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Abstract

Motivation: In recent years, various network proximity measures have been proposed to facilitate

the use of biomolecular interaction data in a broad range of applications. These applications in-

clude functional annotation, disease gene prioritization, comparative analysis of biological systems

and prediction of new interactions. In such applications, a major task is the scoring or ranking of

the nodes in the network in terms of their proximity to a given set of ‘seed’ nodes (e.g. a group of

proteins that are identified to be associated with a disease, or are deferentially expressed in a cer-

tain condition). Many different network proximity measures are utilized for this purpose, and these

measures are quite diverse in terms of the benefits they offer.

Results: We propose a unifying framework for characterizing network proximity measures for set-

based queries. We observe that many existing measures are linear, in that the proximity of a node to

a set of nodes can be represented as an aggregation of its proximity to the individual nodes in the set.

Based on this observation, we propose methods for processing of set-based proximity queries that

take advantage of sparse local proximity information. In addition, we provide an analytical framework

for characterizing the distribution of proximity scores based on reference models that accurately cap-

ture the characteristics of the seed set (e.g. degree distribution and biological function). The resulting

framework facilitates computation of exact figures for the statistical significance of network proximity

scores, enabling assessment of the accuracy of Monte Carlo simulation based estimation methods.

Availability and Implementation: Implementations of the methods in this paper are available at

https://bioengine.case.edu/crosstalker which includes a robust visualization for results viewing.

Contact: stm@case.edu or mxk331@case.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The use of molecular interaction networks for inferring biological

function is well-established in systems biology (Legrain and Rain,

2014). In earlier applications, computational methods treated net-

works as ‘bags of pairwise interactions’, where inference on individual

molecules was based on direct interacting partners of the molecule of

interest (Lage et al., 2007). Later developments suggested that incor-

porating network context drastically improves functional inference.

In other words, the paths in molecular interaction networks, as well

as their length and multiplicity, provide information on the functional

relationships among biomolecules. Motivated by these observations, a

number of measures for quantifying the topological relationship of

the nodes in a network have been developed (Halld�orsson and

Sharan, 2013). While the focus of these methods is not limited to

quantifying proximity per se, we here refer to these measures as net-

work proximity measures for brevity.
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1.1 Network proximity measures and their applications
Common network proximity measures shown to be successful in

systems biology applications include random walk with

restarts (Macropol et al., 2009; Hofree et al., 2013), network

propagation (Vanunu et al., 2010), network diffusion (Vandin

et al., 2010), topological similarity (Erten et al., 2011b; Lei and

Ruan, 2013) and diffusion state distance (Cao et al., 2013).

Applications of these measures include functional annotation of

individual biomolecules, prioritization of candidate disease

genes (Erten et al., 2011b; Vanunu et al., 2010), network-guided dis-

covery of disease associated processes and pathways (Patel

et al., 2013; Zhang et al., 2013) and the interpretation of cancer

mutations in a broader context (Hofree et al., 2013; Kim

et al., 2011; Vandin et al., 2010). These methods usually simulate a

form of information flow in the network and quantify the proximity

between two nodes based on the amount of information that flows

between the two nodes. Topological similarity and diffusion state

take this information one step further and capture the topological

relationship between two nodes by comparing them to other nodes

in the network (Cao et al., 2013; Erten et al., 2011b).

1.2 Quantifying proximity to a set of ‘seed’ nodes
While network proximity measures are designed to assess the topo-

logical relationship between a pair of nodes in a network, their

applications reach beyond pairwise relationships. In most applica-

tions, researchers are interested in quantifying the topological rela-

tionship between sets of nodes, or ranking the nodes in the network

based on their proximity to a given ‘seed’ set of nodes. For example,

in the context of candidate disease gene prioritization, the object-

ive is to rank a set of candidate genes based on the proximity of

their products to the products of genes implicated in similar

diseases (Navlakha and Kingsford, 2010). Similarly, in the context

of functional annotation, a specific function is usually associated

with multiple proteins (Pritykin et al., 2015). In this case, the poten-

tial association of a protein with a given function is assessed based

on its proximity to the set of proteins that are associated with the

function. Furthermore, in many cases, when researchers identify a

set of molecules with altered expression or activity in a certain ex-

periment, an important follow-up question is to identify functional

commonalities among these molecules (Nibbe et al., 2009). While

enrichment analysis is commonly applied in these applications, some

experimental technologies generate information with low coverage,

and therefore identification of molecules that are functionally

related to the identified set of molecules can be useful (Nibbe

et al., 2010).

