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Abstract. Network alignment is a commonly encountered problem in
many applications, where the objective is to match the nodes in different
networks such that the incident edges of matched nodes are consistent.
Gromov–Wasserstein (GW) distance, based on optimal transport, has
been shown to be useful in assessing the topological (dis)similarity be-
tween two networks, as well as network alignment. In many practical ap-
plications of network alignment, there may be “seed” nodes with known
matchings. However, GW distance assumes that no matchings are known.
Here, we propose Generalized GW-based Network Alignment(GGWNA),
with a loss/distance function that reflects the topological similarity of
known matching nodes. We test the resulting framework using a large
collection of real-world social networks. Our results show that, as com-
pared to state-of-the-art network alignment algorithms, GGWNA can
deliver more accurate alignment when the seed size is small. We also
perform systematic simulation studies to characterize the performance
of GGWNA as a function of seed size and noise, and find that GGWNA
is more robust to noise as compared to competing algorithms. The im-
plementation of GGWNA and the Supplementary Material can be found
in https://github.com/Meng-zhen-Li/Generalized-GW.git.
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1 Introduction

Network alignment is the problem of aligning nodes that belong to the same
entity from different networks based on the similarity of their connections [14].
In social networks, network alignment is often used to match the users that are
the same person [12]. In biological networks, network alignment is used to identify
molecules with similar evolutionary history and/or biological function [8].

Gromov-Wasserstein (GW) distance [9] is a measure that aims to quantify
the distance between two networks (or similarity matrices) based on their topo-
logical (dis)-similarity. The formulation of GW derives an optimal transport
(OT) [16], which compares probability distributions and minimizes the trans-
port cost between the distributions [11]. There are many existing variations of
GW distance. Entropic GW distance [10] introduces an entropic regularizer to



2 Mengzhen Li et al.

Fig. 1: Illustration of the seed-informed network alignment problem.
Given the blue and red networks, and the known mappings of some nodes in the
networks (solid green lines), the objective is to identify mappings of other nodes
(dashed green lines) to maximize topological consistency.

the loss function. Sliced GW [15] projects each distribution in an 1D form and
improves efficiency.

The computation of GW distance between two networks also entails compu-
tation of a fuzzy mapping (the “transport” matrix) between the nodes of the
two networks, which is useful for network alignment. Motivated by this observa-
tion, many recent studies develop GW-based methods for network alignment[2,
17]. GW is also shown to be useful in computing node embeddings for multiple
networks, by jointly performing graph alignment and node embedding [17].

The classical formulation of GW distance and its existing variations assume
that the mapping between the nodes of the two networks is unknown (or ir-
relevant) and formulate the optimization problem purely based on topology.
However, in graph alignment applications involving real-world networks, there
are some known matchings (Figure 1), which can be used as prior knowledge in
computing the mapping of remaining node pairs [4]. In this paper, we propose
a novel framework for Gromov-Wasserstein based network alignment and intro-
duce a new loss function that takes into account the known matchings between
the two networks as “seed nodes” used to guide the alignment process. The
proposed “generalized Gromov-Wasserstein distance” fixes the known match-
ing of seed nodes in the optimal transport, while incorporating the topological
consistency of these nodes in the loss function. We comprehensively assess the
performance of the proposed Generalized Gromov-Wasserstein-based Network
Alignment (GGWNA), in comparison to standard GW-based alignment, as well
as other network alignment algorithms[18, 5]) on a rich corpus of social networks
and synthetic datasets. We also investigate the effect of several factors and hyper-
parameters on the performance of GGWNA and other algorithms: 1) the number
of seed nodes that are available, 2) the node overlap between the networks, 3) the
divergence of edges between the two networks, and 4) the relative importance
assigned to he topological consistency between seed vs. free matchings in our loss
function. Our results show that (i) the use of seed matchings greatly improves
the accuracy of GW-based alignment, (ii) GGWNA performs better when more
attention is given to the topological consistency of the seed nodes, (iii) GGWNA
is drastically more robust than non-GW based algorithms to small seed sizes
and more divergence between the networks. These results establish GW-based
algorithms as a compelling alternative for seed-driven network alignment, while
also enabling computation of GW distance for a broader range of networks.
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2 Background

2.1 Optimal Transport

Optimal transport [10] minimizes the mapping cost between two probability
distributions. Suppose that p ∈ R+

m and q ∈ R+
n are two distributions, given a

cost matrix Cij ∈ Rm×n representing the transport cost from i to j. The optimal
transport problem aims to find a matrix T to minimize the transport cost:

minimize
∑
i,j

Ci,jTi,j subject to: T ∈ Rm×n
+ : T1m = p, TT

1n = q. (1)

This optimization problem can be solved using quadratic optimization[13]. In
our experiments, we compute the optimal transport using the Python Optimal
Transport (POT) package [3].

