
Random Walks with Variable Restarts

for Negative-Example-Informed Label Propagation

Sean Maxwell
Department of Computer and Data Sciences

Case Western Reserve University

stm@case.edu

Mehmet Koyutürk
Department of Computer and Data Sciences

Case Western Reserve University

mxk331@case.edu

Abstract

Label propagation is frequently encountered in machine learning and data mining applica-
tions on graphs, either as a standalone problem or as part of node classification. Many label
propagation algorithms utilize random walks (or network propagation), which provide limited
ability to take into account negatively-labeled nodes (i.e., nodes that are known to be not
associated with the label of interest). Specialized algorithms to incorporate negatively labeled
samples generally focus on learning or readjusting the edge weights to drive walks away from
negatively-labeled nodes and toward positively-labeled nodes. This approach has several dis-
advantages, as it increases the number of parameters to be learned, and does not necessarily
drive the walk away from regions of the network that are rich in negatively-labeled nodes.

We reformulate random walk with restarts and network propagation to enable “variable
restarts”, that is the increased likelihood of restarting at a positively-labeled node when a
negatively-labeled node is encountered. Based on this reformulation, we develop CusTaRd,
an algorithm that effectively combines variable restart probabilities and edge re-weighting to
avoid negatively-labeled nodes. In addition to allowing variable restarts, CusTaRd samples
negatively-labeled nodes from neighbors of positively-labeled nodes to better characterize the
difference between positively and negatively labeled nodes. To assess the performance of Cus-
TaRd, we perform comprehensive experiments on four network datasets commonly used in
benchmarking label propagation and node classification algorithms. Our results show that
CusTaRd consistently outperforms competing algorithms that learn/readjust edge weights,
and sampling of negatives from the close neighborhood of positives further improves predictive
accuracy.

Keywords: Random Walk, Label Propagation, Negative Examples

1 Introduction

Label propagation is a commonly encountered problem in data mining and machine learning ap-
plications on network and graph-structured data [6, 19]. The problem entails assigning labels to
nodes of a graph based on knowledge of the labels of a set of “seed” nodes, such that nodes that
are proximate to seed nodes are assigned similar labels. Label propagation can be considered a
special case of the node classification problem, in which only graph topology is used in predicting
the labels of the nodes. In contrast, in the general setting for node classification, additional features
are available [20].

1

ar
X

iv
:2

11
0.

07
01

1v
1

 [
cs

.S
I]

 1
3

O
ct

 2
02

1

mailto:stm@case.edu
mailto:mxk331@case.edu

Label propagation and machine learning on graphs: While many machine learning al-
gorithms have-been developed for semi-supervised node classification in the last few years, label
propagation is often encountered as part of node classification [11]. In many cases, the set of
training samples can be too small for effective learning, thus label propagation is applied prior to
training more sophisticated learning algorithms [13]. In addition, emerging evidence suggests that
combination of label propagation with simple models often outperforms more sophisticated models,
such as graph neural networks [8]. Despite the ubiquity of label propagation in supervised learning,
efforts on effectively utilizing negatively-labeled examples in label propagation have been relatively
scarce.

Existing approaches to negative-example-informed label propagation: Many label prop-
agation algorithms utilize random walks and their variants [5, 9, 23, 21, 14]. While classical ran-
dom walks work with only positively-labeled examples, it has been shown that the utilization of
negatively-labeled examples in training improves the accuracy of label propagation [24]. Exist-
ing approaches to informing random walks with negative examples use optimization to learn edge
weights [2, 12] or restart probabilities [10, 3] that minimize flow into negatively-labeled nodes. Since
the number of edges in a network is much larger than the number of nodes, the number of param-
eters that need to be learned is usually very large, making learning-based approaches vulnerable
to over-fitting. In addition, the optimization problems are often non-convex and prone to getting
stuck at local optima.

Our contributions: We improve negative-example-informed label propagation in two ways. Firstly,
we propose a new method that combines re-weighting of edges with variable restart probabilities dur-
ing label propagation. For this purpose, we reformulate random walks to model restarts as part of
the network topology, i.e., as directed edges from any node to the positively-labeled nodes. We
then use this formulation to readjust edge weights such that the flow into negatively-labeled nodes
is redirected as restarts to positively-labeled nodes. The resulting algorithm, CusTaRd, utilizes
negatively-labeled nodes within the random-walk/network-propagation framework and a parame-
ter controlling the aggressiveness of redirection to reduce the flow into negatively-labeled nodes,
without requiring training or optimization of a large number of parameters.