Consider the example shown in Figure 1. In the figure, an inter-

action network is shown with seed nodes filled in dark grey. The

seed nodes may be proteins or genes identified by experimental or

computational methods such as differential RNA/protein expres-

sion, differential phosphorylation or other PTMs, frequently

mutated genes in a specific condition, or genes containing SNPs with

potential associations. In Figure 1A, we observe that seeds are uni-

formly distributed throughout the network in general, but are dense

in the area expanded in Figure 1B. Under the guilt-by-association

principle in interaction networks, the seeds in and around the dense

area of Figure 1B are likely functionally related, whereas the seeds

spread throughout the network are unrelated or not known to be

related. A proximity measure such as Random Walk with Restarts

(RWR) can identify the genes/proteins in the dense area of Figure 1B

because walks restarting and proceeding in the dense region spend a

significant amount of time traversing the proteins in this area. Thus,

the RWR score for these genes/proteins is higher than other areas in

which there is a lower density of the seeds. A caveat of this approach

is highlighted in Figure 1C., in which some seeds are in proximity to

high degree nodes frequently because high degree nodes are in prox-

imity to a large portion of the network. This inflates the RWR scores

of high degree nodes compared to other nodes even when no func-

tional association exits. Additional steps can be taken to normalize

scores to account for this bias, such as using Monte-Carlo simula-

tions with random seed sets to adjust the scores for each gene/pro-

tein by its score distribution.

1.3 Linearity of network proximity measures
The focus of this study is on quantifying the network proximity be-

tween each node in the network and a given ‘seed set’ of nodes. We

investigate a common property of network proximity measures,

namely linearity. We observe that multiple network proximity meas-

ures are linear in that the proximity to a set of nodes (seed set) can

be written as a linear combination of proximity to the individual

nodes in the seed set. We argue that linearity can be exploited for

indexing and efficient computation of network proximity for set-

based queries, as well as analytical characterization of the distribu-

tion of network proximity. We also generalize betweenness central-

ity to be constrained to a set of nodes such that it exhibits a similar

property, in that betweenness centrality with respect to a set of

Fig. 1. (A) An example interaction network where nodes represent molecules

such as genes or gene products and edges represent interactions such as

protein–protein interactions or co-expression. Dark nodes represent ‘seed’

nodes to be analyzed in the context of the interaction network, e.g. the query

aims to find additional molecules that are functionally related to the mol-

ecules in the seed set. (B) Functionally related seeds appear near one another

in the interaction network under the ‘guilt-by-association’ principle. Non-seed

nodes in this area rank high because they are in proximity to many seeds. (C)

Seeds randomly distributed across the network appear around high degree

‘hub’ nodes by chance more than they appear around low degree nodes. It is

important to correct for this trend statistically to avoid scoring hub nodes

high when they are in proximity to a large portion of molecules in the net-

work, and thus likely to score high by chance
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nodes (seed set) can be written as a linear combination of the betwe-

enness centrality with respect to pairs of nodes in the seed set.

1.4 Applications of linearity
We discuss two potential applications of linearity: (i) efficient com-

putation of set-based queries using sparse indexes constructed

from proximity profiles of individual nodes, (ii) precise character-

ization of the distribution of network proximity scores. First, we

discuss how linearity can be exploited to index ‘proximity to

nodes’ a priori and efficiently process queries that involve proxim-

ity to node sets. Subsequently, we provide a general framework for

computing the mean and standard deviation of proximity of a

given node to a subset of nodes with given properties. The pro-

posed framework applies to any measure that is linear, and can be

useful in accurately characterizing the significance of proximity to

a set of nodes.

In various studies, it has been shown that network proximity

measures can be biased by such factors as node degree (Erten

et al., 2011b), and statistical correction based on a background dis-

tribution of these scores can improve the predictive ability of these

measures (Nibbe et al., 2010). However, in systems biology, the

common practice is to estimate the statistics of these distributions

using Monte-Carlo simulations (also called permutation tests) (Guo

et al., 2015; Kr€amer et al., 2014; Garcia-Alonso et al., 2012; Ideker

et al., 2002). The framework we present here provides the ability to

construct reference models that take into account important charac-

teristics of the network and the seed set, such as the degree distribu-

tion and the types or functional background of molecules in the seed

set. It also provides a theoretically grounded method for exact char-

acterization of the distributions of network proximity based on

these flexible reference models. In this study, we also use these ana-

lytical results to assess the accuracy of Monte Carlo simulations in

capturing the basic characteristics of the distribution of network

proximity scores.

