roles" of nodes as compared to communities. There-
fore, the embeddings computed via Role2vec are less robust to slight variations in
network topology.

Consensus Embeddings 9

(a) number of dimensions = 16

(b) number of dimensions = 64

Fig. 3: Accuracy of consensus embeddings in link prediction. Results are shown for embed-
ding methods Node2vec (left panels) and Role2vec (right panels). For each point k on the x
axis, each point in the plot shows the area under ROC curve (AUC) of link prediction for a
specific combination of k network versions. The lines show the average AUC across all com-
binations as a function of the network versions that are integrated. The blue, yellow, and red
points/lines respectively show the accuracy provided by the embeddings computed directly
on the integrated network, consensus embeddings computed using variational autoencoder,
and consensus embeddings computed using SVD.

3.3 Computational Resource Requirements

In this section, we investigate whether consensus embeddings improve the efficiency
of processing link prediction queries. For this purpose, we first compare query pro-
cessing time for consensus embeddings computed using different methods (SVD
and autoencoder) against embeddings computed at query time after integrating the
combination of networks selected by the user. We use a high performance computing
environment with a 2.2 GHz processor and 4GB memory. The results of this analysis
are shown in Figure 4. As seen in the figure, processing queries using consensus em-
beddings drastically improves the efficiency of query processing. For both node2vec
or role2vec, “Consensus Embedding at Query Time" using SVD enables processing
of combinatorial link prediction queries in real time across the board, while integra-
tion of networks at query time requires orders of magnitude more time to process
these queries. In most cases, "Consensus Embedding at Query Time" convolutional

10 Mengzhen Li et al.

(a) number of dimensions = 16

(b) number of dimensions = 64

Fig. 4: Runtime of combinatorial link prediction queries using network embeddings. The
blue dots (for each combination) / curves (average of all combinations with the respective
number of versions) show the query time corresponding to the “Network Integration at Query
Time" approach described in Section 2.5, while the red and yellow dots/curves show the query
time corresponding to the “Consensus Embedding at Query Time". Results are shown for two
node embedding algorithms, Node2vec (left panel) and Role2vec (right panel), and two meth-
ods for computing consensus embeddings, SVD (yellow) and autoencoder (red). Each row
shows a different number of dimensions for node embeddings.

autoencoder is also faster than "Network Integration at Query Time", but its perfor-
mance degrades with increasing number of networks that are being integrated.

The runtime of computing an embedding increases as networks become denser,
especially for node2vec. As seen in 4, the blue dots are separated into two groups for
node2vec. This is because G4 is extremely dense (see Table 1), making the integrated
networks that contain G4 also dense. Therefore, combinations that contain G4 have
a significantly higher query runtime as compared to those that do not contain G4.
Computation of consensus embeddings using SVD is more robust to this effect.

Next, we investigate the trade-off between the earnings in query runtime and
pro-processing time/storage requirements. As discussed in Section 2.5, we consider
three options for the processing of combinatorial link prediction queries. While the
trade-off between storage/pre-processing vs. query runtime requirements for each
of these approaches is intuitive, we also assess the performance of each approach in
the context of this trade-off. The results of this analysis are shown on Table 2.

Consensus Embeddings 11

Table 2: Assessment of the trade-off between pre-processing time, storage requirements,
and query runtime for combinatorial link prediction on versioned networks. Results are
shown for a database of 8 network versions and 64-dimensional embeddings. SVD is used to
compute consensus embeddings.

Storage Preprocess time Query Runtime
Exhaustive Precomputation 180 MB 32676.624s 0s

Network Integration at Query Time 1.02 MB 0s 128.144 ± 60.627s
Consensus Embedding at Query Time Time 10.0 MB 490.354s 1.840 ± 0.745s

(a) Node2vec

Storage Preprocess time Query Runtime
Exhaustive Precomputation 322 MB 38278.802s 0s

Network Integration at Query Time 1.02 MB 0s 150.113 ± 17.222s
Consensus Embedding at Query Time Time 5.53 MB 1036.038s 1.616 ± 0.822s

(b) Role2vec

As seen on Table 2, “Exhaustive Pre-Computation" makes query processing time
extremely efficient since node embeddings are readily available during query pro-
cessing with this approach. However, pre-processing time and storage requirements
grow exponentially with the number of versions in the database, making this ap-
proach infeasible for practical applications. “Network Integration at Query Time" has
zero pre-processing time, storage goes up linearly with the number of versions, but
the query processing time is very slow because it needs to compute embedding at
query time. “Consensus Embedding at Query Time" effectively balances this trade-
off by as it requires pre-processing time and storage that grows linearly with the num-
ber of versions, but has always fast query processing time. In our experiments, there
are 8 networks. However, in many practical settings, the number of networks can be
large enough to render storage of all combinations infeasible.

4 Conclusion

In this work, we consider the problem of computing node embeddings for integrated
networks derived from the multiple network versions. We define consensus embed-
dings as the node embeddings of the integrated network computing using the em-
beddings of individual versions. We test the performance of link prediction of the
consensus embeddings and found that accuracy of consensus embeddings is close
to the accuracy of embeddings computed directly from the integrated network. Our
runtime analyses show that consensus embeddings are much more efficient than
computing embeddings from the integrated network of multiple versions.