Secondly, we propose a positive-neighborhood based approach to sampling negative examples.
This approach is motivated by the observation that negatively-labeled samples may not always be
available or the number of negatively labeled examples is often much larger than positively-labeled
examples, thus sampling of a smaller set of negative examples is usually needed. As opposed to
sampling uniformly from the entire set of negative examples, we propose sampling negative examples
from the close neighborhood of positive-examples. This approach is motivated by the notion that the
algorithm can better learn how to distinguish positives from negatives if it is presented by negatives
that are similar to the positives. In our experimental studies, we comprehensively investigate the
merit of this approach in the context of the proposed algorithm, as well as competing algorithms.

Organization of the paper: In the next section, we define the label propagation problem and
describe random walk and network propagation based algorithms for label propagation. Subse-
quently, we reformulate random walks to enable variable restarts, and show how this reformulation
allows readjustment of edge weights into restart probabilities. We then describe our approach to
sampling negatively-labeled nodes. In Section 3, we start by describing the four datasets we use
for validation, competing algorithms, and our experimental setup. We then present the comparison
of the predictive accuracy of CusTaRd and competing algorithms as well as their robustness to
scarcity of training examples, characterize the effect of the redirection factor on CusTaRd’s per-
formance, and comprehensively investigate the effect of the sampling of negative examples on the

2

Figure 1: The formulation of the label propagation problem. (a) The general setting for label

propagation where nodes can be labeled using multiple labels (shown under the nodes) and we want to

predict labels for unlabeled nodes (b) The known labels are propagated from each node and the most likely

label is assigned to unlabeled nodes. In this case it is difficult to predict a label for node j because it is

equally proximal to nodes h and m. (c) Label propagation with negatively-labeled examples. The negative

label for node j (shown above the node) informs the prediction that node j should not be labeled by S1 so

it is labeled by S2.

performance of all algorithms considered. We conclude our discussion and outline future avenues
for research in Section 4.

2 Methods

2.1 Problem Definition and Existing Approaches.

Let G = (V,E) denote a graph/network with node set V and edge set E. The nodes in V are
associated with categorical “labels”, where the nodes in subset Si ⊂ V are associated with label
i. There may be multiple labels available, and S = {S1, S2, ..., Sk} denotes the set of all available
label sets. This information is usually incomplete, i.e., ∪ni=1Si 6= V . A common problem is “label
prediction” which, given the labels in S, is the task of predicting labels for the unlabeled v ∈ V .
This problem is often approached using label propagation.

In label propagation, nodes v ∈ Si share their label information with their neighbors, who in
turn share with their neighbors etc. to “propagate” node labels across the network [16, 23]. The
algorithms used to propagate labels are similar to the algorithms used for network propagation,
where rather than discrete valued labels, network propagation focuses on propagating continuous
values such as flow or probability across a network [4]. Random walk with restarts is a commonly
utilized network propagation method that simulates a random walk across the network by making
frequent restarts at the nodes labeled by Si.

Random walk with restarts (RWR): To formulate RWR, let A denote the adjacency matrix of
G. We use Ai,j to denote matrix entries, Ai,: for rows and A:,j for columns. Given Si, were refer
to the nodes v ∈ Si as seed nodes. RWR [15] propagates the labels of Si to other nodes of G using

a column stochastic transition matrix A(cs) derived from A defined as A
(cs)
i,j = Ai,j/

∑
k Ak,j .

A restart vector ri is used to localize the random walk around the seed nodes, where ri(v) =

3

1/|Si| for v ∈ Si and 0 otherwise (ri(v) denotes the vector element corresponding to node v). A
restart parameter, α (also called damping factor) is used to tune the frequency at which the walker
“teleports” back to the seed nodes. The RWR-based proximity is defined as the steady state:

pi = (1− α)A(cs)pi + αri (1)

where pi(v) denotes the probability of being at node v when the walk continues for a sufficiently
long time. The steady state vector pi is used to rank nodes for prediction, where higher values
pi(v) correspond to higher likelihood that node v is labeled the same as nodes of Si. This procedure
can be repeated for each label set Si, i = 1...n and the most likely label (i.e. the pi(v) with highest
value) is predicted for node v.