1.5 Experimental results
In our experiments, we use random walk with restarts (RWR) as

the benchmark proximity measure and perform systematic ex-

periments to assess whether node-based indexing can improve effi-

ciency of computing RWR-based proximity to a ‘seed set’ of nodes

in protein-protein interaction (PPI) networks. Since the proposed

sparse indexing scheme stores partial information, we also assess

the accuracy of proximity scores computed via sparse indexing.

Our results show that sparse indexing drastically improves the effi-

ciency of computing set-based network proximity queries without

compromising accuracy. We also perform systematic experiments

to assess the accuracy of Monte Carlo simulations in estimating

the mean and variance of RWR-based network proximity. Our re-

sults suggest that the choice of the number of simulations has a sig-

nificant effect on the accuracy of figures computed via Monte

Carlo simulations. Specifically, we observe that estimates of mean

and variance based on a small number of simulations diverge sig-

nificantly from actual figures; however, Monte Carlo simulations

produce robust estimates when a sufficient number of simulations

is used.

1.6 Organization of the paper
In the next section, we introduce the notion of linearity of network

proximity measures. Subsequently, we prove that several network

proximity measures are linear. We then discuss how linearity can be

exploited to index node-based proximity for efficient computation

of proximity to seed sets. Subsequently, we present our framework

for characterizing the distribution of network proximity scores. In

Section 3, we report the findings from our computational experi-

ments. We conclude our discussion and outline avenues for future

research in Section 4.

2 Materials and Methods

In this section, we define linearity of network proximity meas-

ures and show that commonly used network proximity measures

such as random walk with restarts, network propagation, effective

importance, network diffusion and betweenness centrality sat-

isfy this property. We then discuss how this property can be used for

indexing and efficient computation of network proximity scores for

sets of nodes, and to analytically characterize their distribution.

2.1 Linearity of network proximity measures
Let G ¼ ðV;EÞ denote a graph with a set of vertices V and a set of

edges E � V � V. Let S � V be a subset of vertices in this graph.

Let h denote a jVj-dimensional vector function that represents the

‘network proximity’ between the vertices in S and any other vertex

in the graph. For example, h can be the network proximity between

S and any other vertex in the graph based on random walk with re-

starts, computed by setting the restart vector to have non-zero elem-

ents in the entries that correspond to vertices in S.

The primary motivation for this work is the observation that a

class of common network-proximity measures can be written as a

linear combination of the proximities to the vertices or pairs of verti-

ces in the set S. Namely, we say a network proximity measure hS is

linear if it can be written as follows:

hS ¼
X
v2S

fSðvÞhv (1)

Here, fS weights the score vector each v contributes to the solution

(e.g. fS assigns different restart probabilities or confidence levels to

each v 2 S). In many cases the entries in fS are all identical. In this

case, we use the scalar form fS outside the summation to simplify

notation.

To further generalize this notion, we also define linearity over

pairs of nodes in S. Namely, we say a network proximity measure pS

is pairwise linear if it can be written as follows:

pS ¼
X

s;t2S�S

fSðstÞpfstg (2)

In other words, a network proximity measure pS is pairwise linear if

it can be written as a weighted sum of the vectors pfstg over all pairs

of vertices in S.

Next, we show that multiple network proximity measures are lin-

ear, i.e. the measures satisfy Equation (1). Subsequently, we discuss

how a common network centrality measure, betweenness centrality,

can be formulated as a proximity measure that is pairwise linear.

2.1.1 Linearity of random walk with restarts

For a given graph G ¼ ðV;EÞ represented by adjacency matrix W
and a subset S � V of vertices, random walk with restarts based

proximity is defined as:

h
ðrwÞ
S ¼ ð1� rÞW0hðrwÞS þ reS; (3)

where eS is an n-dimensional restart vector with eSðvÞ ¼ 1=jSj if v

2 S; eSðvÞ ¼ 0 otherwise, r is the restart probability parameter, and
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W0 is the stochastic matrix derived from the adjacency matrix W.

That is, the rows of W0 are normalized by vertex degree such that

W0i;j ¼ Wi;j=
P

kWi;k.

THEOREM 1. Random walk with restart based network proximity,

h
ðrwÞ
S , is a linear network proximity measure.

PROOF. Note that random walk with restart based proximity to a sin-

gle vertex v 2 V; hðrwÞv , is defined as in Equation (3) with restart vec-

tor ev. Now observe that we can write Equation (3) as:

h
ðrwÞ
S � ð1� rÞW0hðrwÞS ¼ reS ! ðI � ð1� rÞW0ÞhðrwÞS ¼ eS

and hence the solution to the linear system is given by

h
ðrwÞ
S ¼ rðI � ð1� rÞW0Þ�1eS

hðrwÞv can be similarly rearranged. Consequently, letting

X ¼ rðI � ð1� rÞW0Þ�1, we have h
ðrwÞ
S ¼ XeS and hðrwÞv ¼ Xev.