2.2 Gromov-Wasserstein Distance

Based on the optimal transport theory, GW distance [9] was proposed as a
measure to quantify the (dis)similarity between two matrices. GW distance is
defined between (C1, p) and (C2, q), where C1 and C2 are two similarity matrices
that represent the pairwise similarities or distances of elements, p and q are the
two distributions that represent the relative importance of the elements [10].

This representation can be applied to quantifying the (topological) dissimi-
larity between two networks G1 and G2, as C1 ∈ Rm×m and C2 ∈ Rn×n can be
selected as the adjacency matrices of G1 and G2. In its most general setting, the
GW distance between two adjacency matrices C1 and C2 is defined as:

GW (C1, C2, p, q) = min
T

∑
i,j,k,l

L(C1(i, k), C2(j, l))T (i, j)T (k, l) (2)

where i and k refer to nodes inG1, j and l refer to nodes inG2, p and q are vectors
representing the relative importance of the nodes in the two networks, L(.) is a
loss function, and T is constrained by p and q as in (1). In common applications of
Gromov-Wasserstein based network distance, quadratic loss L(a, b) = 1

2 |a − b|2
is used along with uniform distributions for p and q, i.e., p = 1

m1m and 1 =
1
n1n [10].

2.3 Network Alignment Problem

Network alignment aims to find a matching between the nodes of two networks,
G1 = (V1, E1) and G2 = (V2, E2) to maximize the consistency of the incident
edges of matched nodes. Network alignment algorithms differ in terms of how
they formulate an objective function to reflect this aim, as well as how they
solve the resulting optimization problem(s) [5, 6, 18]. Network alignment algo-
rithms can be supervised [18] or unsupervised [5]. GW-based network alignment
formulates the problem as an optimization problem as in (2), where T represents
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the resulting mapping of the nodes. Here, we consider the seeded variant of the
problem, where the matching between a subset of nodes S = V1 ∩ V2 is known.
The objective of seeded network alignment is to find a mapping between the
nodes in V1 − S and V2 − S to maximize topological consistency.

3 Methods

3.1 Generalized Gromov-Wasserstein with Known Matching Nodes

Suppose that we have two networks G1 = {V1, E1} and G2 = {V2, E2} such that
a subset of nodes S = V1∩V2 is common. We aim to compute T , |V1−S|×|V2−S|
transport matrix such that T (i, j) provides a mapping of the remaining nodes
that maximizes topological consistency of the networks, given S.

Generalized Gromov-Wasserstein Distance. Let C1 and C2 denote the
adjacency matrices of G1 and G2. Reorganize matrix Ci (i = 1, 2) as follows:

Ai Bi

B′
i Di




S

S

Here, Ai corresponds to the edges between nodes that exist in both networks,
Bi and B′

i correspond to edges between one node in S and one node outside
S, and Di corresponds to edges that are between nodes outside S. Since the
mapping of nodes in S are fixed, the topological consistency of A1 and A2 is not
informative on the mapping of the nodes in V1 −S vs. V2 −S. Thus we consider
the topological consistency of B1 vs B2, B

′
1 vs B′

2, and D1 vs D2 to generalize
Gromov-Wasserstein distance for this scenario:

L1 =
∑

i,k∈V1−S
j,l∈V1−S

1

2
(D1(i, k)−D2(j, l))

2T (i, j)T (k, l) (3)

L2 =
∑
i∈S

k∈V1−S
l∈V1−S

1

2
(B1(i, k)−B2(i, l))

2T (k, l)2 (4)

Here, L1 is the same as the GW distance between D1 and D2. L2 considers each
common node i ∈ S, and penalizes the inconsistencies in the neighborhood of i
created by the mapping of other nodes in the networks. We define the generalized
Gromov-Wasserstein distance as the weighted sum of these two loss functions:

Lgeneralized = min((1− α)L1 + αL2) (5)

Here, 0 ≤ α ≤ 1 is a parameter that balances the relative importance of prior
information (edges with one side fixed) vs. free mappings (edges with both sides
to be mapped). Increasing α assigns more weight to L2, so that the learning
algorithm depends more on the known matchings instead of other nodes. α = 0
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corresponds to standard GW distance between D1 and D2 (ignoring the parts
of G1 and G2 that are induced by the seeds), while α = 1 corresponds to taking
into account the edges incident to seeds only.