Random walks with symmetric degree normalization: While the above formulation of RWR
is intuitive, a different normalization technique is often used to scale the transition probabilities by
the in- and out-degree of nodes [22]. This “symmetric” normalization technique uses transition ma-
trix A(sym), where A(sym) = D−1/2AD−1/2 and Di,i =

∑
k Ai,k. Since A(sym) is not a stochastic

matrix, a re-normalization step is introduced to the RWR formulation to produce the probability
vector p:

p̂ = (1− α)A(sym)p + αr

p = p̂/|p̂|
(2)

Label propagation with negatively-labeled examples: In some applications, a set of negatively-
labeled nodes Ni (i.e., anti-labels that specify a node is not of a specific class) is provided. When
such information is not available, it is also potentially useful to sample negatively-labeled nodes
from nodes that are not positively labeled (e.g. selecting Ni as a subset of ∪i 6=jSi) and use them to
inform label propagation. The objective of label propagation with negative examples is to predict
labels for unlabeled nodes that do not contradict the anti-labels. This is illustrated in Figure 1.

Many existing methods for label propagation utilize negative examples by formulating an op-
timization problem where the objective function penalizes predicting positive labels for negatively
labeled nodes [2, 3, 10, 12]. (SRW), one of the earliest algorithms that considers negative exam-
ples, learns a function to optimize edge weights such that positive examples are ranked higher than
negative examples [2]. This is accomplished by embedding the restart vector r into the transition
matrix A and explicitly restricting updates that would alter the matrix elements corresponding to
r. A more recent work on query-specific optimal networks (QUINT) takes a similar approach to
adjusting the weight – or existence – of edges defined by A, but it formulates the problem in terms
of a single positive example (i.e. |Si| = 1) and ignores the restart probability as a scaling factor [12].
The teleportation tuning method of Berberidis et al. learns a weighted restart vector ri for each la-
bel Si that optimizes within-class predictions [3], but this results in a model where all nodes restart
to a given node with the same probability. More recently, random walk with extended restarts
(RWER) attempts to learn an optimal restart probability for each node v ∈ V [10] for a specific
Si. However, the method scales the strength of all edges incident to a node uniformly in relation
to the restart probability, resulting in no discrepancy between positive and negative neighbors.

2.2 Proposed Approach: Combining Edge Re-weighting and Restart
Tuning.

We propose to combine the ideas of edge re-weighting and restart tuning such that: (i) the walker
restarts with higher probability (> α) when it encounters an edge leading to a negatively labeled

4

node, but (ii) continues walking with the default probability (1 − α) when it encounters an edge
leading to an unlabeled or positively labeled node. This has several benefits: 1) It does not arti-
ficially inflate the rank of nodes by redirecting the walker to a smaller group of neighbors. 2) It
does not reduce the rank of unlabeled neighbor nodes by avoiding them in an effort to avoid the
negatively labeled node.

Here, we develop a framework to realize this approach by reformulating RWR in an intuitive
way that creates a single transition matrix composed of “restart edges” and “transition edges”. We
then adjust the entries of these matrices based on the given set of positive (Si) and negative (Ni)
examples.

Reformulation of random walks to unify transition and teleport: Considering the classical
RWR formulation, the first term on the right-hand-side of Equation 1 captures the transition of the
random walker from the current node to adjacent nodes, and the second term captures the random
walker “teleporting” to seed nodes. Observing that |p| = 1 by definition, we can express αr as:

αr = αr1Tp

where 1T is a row vector of all 1’s of compatible dimension to r such that αr1T = R ∈ R|V |×|V |.
Noting that Rp = αr and setting Q(cs) = (1−α)A(cs), we can rearrange Equation 1 as an ordinary
eigenvector equation:

p = (Q(cs) + R)p, (3)

where Q(cs) captures the transition of the random walker to adjacent nodes and R captures tele-
port to seed nodes. The intuition behind this formulation R is illustrated in Figure 2, where the
reformulation effectively adds an edge from every v ∈ V to every u ∈ S with transition probability
α. Similarly, for random walks with symmetric normalization, Equation 2 can be reformulated as:

p̂ = (Q(sym) + R)p

p = p̂/|p̂|
(4)

where Q(sym) = (1 − α)A(sym). In our implementation, we use this reformulation of symmetric
random walk.

Variable restarts: Consider a more flexible model where rather than the walker restarting with a
fixed probability α at every node, the walker is free to restart with a unique probability depending
on where the walker is at. This flexibility can be directly incorporated into the above formulation,
since each entry of R represents a directed edge from a given node to a seed node. The immediate
benefit to such a model is it allows the walker to restart to a seed whenever it encounters an edge
leading to a negative example. i.e, given a node u ∈ Ni, the values Qu,v for all v ∈ Adj(u) can be
reduced, and the difference distributed among the restart edges Rw,v for w ∈ Si.