Furthermore, since eS ¼ 1
jSj
P

v2S ev, we obtain:

h
ðrwÞ
S ¼ XeS ¼ X

1

jSj
X
v2S

ev ¼
1

jSj
X
v2S

Xev ¼
1

jSj
X
v2S

hðrwÞv :

Therefore, h
ðrwÞ
S is linear with fS ¼ 1=jSj.

2.1.2 Linearity of network propagation

Another commonly used network proximity measure is network

propagation (Vanunu et al., 2010), defined as:

h
ðnpÞ
S ¼ ð1� rÞW00hðnpÞ

S þ ryS (4)

where yS is an n-dimensional vector similar to eS representing prior

knowledge of disease associations of nodes in S, r is a parameter

that balances prior knowledge with propagated information andW00
is derived from the adjacency matrix W. Namely, the entries of W00
are the entries of W normalized by the geometric mean of the de-

grees of the edge end-points, i.e.W00i;j ¼ Wi;j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dði; iÞDðj; jÞ

p
where D

is a diagonal matrix such that Dði; iÞ ¼
P

jWi;j.

ySðvÞ ¼ 1 for v 2 S, and 0 otherwise, so yS ¼
P

v2S yv. The proof

for the linearity of h
ðrwÞ
S immediately generalizes to h

ðnpÞ
S because the

formulations of the two methods are identical with the exception

that they use different methods to normalize the adjacency matrix.

Therefore, h
ðnpÞ
S is linear with fS ¼ 1.

2.1.3 Linearity of effective importance

Effective importance (Bogdanov and Singh, 2013) is defined as:

h
ðeiÞ
S ðvÞ ¼ h

ðrwÞ
S ðvÞ=dðvÞ (5)

where dðvÞ is the degree of vertex v or the total edge weight of v.

This is simply h
ðrwÞ
S with a vector weight fS, i.e. fSðvÞ ¼ 1=ðjSjdðvÞÞ.

Therefore, h
ðeiÞ
S is h

ðrwÞ
S multiplied by a constant, so h

ðeiÞ
S is linear.

2.1.4 Linearity of network diffusion

Network diffusion (Qi et al., 2008) of a set S is defined as:

h
ðndÞ
S ¼ GbS (6)

Where bSðvÞ ¼ 1 if v 2 S and 0 otherwise, and G is a constant ma-

trix derived from a column normalized adjacency matrix and a dif-

fusion parameter c similar to r in h
ðrwÞ
S . Because bS ¼

P
v2S bv, it

immediately follows that h
ðndÞ
S ¼

P
v2S Gbv. Therefore, h

ðndÞ
S is linear

with fS ¼ 1.

2.1.5 Linearity of betweenness centrality

Betweenness centrality is a measure of the network centrality of a

node, which is based on the number of shortest paths that go

through the node. In a graph G ¼ ðV;EÞ, the betweenness centrality

CBðvÞ of a vertex v 2 V is usually defined as follows:

CBðvÞ ¼
X

s;t2V 0�V 0

rstðvÞ
rst

: (7)

Here, V 0 ¼ Vnfvg, rst denotes the total number of shortest paths

connecting s and t, and rstðvÞ denotes the number of shortest paths

connecting s and t that pass through v.

While betweenness centrality is not a measure of network prox-

imity, it can be formulated to assess the ‘betweenness’ of a node

with respect to a subset of vertices, thereby providing an alternate

measure of being interconnected to a subset of vertices. For this pur-

pose, we define a vector function similar to CB that operates on a

vertex pair and is defined for all v 2 V:

pfstgðvÞ ¼
0 if v 2 fs; tg
rstðvÞ
rst

otherwise

8><
>: (8)

We can now define p
ðbcÞ
S for a subset of vertices S, which measures

the proportion of shortest paths each v 2 V appears on between all

pairs s; t 2 S, i.e.:

p
ðbcÞ
S ¼

X
s;t2S�S

pfstg (9)

Observe that p
ðbcÞ
S is not linear (i.e. it does not satisfy Equation (1)),

but it is pairwise linear by definition [i.e. it satisfies Equation (2)

with fS ¼ 1]. Note also that p
ðbcÞ
V ðvÞ ¼ CBðvÞ.