Peyré et al.[10] propose an efficient learning algorithm for computing the GW
distance by incorporating a 4-way tensor L and a tensor matrix multiplication
L ⊗ T . The loss function of Gromov-Wasserstein distance can be rewritten as:

GW (C1, C2, T ) = ⟨L(C1, C2)⊗ T, T ⟩ (6)

in which L(C1, C2)⊗ T is the cost matrix C in the optimal transport.A decom-
position of L(C1, C2)⊗ T is also proposed to improve efficiency.

The optimal transport can be computed by solving a quadratic optimiza-
tion problem [13]. Building on this approach, we propose an efficient learn-
ing algorithm for computing the Generalized GW disance by generalizing the
quadratic problem to fit our objective function. For this purpose, we first define
a |V1 − S| × |V2 − S| matrix:

E(k, l) =
∑
i∈S

(B1(i, k)−B2(i, l))
2 (7)

which is a constant matrix and can be computed by matrix operations. Then
the loss function of the generalized Gromov-Wasserstein becomes:

Lgeneralized = ⟨(1− α)L(D1, D2)⊗ T + αE ⊙ T, T ⟩ (8)

where E⊙T is the element-wise multiplication of E and T , and (1−α)L(D1, D2)⊗
T + αE ⊙ T is the cost matrix C.

We use Algorithm 1 to compute the Generalized GW distance of two net-
works. We first initialize the optimal transport T as the outer product of p and
q (defined in Section 2.1). At each iteration, we compute the gradient direction
of T and use Algorithm 2 to compute the optimal learning rate τ to minimize
the cost of T + τ∆T :

τ = arg min
0≤τ≤1

Lgeneralized(T + τ∆T ) (9)

The update function L1 is derived in [13] as a quadratic function of τ . Using E
as defined above, we derive the following update function for L2:

L2(B1, B2, T +τ∆T ) =
∑

k∈V1−S
l∈V1−S

E(k, l)(∆T (k, l)τ2+2T (k, l)∆T (k, l)τ +T (k, l)2)

(10)
Thus the update function for Lgeneralized can also be expressed as a quadratic
function of τ . We then compute the optimal learning rate τ as the value that
minimizes the resulting update function for Lgeneralized and update T accord-
ingly. When τ = 0 or ∆T is less than a threshold, the process converges and
stops. The complexity of the algorithm is O(mn2 + m2n), where m and n are
the number of nodes in V1 − S and V2 − S.
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Algorithm 1 Optimization for GGWNA

1: T (0) ← pqT

2: for i = 1, 2, . . . do
3: C ← cost matrix of the iteration
4: T ← OT (C, T (i−1))
5: ∆T ← T − T (i−1)

6: τ (i) ← line search using algorithm 2
7: T (i) ← T (i−1) + τ (i)∆T
8: end for

Algorithm 2 Line Search

1: a← −2(1− α)⟨D1∆TD2,∆T ⟩+ α⟨E ⊙ T (i−1), T (i−1)⟩
2: b ← (1 − α)⟨cD1,D2 ,∆T ⟩ - 2(1 − α)(⟨D1∆TD2, T

(i−1)⟩ + ⟨D1T
(i−1)D2,∆T ⟩) +

2α⟨E ⊙ T (i−1),∆T ⟩
3:
4: c← Lgw(T )
5: if a > 0 then
6: τ ← min(1,max(0, −b

2a
))

7: else
8: τ ← 1 if a+ b ≤ 0 else τ ← 0
9: end if

Algorithm 3 Greedy Matching

Require: optimal transport T ∈ Rp×q

Ensure: array M ∈ Rmin(p,q)×2 of matchings
1: M ←− ∅
2: while size of M < min(p, q) do
3: i, j ←− the row and column indices of max(T )
4: if i /∈M(1) and j /∈M(2) then
5: add node pair [i, j] to M
6: end if
7: end while

3.2 Seeded Network Alignment Using Optimal Transport

Having computed the optimal transport matrix T , we aim to find an optimal
matching between the two networks. For a pair of nodes i ∈ G1 and j ∈ G2,
Tij is assigned a larger value by the optimal transport algorithm if the local
topology around them are more similar (also considering their edges with the
nodes in S). While there are many algorithms in the literature to compute a
discrete mapping of the nodes based on the weights in T [1], these algorithms
are computationally costly. Here, since our focus is on computing T (as opposed
to using T to compute a mapping), we use a simple greedy algorithm (Algorithm
3) to compute a mapping T , thereby enabling repeated computational experi-
ments to compare the proposed algorithm against alternative algorithms. The
framework we propose here can be used with any matching algorithm once T
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Table 1: The networks used in the experiments. Left: Real network pairs.
Right: Networks used to create network pairs in simulation studies .