Adjusting restart and transition edges based on negative examples: Let u ∈ Ni be a
negatively-labeled example for label i. For each v adjacent to u, we reduce transition probability
from v to u and redistribute these probabilities to the seed vertices Si as follows:

Rs,v = Rs,v +
λQu,v

|Si|
if v ∈ Adj(u) and s ∈ Si

Qu,v = (1− λ)Qu,v if v ∈ Adj(u)

(5)

where λ is a “redirection” parameter used to tune the degree of aggressiveness in steering the walk
away from negatively-labeled nodes. In the next section, we comprehensively characterize the effect

5

Figure 2: Reformulation of random walks using transition and teleport matrices to allow

variable restarts. The seed node is shown in gray. The transition edges are labeled by Q, the teleport

edges are labeled by R. (a) A reformulated random walk with restarts that is equivalent to the classical

formulation with α = 0.5 where columns of Q are column normalized. Note that the row Rh,: that

corresponds to the seed node h contains all uniform entries. (b) The random walk modified to avoid

negative node i using a redirection factor λ = 0.5, where re-weighted edges have been highlighted in bold

and the updated matrices Q′ and R′ are shown below. The edges that lead to the negative node have

been re-weighted as Q′
i,: = (1 − λ)Qi,:. The restart edges leaving nodes v ∈ Adj(i) have been updated as

R′
h,v = Rh,v + λQi,v to direct the walker back to the seed rather than transitioning to the negative node.

This formulation allows restarting with different probabilities depending on the current node visited by the

walk.

of λ on predictive accuracy. Observe that this adjustment retains the sum of the vth column of
Q + R.

2.3 Label Propagation via CusTaRd.

The matrix R is independent of the label that is to be propagated, thus we first construct R based
on the input graph G(V,E). Then, for each label i with set Si of positively-labeled nodes, we first
construct the matrix Q(sym). If negatively-labeled nodes are not available, we sample negatively-
labeled nodes from V \ Si to obtain Ni, using the methodology described in the next subsection.
Subsequently, we adjust R and Q(sym) based on Ni, using Equation 5. We then compute pi using
Equation 4 and rank the nodes in V \ Si according to this vector to prioritize the assignment of
label i.

2.4 Sampling Negatively Labeled Nodes.

If a set of negatively-labeled nodes is not available, it is necessary to sample negatively-labeled
nodes from the set of nodes that are not positively-labeled. In the literature, negative sampling
methods have been proposed based on prioritizing confident false predictions [24]. It follows that
false negatives are nodes those that are close to one or more seed nodes. For this reason, it
can be good strategy to select negatively-labeled examples from the set of nodes that are in the
neighborhood of positively-labeled nodes. To investigate how proximity of the sampled negatively-

6

Table 1: Network datasets with node labels used to evaluate label prediction performance.

Name # Nodes # Edges # Labels

CiteSeer 3312 4660 6
CORA 2,708 10,556 7

Polblogs 1,224 16,718 2
Facebook 22,470 171,002 4

labeled nodes to seeds affects predictive performance, we sample negatives from the nodes uniquely
reachable in exactly k-hops from each seed node. For this purpose, to generate a pool of candidate
negatively-labeled nodes, we use breadth-first search and identify nodes that (i) are at depth of k
hops from the seeds, and (ii) do not have the same label as the seed. From this pool, we draw
uniformly at random a sample that is of size at most as (if possible, equal to) the number of seeds
(positively-labeled nodes). This ensures that the sets of positively and negatively labeled nodes are
as balanced as possible.

3 Results

3.1 Experimental Setup.

We evaluate the predictive performance of CusTaRd against existing methods using multiple net-
work datasets that are often used to benchmark label propagation and node classification algorithms.
These datasets include the CORA dataset [18], a CiteSeer dataset [7], the Political Blogosphere
dataset [1] and a Facebook dataset [17]. The characteristics are summarized in Table 1. For con-
sistency, we convert networks with directed edges to undirected networks, and remove nodes that
are isolated from the rest of the network.

Sampling of training and validation sets: In our experiments, we consider the case where
training data is scarce, i.e., most of the labels in the network are unknown. Namely, from each set
of labeled nodes Si ∈ S for a given network, we sample, uniformly at random, 50 positive training
(seed) sets s1, s2, ..., s50 of fraction γ of the nodes in Si, e.g. sj ⊂ Si and |sj | = γ∗|Si|. For each seed
set sj , we draw up-to the same number of negative training sets nj at distances k = [1, 2, 3] from
the seeds using the strategies outlined in Section 2.4. Due to network topology and the location of
the nodes in sj , there are cases where |nj | < |sj |, we perform the experiment as long as |nj | > 0. If
|nj | = 0, we sample a new seed set sj until at least one negatively labeled node at distance k can
be found. We use the set Tj = {sj ∪ nj} for training, leaving V \Tj for validation.