2.2 Applications of linearity
2.2.1 Indexing and efficient computation

If a network proximity measure is linear (or pairwise linear), the

score of a node with respect to a set S of nodes can be computed

from the scores of individual elements of S. For this reason, for a

given query ‘seed set’ S, the proximity of other nodes in the network

to S can be computed more efficiently than by using standard meth-

ods. For this purpose, hv for all nodes in the network or pfstg for

each pair of nodes in the network can be pre-computed, or

‘indexed’, and used later in Equations 1 or 2 to compute the solution

for any S.

The time required to build the index depends on the complexity

of the proximity measure. For example, for random walk with re-

starts, the proximity vector for each node can be computed via itera-

tive sparse matrix-vector multiplications in HðtjEjÞ time, where

t denotes the number of iterations until convergence. Thus the index

can be built in HðtjVjjEjÞ. Note that index construction is highly

parallelizable since the computation is performed independently for

each node. The space requirement of this index is HðjVj2Þ.
Once the index is available, h

ðrwÞ
S ; h

ðnpÞ
S ;h

ðeiÞ
S and h

ðndÞ
S can be

computed with the index in HðjSjjVjÞ time, where we usually have

jSj � jVj. On the other hand, for h
ðrwÞ
S ;h

ðnpÞ
S and h

ðeiÞ
S the computa-

tion without the index requires HðtjEjÞ time. The definition of h
ðndÞ
S

is the same as our index formulation because G is constant, so it has

no alternative runtime.

Similarly, p
ðbcÞ
S can be computed HðjSj2jVjÞ with the use of an

index. The most efficient algorithm for computing betweenness cen-

trality in sparse graphs is Brandes’ algorithm (Brandes, 2001), which

requires OðjVjjEjÞ time. While this algorithm can be modified to
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take advantage of indexing as well, brute force computation

with indexing would also outperform Brandes algorithm when

jSj2 ¼ oðjEjÞ, which is often the case since seed sets are rather small.

2.2.2 Sparse indexing

If set-based proximity queries are repeatedly processed in an appli-

cation, then the indexing scheme described in the previous section

can be useful. However, the storage requirement of the index can be

limiting for very large networks, since the number of values that

needs to be stored is quadratic in the number of nodes. To alleviate

this problem, the index can rather be constructed using local search

methods that identify the closest K neighbors (with respect to the

proximity measure) of each node v, and the corresponding K prox-

imity values can be used to build a ‘sparse’ index. Local search meth-

ods leverage the fact that nodes distant from v have low proximity

scores with negligible local effects that can be treated as zero (Wu

et al., 2014). At sparsity level K, each row of the index contains only

the K closest neighbors of each node in the network, and a method

such as K-dash is used (Fujiwara et al., 2012) to compute the full

sparse index in time OðjVj2 þ jVjjEjÞ. Once the sparse index is con-

structed, the proximity vector for a given seed set S can be computed

by performing the summation in Equations 1 or 2 for only those

entries that are present in the index. This computation can be per-

formed in HðjSjjKjÞ time, and storage of the index requires only Hðj
VjjKjÞ time. Similar strategies can be applied to indexes for pairwise

linear measures, which would be significantly sparse for measures

such as betweenness centrality.

The sparseness of the index balances accuracy with space com-

plexity, where a full index computes exact solutions and a sparse

index computes an approximate solution. For this reason, in the

‘Results’ section, we compare runtimes and solutions from a sparse

index method to iterative and analytic methods to assess the trade-

off between the savings in storage and accuracy.

2.2.3 Characteristic distributions of hS and pS

In computational biology, an important consideration is the distri-

bution of scores generated by scoring functions, since this distribu-

tion influences the interpretation of scores. In the context of

network proximity to a subset of nodes, multiple studies have shown

that correction of node scores based on a background distribution

improves the accuracy of predictions that are based on these

scores (Erten et al., 2011a; Nibbe et al., 2010; Kr€amer et al., 2014).

Furthermore, while characterizing the distribution of network prox-

imity scores, the reference model needs to accurately capture back-

ground information. Since molecular interaction networks are

characteristic in their topological properties, including their degree

distribution, a background model that takes into account these topo-

logical properties is desirable. Similarly, while assessing proximity

to a subset of nodes, it is desirable to take into account the proper-

ties of the nodes in the subset of interest, e.g. if the subset is

composed of phosphoproteins, then an accurate reference model can

be ‘proximity to a fixed-sized subset of phosphoproteins’, rather

than ‘proximity to a fixed-sized subset of nodes’. The common prac-

tice today is to characterize the distribution of network proximity

scores using permutation tests (Erten et al., 2011a; Kr€amer

et al., 2014; Nibbe et al., 2010).