References

1. N. Ahmed, R. A. Rossi, J. B. Lee, X. Kong, T. L. Willke, R. Zhou, and H. Eldardiry. Learning
role-based graph embeddings. ArXiv, abs/1802.02896, 2018.

12 Mengzhen Li et al.

2. S. K. Ata, Y. Fang, M. Wu, X.-L. Li, and X. Xiao. Disease gene classification with metagraph
representations. Methods, 131:83 – 92, 2017.

3. A. Bojchevski and S. Günnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

4. S. Cavallari, V. W. Zheng, H. Cai, K. C.-C. Chang, and E. Cambria. Learning community
embedding with community detection and node embedding on graphs. In Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management, CIKM ’17, page
377–386, New York, NY, USA, 2017. Association for Computing Machinery.

5. H. Cho, B. Berger, and J. Peng. Compact integration of multi-network topology for func-
tional analysis of genes. Cell systems, 3(6):540–548, 2016.

6. T. Cowman, M. Coşkun, A. Grama, and M. Koyutürk. Integrated querying and version
control of context-specific biological networks. Database, 2020, 04 2020. baaa018.

7. H. R. de Sá and R. B. C. Prudêncio. Supervised link prediction in weighted networks. In
The 2011 International Joint Conference on Neural Networks, pages 2281–2288, 2011.

8. A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. CoRR,
abs/1607.00653, 2016.

9. T.-T. Kuo, R. Yan, Y.-Y. Huang, P.-H. Kung, and S.-D. Lin. Unsupervised link prediction
using aggregative statistics on heterogeneous social networks. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’13, page 775–783, New York, NY, USA, 2013. Association for Computing Machinery.

10. J. Lin, L. Zhang, M. He, H. Zhang, G. Liu, X. Chen, and Z. Chen. Multi-path relationship
preserved social network embedding. IEEE Access, 7:26507–26518, 2019.

11. Z. Ma, J. Ma, Y. Miao, and X. Liu. Privacy-preserving and high-accurate outsourced disease
predictor on random forest. Information Sciences, 496:225 – 241, 2019.

12. K. Mallick, S. Bandyopadhyay, S. Chakraborty, R. Choudhuri, and S. Bose. Topo2vec: A
novel node embedding generation based on network topology for link prediction. IEEE
Transactions on Computational Social Systems, 6(6):1306–1317, 2019.

13. V. Martínez, F. Berzal, and J.-C. Cubero. A survey of link prediction in complex networks.
ACM Comput. Surv., 49(4), Dec. 2016.

14. J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked convolutional auto-encoders
for hierarchical feature extraction. In T. Honkela, W. Duch, M. Girolami, and S. Kaski, edi-
tors, Artificial Neural Networks and Machine Learning – ICANN 2011, pages 52–59, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

15. B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations.
CoRR, abs/1403.6652, 2014.

16. R. A. Rossi, D. Jin, S. Kim, N. Ahmed, D. Koutra, and J. B. Lee. From community to role-
based graph embeddings. ACM Trans. Knowledge Discovery from Data (TKDD), 2019.

17. B. Rozemberczki, R. Davies, R. Sarkar, and C. Sutton. Gemsec: Graph embedding with self
clustering. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining, ASONAM ’19, page 65–72, New York, NY, USA, 2019.
Association for Computing Machinery.

18. X. Shen, Q. Dai, S. Mao, F. Chung, and K. Choi. Network together: Node classification
via cross-network deep network embedding. IEEE Transactions on Neural Networks and
Learning Systems, pages 1–14, 2020.

19. K. Shobha and S. Nickolas. Integration and rule-based pre-processing of scientific publi-
cation records from multiple data sources. In S. Satapathy, editor, Smart Intelligent Com-
puting and Applications, pages 647–655, 2020.

20. C. Stark, B.-J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers. BioGRID: a
general repository for interaction datasets. NAR, 34(suppl_1):D535–D539, 01 2006.

21. C. Su, J. Tong, Y. Zhu, P. Cui, and F. Wang. Network embedding in biomedical data science.
Briefings in Bioinformatics, 21(1):182–197, 12 2018.

Consensus Embeddings 13

22. J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale information
network embedding. In WWW, pages 1067–1077, 2015.

23. X. Yue, Z. Wang, J. Huang, S. Parthasarathy, S. Moosavinasab, Y. Huang, S. M. Lin,
W. Zhang, P. Zhang, and H. Sun. Graph embedding on biomedical networks: methods,
applications and evaluations. Bioinformatics, 36(4):1241—1251, February 2020.

24. J. Zhang, C. Xia, C. Zhang, L. Cui, Y. Fu, and P. S. Yu. Bl-mne: Emerging heterogeneous
social network embedding through broad learning with aligned autoencoder. In 2017
IEEE International Conference on Data Mining (ICDM), pages 605–614, 2017.