Network Pairs #Nodes #Edges #Matchings

Douban Offline 1118 1511
1118

Douban Online 3906 8164

ACM 9872 39561
6325

DBLP 9916 44808

Twitter 5120 130575
1609

Foursquare 5313 54233

Phone 1000 41191
1000

Email 1003 4627

Networks #Nodes #Edges

Facebook 4039 88234
lastfm 7624 27806
Arxiv 5242 14496

is computed using Algorithm 1. In each iteration of this algorithm, we find the
row and column indices of the maximum value in T , and align the corresponding
pair of nodes. If one of the nodes is already aligned, we skip the pair and find
the next maximum value in T , until min(|V1 − S|, |V2 − S|) nodes are aligned.

4 Experimental Results

4.1 Datasets

We use real-world social network pairs to compare GGWNA with other network
alignment algorithms. The network pairs [18] used in our experiments are shown
in Table 1. Douban is an online social network providing user review and recom-
mendation services for movies, books, and music. ACM and DBLP are two co-
authorship networks, in which nodes indicate authors and edges indicate that the
two authors published at least one paper together. The twitter-foursquare data
includes friend relationships from two online social networks, and the overlaps
are the people who are in both networks. In the Phone-Email dataset [19], the
Phone and Email networks respectively correspond to communications among
people via phone and emails. For all datasets, the matchings are the users that
are identified as the same person in different social networks.

Besides real-world network pairs, we perform simulation studies on real-world
network[7] to generate synthetic network pairs with controlled characteristics.
We assess the effect of the following variables in simulation studies(figure 2):

– Network pairs with different levels of divergence: For each network
G = (V,E) in Table 1, we generate 10 networks by adding or removing
γ|E| edges from G, where γ represents divergence (also referred to as noise,
varying from 0.05 to 0.8). In the experiments, we align the 10 new networks
with the original network G and assess the mean and variance of accuracy.

– Divergent network pairs with identical degree distribution: For each
network G = (V,E) in table 1, we generate 10 divergent networks with γ:
0.05, 0.1, 0.2, 0.4, 0.8. To preserve degree distribution, we randomly remove
two randomly selected edges (i, j), (k, l) ∈ E, and add edges (i, k) and (j, l)
at each iteration of the randomization process (repeated γ|E|/2 times).
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(a) Adding noise by adding/removing randomly selected edges. Left: Original network.
Upper right: Dashed edge is removed. Lower right: Red edge is added to the network.

(b) Adding noise by swapping nodes in two randomly selected edges. Left: Original
network. Right: Network after one edge swap.

Net
wor

k 1

Network 2

(c) Splitting a network into two networks with fixed overlap. The red nodes selected
from the original graph are the overlapping nodes of the new graphs.

Fig. 2: Simulation techniques used to generate synthetic network pairs.

– Network pairs with different levels of node overlap: We simulate the
case when two partial observations of a network are aligned. We generate 10
network pairs with different levels of node overlap: 0.1, 0.2, 0.4, 0.8. For a
network G = (V,E) in Table 1(Right), we split it into two networks, where
λ|V | (λ denotes the overlap parameter) nodes appear in both networks, and
other nodes are equally distributed in the two networks. If there is an edge
(i, j) ∈ E, then edge (i, j) also appears in the new networks. After the pair
is constructed, we add 20% noise to both networks as described above.

4.2 Baseline Methods

GW: The Gromov-Wasserstein distance was introduced in Section 2.2. We learn
the optimal transport matrix using all nodes (including seed nodes) to apply the
greedy matching algorithm, ignoring the seed matching.

FINAL [18] is a supervised network alignment method for attributed networks.
The FINAL algorithm leverages the node/edge attribute information to guide
topology-based alignment process. In our experiments, the networks are not at-
tributed networks, so the node attribute matrices are empty, and only topological
consistencies are considered. We use the default hyperparameters of FINAL.



GGWNA 9

Fig. 3: Comparison of network alignment algorithms on real-world net-
work pairs. The x-axis shows the percent of overlap that are used to train the
models. The curves and error bars show the means and variances across 10 runs.
Here, α = 0.8 for GGWNA (the effect of this parameter is shown in Figure 4).

REGAL [5] first learns a node embedding for each network by a proposed matrix
factorization technique (xNetMF). Then, the embeddings are used to compute
the cross-network node similarities of each pair of nodes.