Here, we show that linearity of network proximity measures can

be exploited to derive exact forms for mean and variance of network

proximity scores. The approach we propose allows the incorporation

of a broad range of reference models. Namely, we assume that the net-

work is fixed and the set of query nodes S is variable. We are

interested in the distribution of hS based on a reference model that

generates S. The properties of the nodes in S are determined in the ref-

erence model; for example, the degree distribution of the nodes in S is

known or the functional classification of some of the nodes in S

is known. Assume that there are m such properties. We represent

this reference model by partitioning V into m subsets of nodes,

Q1;Q2; . . . ;Qm, where Qi represents the subset of nodes in the net-

work possessing property i, and Qi \ Qj ¼1 for i 6¼ j. Note, the

union of all Qi is not required to be V. Since the set S is given, we

know the distribution of the nodes in S to bins Q, i.e. Li ¼ S \ Qi.

In this setting, the number of nodes in the network that possess prop-

erty i is given by jQij, whereas the number of nodes in S that possess

the same property is given by jLij.
The purpose of the partitioning-based model is to accurately cap-

ture the ‘background’ characteristics of the seed set, thereby provid-

ing an accurate reference model for the hypothesis being tested.

Specifically, the null hypothesis here is as follows: the individual

proximity of each node to the seed set stems from a specific charac-

teristic (e.g. the degrees of the nodes) of the seed set, as opposed to

the specific biological process(es) represented by the seed set. This

partitioning based model allows representation of different reference

models by choosing different criteria for partitioning. Based on this

reference model, the linearity property defined in Equation (1) can

be used to derive an expression for the expected value of network

proximity scores for all nodes.

THEOREM 2. Let GðV;EÞ be a network, h be a linear network prox-

imity measure defined on this network, and Q and L denote a ref-

erence model for a query set S. For a subset T of size jSj that is

generated by uniformly sampling jLij nodes from Qi for

1 � i � m, the expected value of hT is given by:

EðhTÞ ¼ fS

Xm
i¼1

X
v2Qi

jLij
jQij

hv (10)

Due to space considerations, the proof of Theorem 1 is pro-

vided in the Supplementary Material. The main idea behind the

proof of this theorem is the observation that the proximity to

each vertex in the graph contributes to the expected value in

proportion to the relative number of vertices that share the

same property. By counting the number of subsets that contain

a given number of vertices with a given property, the contribu-

tion of each vertex to the expected value can be precisely com-

puted. Using Equation (10), the expected value of proximity to

a set with given properties can be computed in OðjVj2Þ time

for linear proximity measures.

Using the reference model specified above, we also derive the vari-

ance of the proximity scores for a seed set with given properties.

THEOREM 3. For the reference model specified in Theorem 1, the

expected value of h2
T is given by the following expression:

Eðh2
TÞ ¼ f 2

S

Xm
i¼1

jLij
jQij

X
v2Qi

hðvÞ2
 !

þ2f 2
S

X
jQi j>1

jLijðjLij � 1Þ
jQijðjQij � 1Þ

X
u;v2Qi

huhv

 !

þ2f 2
S

X
Qi 6¼Qj

jLijjLjj
jQijjQjj

X
u2Qi ;v2Qj

huhv

0
@

1
A

(11)
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The proof of this theorem is provided in the Supplementary

Material. This proof follows the lines of the proof for the pre-

vious theorem. Using Equation (11), the variance of proximity

to a set with given properties can be computed in OðjVj3Þ
time for linear proximity measures.Finally, using the same ref-

erence model, we derive an expression for the expected value

of a pairwise linear proximity measure.

THEOREM 4. For the reference model specified in Theorem 1, the

expected value of pT is given by the following expression:

EðpTÞ ¼ fS

X
jQi j>1

jLijðjLij � 1Þ
jQijðjQij � 1Þ

X
u;v2Qi

puv

 !
þ

X
Qi 6¼Qj

jLijjLjj
jQijjQjj

X
u2Qi ;v2Qj

puv

0
@

1
A

(12)

The proof of this theorem, which is based on a generalization of

Theorem 1, is also provided in the Supplementary Material. Using this

result, the expected value of proximity to a set with given properties can

be computed in OðjVj3Þ time for pairwise linear proximity measures.An

important requirement of our reference model is that the nodes

of the network be partitioned to the bins of Q. For example,

each v 2 V appears in zero or one Qi. It is not straightforward

to generalize the proofs for the preceding analytical forms for

E(X) and EðX2Þ to the case when bins overlap, since sampling

of S will result in dependencies between different bins (a node that is

assigned to multiple bins cannot be selected more than once). It is

possible to bypass this problem by constructing bins for each intersec-

tion. The problem with this approach, however, is that it will greatly

increase the number of bins, limiting the descriptiveness of the refer-

ence model for a given seed set. Therefore, the generalization of our

analytical results to the case with overlapping bins is an open problem

of interest.

3 Results

3.1 Datasets
For the input networks, we use the STRING (Szklarczyk

et al., 2015) and BioGRID (Chatr-aryamontri et al., 2015) net-

works. We include only high confidence(confidence score � 0:7),

human interactions from STRING, which results in a network of

15 524 nodes and 320 462 edges. BioGRID is more sparse than

STRING and contains limited interaction confidence information,

so we include all human interactions, which results in a network of

14 638 nodes and 144 708 interactions.

3.2 Experimental setup
We perform all experiments using random walk with restarts

(RWR) as the network proximity measure with the restart probabil-

ity r¼0.5. We sample random seed sets S of sizes 20, 50, 100, 500

and 1000 from the set of all proteins V of each network. For each S,

we analytically compute the mean and standard deviation of the dis-

tribution of scores for a random seed set that mirrors the degree dis-

tribution of S using the equations in Section 2.2.3 and a full index.

We also estimate these figures using Monte Carlo simulations based

on 10k random instances, where k ranges from 2 to 4, for both an it-

erative method and sparse indexes. We vary the sparsity of the

indexes to include the closest 10j neighbors, where j ranges from 1

to 3, but this is a soft limit that includes all nodes with the jth

highest proximity score. This process is replicated 50 times for

each size jSj and the results are averaged to generalize the overall

response. Figures apply only to the STRING network. The

BioGRID results exhibit the same trends and are available in the

Supplementary Material.

3.3 Runtime with sparse indexing
We first evaluate the differences in runtime between the index meth-

ods and conventional iterative methods for computing random walk

scores. We include the runtime for a full index along with sparse

indexes here for comparison and the results are shown in Figure 2.

As seen in the figure, the index methods are more stable and efficient

in terms of computation time, and runtime decreases at higher levels

of sparsity.

3.4 Accuracy in the estimation of statistics
In Figure 3, the 1-norm of the difference between the analytic distri-

bution vectors and estimated vectors, normalized by the 1-norm of

the analytic vectors, are shown respectively for mean and standard

deviation. These figures assess the deviation of sampling from the

correct statistics as a fraction of the correct statistics. The mean and

standard deviation vectors estimated by the simulation methods are

relatively close to the true analytically computed values when a suf-

ficient number of simulations are used. The vectors computed from

indexes containing fewer than 103 nearest nodes begin to deviate

significantly from the other methods.

3.5 Ranking of nodes based on proximity
Next, we investigate how estimation of mean and standard devi-

ation affects ranking of nodes. For each seed set S, we compute ad-

justed proximity scores for each node as ðhSðvÞ � lvÞ=rv, where lv

and rv respectively denote mean and standard deviation of the prox-

imity of v to a seed set with ‘similar’ degree distribution to the input

seed set S. For example, sets with similar degree distribution to the

input set S can be generated by binning nodes from the network to

the seed node with the smallest absolute difference in degree out of

all v 2 S, and then sampling 1 node randomly from each bin to

generate sets of the same size as S (Erten et al., 2011a; Nibbe

et al., 2010).

We use our analytical method and estimation methods to com-

pute this mean and standard deviation, obtain adjusted vertex scores

Fig. 2. Runtime comparison of index methods to iterative methods for comput-

ing random walk with restarts. The full index includes proximity of each node to

all other nodes in the network, while the Top-K sparse indexes include the prox-

imity of each node to the closest K nodes. Runtimes for all sizes jSj are included

for each plot (Color version of this figure is available at Bioinformatics online.)
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for each method and use the adjusted scores to rank the nodes ac-

cording to their adjusted proximity to the seed set. Note if rv ¼ 0,

which occurs in the Monte Carlo methods primarily when using low

numbers of simulations, the adjusted score takes an undefined or in-

finite value. We then determine the concordance in the rankings ob-

tained by the simulation methods versus our analytic method using

the Kendall rank correlation coefficient s, which is the number of

concordantly ranked pairs minus the number of discordantly ranked

pairs divided by the total number of ranked pairs (Kendall, 1938).

s values range from �1 to 1 where values closer to 1 indicate greater

agreement between the estimation method and analytic method

rankings. We observe that the estimation methods rank the nodes

very similarly to the analytic method when 104 Monte Carlo simula-

tions are used. We also observe that the ranking becomes less accur-

ate for sparser indexes, but is equivalent to the iterative method

when 103 nearest nodes are used (Fig. 4).