4.3 Experimental Setup

We compare our method with the baseline methods in terms of the accuracy
of network alignment. Let S′ = V1 ∩ V2 denote the set of all known matching
in the two networks. For a given “seed size” σ (fraction of known matchings in
the training set), we randomly select σ|S′| nodes from S′ to construct S. The
remaining nodes in S′−S become the test test. For all algorithms S is provided as
the set of seed matching and the resulting mapping of the node pairs in S′−S is
obtained by using the greedy matching algorithm (Algorithm 3) on the weighted
mapping matrix returned by the algorithm. The accuracy is of alignment is then
computed as the fraction of correctly aligned pairs in S′−S. All the experiments
are repeated 10 times, and the averages and variances are shown in the figures.
The x-axes of all figures are in log scale.

4.4 Results on Real Network Pairs

The network alignment accuracy of the four algorithms on four different pairs of
real network pairs as a function of seed size is shown in Figure 3. On all datasets,
GGWNA and FINAL clearly outperform GW and REGAL. In addition, for
all datasets, GGWNA outperforms FINAL for smaller seed sizes, while FINA
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Fig. 4: The effect of α on the performance of GGWNA. The x-axis shows
percent overlap used to train the models and the error bars show the variances.

outperforms GGWNA when the seed size is large. These results suggest that
GGWNA is quite robust to smaller seed size.

In most cases, the accuracy of GGWNA increase as the seed size becomes
larger, but the performance of GGWNA begins to decline when the seed size is
too large (40% or 80%). The reason might be: As the seed size becomes larger,
the Di part of the adjacency matrices (Section 3.1) is smaller and will have less
weight in the loss function. Therefore, the learning process depends more on the
topological features of the seed nodes and less on the topological similarities of
the nodes in the test set. FINAL performs better than GGWNA when more seed
nodes are used in training, but 80% seed sizes can be unrealistic in practice. GW
and REGAL do not work well on these datasets, and since they are unsupervised,
the accuracy does not increase as the seed size becomes larger.

Figure 4 shows the effect of α on the performance of GGWNA. Overall,
the accuracies of GGWNA increases as α increases from 0.2 to 0.8, but the
performance goes down in most cases as we increase α to 1, since we depend too
much on the known matchings instead of the topology. As α goes higher, the
weight of the known matchings increases, and the optimal transport will depend
more on B1 and B2 parts of the adjacency matrices.

4.5 Results on Simulated Pairs of Networks

We investigate the effect of various parameters using simulated network pairs(figure 2).
We show the results on networks generated using the Facebook dataset here, the
results of other datasets are in the Supplementary Material.

The Effect of Divergence/Noise. As seen in Figure 5, the accuracy of the
algorithms declines as the two networks diverge. GGWNA is most robust against
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Fig. 5: Accuracy of network alignment accuracy as a function of
noise/divergence between networks. Top: Uniform noise, Bottom: Degree-
preserving noise. The seed sizes are 10% (left), 20% (center), and 50% (right).

Fig. 6: Network alignment accuracy on partial observations of a net-
work. Two networks are samples from the original network, with overlap levels
from 10% to 80% as shown on the x-axis. 20% random noise is added to each net-
work. Seed size: 10% (left), 20% (center), 50%(right) of the overlapping nodes.

noise, the accuracy decreases slightly as the noise level increases. The accuracy
of FINAL improves as the seed size increases from 0.05 to 0.8, but GGWNA
remains at a higher accuracy even when the seed size is small. Accuracy declines
more sharply for degree-preserving noise (bottom panel), since this presents a
more difficult instance for the algorithms (i.e., the algorithms cannot use node
degree information to match the nodes), which can be more relevant in practice.

Partial Observations of a Network. From the results on real network pairs
(Figure 3), we observe that GGWNA works better than other techniques when
the node overlap between nodes the networks is larger (e.g. the ACM-DBLP and
phone-email datasets). In the experimens reported in Figure 6, we investigate the
effect of node overlap between two observations of a single network. As seen in
the figure, the accuracy of all algorithms improves as the node overlap becomes
larger, especially for GGWNA. However, GGWNA is still robust to smaller seed
sizes as there is no obvious differences between the curves of the three subplots.
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5 Conclusions

In this paper, we proposed generalized Gromov-Wasserstein for network align-
ment (GGWNA), by introducing a new loss function that takes into account
the connectives of seed nodes for which matchings are known. We compared the
accuracy of the algorithm on real network pairs as well as simulated pairs, and
showed that our generalized GW outperforms other network alignment methods
at most time, and it is robust to high divergence between networks and smaller
seed sizes. Avenues for future research include introducing labels into the loss
function, and applying generalized GW to a broader range of types of networks.
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