3.6 Identification of statistically significant nodes
Finally, we explore how variation in the ranking of nodes by simula-

tion methods affects classification of statistically significant nodes.

We classify nodes as significant or non-significant by our analytic

solution, where significant nodes have adjusted scores>3.45, cor-

responding to a P-value<0.001 under the assumption that the ad-

justed scores are normally distributed (Nibbe et al., 2010). We then

compute the recall and precision with which the estimation methods

classify nodes as significant/non-significant using the same signifi-

cance criteria. In Table 1, we list the precision and recall of the itera-

tive and sparse index estimation methods respectively, when using

104 Monte-Carlo simulations. The sparse index method performs

nearly equivalent to the iterative method across all sizes jSj for the

index of 103 nearest nodes. The effects of index sparseness on accur-

acy are most apparent for the index of 10 nearest neighbors, which

shows significantly lower recall than the other methods for jSj ¼ 20.

4 Discussion and future work

4.1 Sparsity and simulation accuracy
Our computational experiments suggest that 104 Monte-Carlo simu-

lations are adequate to ensure accurate score distribution estimates

for protein and gene interaction networks, in which the number of

nodes and edges are respectively less than 2� 104 and 4� 105. In

our experiments, sparse computations were accurate for indexes of

the 10 nearest neighbors of each node when the seed set size was

over 100, but more neighbors were required for smaller seed sets.

While generalizing these results to other networks, it would be best

practice to identify the response for different sparsity levels with the

analytical methods, particularly if a network has significantly differ-

ent characteristics from our test networks (e.g. the network is not

scale free or is significantly larger).

4.2 Relation to non-linear measures
It is important to note that the results presented in this paper are

limited to network proximity measures that satisfy our definition of

linearity(i.e. proximity to a set is a weighted sum of proximity to

each element of the set). There exist proximity measures that are not

linear by our definition (e.g. average topological similarity; Erten

et al., 2011b) and such measures can be more useful than linear

measures in various contexts. It is not straightforward to extend the

theoretical framework presented here to non-linear measures, but

the results presented here may provide a stepping stone toward

deriving exact analytical solutions for non-linear measures as well.

4.3 Biological relevance
In this work, we focus on the numerical accuracy of the significance

figures computed by simulation studies. An interesting follow-up

question is the impact of accurate assessment of statistical signifi-

cance on the biological relevance of results. While it has been

Fig. 3. The normalized 1-norm of the mean and standard deviation vectors

computed analytically versus vectors estimated by iterative and sparse index

simulation methods. Each data point is the average over 50 randomly drawn

inputs S (Color version of this figure is available at Bioinformatics online.)

Fig. 4. The Kendall rank correlation of the node rankings computed by the

analytic method versus Monte Carlo simulations of the sparse index and it-

erative methods. Each data point is the average over 50 randomly drawn in-

puts S (Color version of this figure is available at Bioinformatics online.)

Table 1. Accuracy of the iterative and sparse index methods when

classifying vertices as significant/non-significant at P< 0.001 sig-

nificance level

Iterative Top-1000 Top-100 Top-10

jSj Prec Rec Prec Rec Prec Rec Prec Rec

20 0.97 0.98 0.97 0.97 0.95 0.95 0.92 0.72

50 0.98 0.99 0.98 0.98 0.97 0.98 0.96 0.94

100 0.99 1.00 0.99 0.99 0.99 1.00 0.98 0.99

500 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99

1000 0.97 0.96 0.97 0.96 0.97 0.96 0.96 0.96

The distributions are estimated using 104 Monte-Carlo simulations.
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already shown that adjustment of random walk scores based on

node degree improves the biological relevance of results in specific

contexts (Nibbe et al., 2010; Erten et al., 2011b), comprehensive

analysis that involves functional annotations can lead to further

insights.

5 Conclusion

We have proposed a common framework for linear network prox-

imity measures that facilitates set-based queries from sparse local

search proximity data, as well as exact figures for the mean and

standard deviation of proximity scores relative to a query set. Using

our analytic methods, we show that sparse local search data can be

used to compute proximity to a query set with little impact on accur-

acy compared to iterative methods. In addition, our analytic meth-

ods are tractable and can be used as the basis for deterministic

algorithms that utilize proximity score distributions.
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