Parameter settings: We determine through an initial parameter sweep that the RWR based
methods perform optimally with a restart probability α = 0.05, thus we use this value in all
experiments. During our baseline accuracy assessment, we set CusTaRd’s redirection parameter
to λ = 0.9 based on initial experiments that showed higher values of this parameter provide better
predictive performance. We perform two additional experiments to characterize the effects of the
redirection factor λ and the training set size γ. We varied λ over the values [0.2, 0.4, 0.6, 0.8, 1.0]
and γ over the values [0.02, 0.05, 1.0].

Competing methods: We compare the predictive performance of CusTaRd against classical

7

RWR with symmetric normalization [15], QUINT [12], and RWER [10], where the latter two
methods learn optimal transition strategies using gradient descent. For QUINT, the authors pro-
vide several variations and we select their first order Taylor polynomial approximation as all three
variations show equivalent performance in the benchmark experiments reported by the authors [12].

In CusTaRd, the positively labeled training nodes and the seed set are identical. This is not
the case for QUINT and RWER. For both algorithms, the setting involves sets of positive and
negative example nodes, as well as a single query (seed) node (i.e. |si| = 1). The methods then
learn optimal networks or restart profiles that rank the positive nodes higher than the negative
nodes while propagating the label only from the single query node. This makes direct comparison
to our set-based method problematic, so we create a modified version of our method that also
works with a single query node. The modified CusTaRdsq accepts the same inputs as QUINT
and RWER, but adds edges to G between the query node and the positively-labeled training nodes
before applying the edge-weight redistribution for negatively-labeled training nodes. This allows us
to propagate the label from a single query node, but leverage the positive nodes in a way that is
similar to treating them as additional seed nodes.

Evaluation of predictive performance. We use each method to propagate the labels of sample
sj and then rank the nodes by confidence of predictions. The node rankings are then evaluated from
most confident to least confident, assigning “true positive” or “false positive” to each prediction.
The Area Under ROC Curve (AUCs), Precision@20, and Precision@100 are computed by combining
the TP/FP counts at each rank position for all sj across all labeled sets Si to generalize the
performance for a given dataset. We report the mean and standard deviation of these values across
the 50 validation instances.

3.2 Predictive Performance.

The predictive performance of all algorithms on all four datasets are shown in Figure 3 as a function
of training set size, using three different performance criteria. The average and standard deviation
of the performance metrics for training size 2% are also shown in in Table 2. CusTaRd consistently
achieves highest scores for Precision@20 and Precision@100, and for AUC the best performance is
achieved by either CusTaRd or CusTaRdsq.

We observe that the CiteSeer network is the most difficult dataset for all methods to deliver
accurate predictions. For this network, Precision@20 is in the low 80 percent range even for the best-
performing algorithms. The minimum variance in prediction accuracy is displayed by CusTaRd
for most datasets and metrics, with the exception of the CiteSeer network where it is higher or
equal than one or more of the other methods.

Comparison of the left-most column of Table 2 against other columns of the table shows that
algorithms that utilize negative samples deliver more accurate predictions (with the exception of
RWER). This implies that methods based on post-filtering negatives from results will yield less
accurate predictions than methods which incorporate the negatives into the ranking procedure.
This may be particularly useful in applications where a large number of negatives are available,
such as differential expression studies in biology where many genes or proteins have no significance.

3.3 Effect of Sampling of Negative Examples.

Figure 4 (left) plots the different performance metrics versus the k-hop proximity of negative exam-
ples for all four networks. It shows for all methods except RWER that negatives at k-hop proximity

8

Table 2: Predictive performance of CusTaRd and competing methods on four benchmarking

datasets according to three different performance criteria. For each algorithm, dataset, and perfor-

mance metric, the mean performance metrics ± standard deviation is shown across 50 randomly generated

validation instances, with 2% of positively-labeled nodes selected for training, and negatives sampled at

k-hop distance 1.

Network RWR CusTaRd CusTaRdsq QUINT RWER

AUC
CiteSeer 0.632±0.129 0.641±0.130 0.635±0.131 0.622±0.130 0.556±0.122

Cora 0.820±0.089 0.832±0.084 0.829±0.084 0.794±0.093 0.682±0.188
Polblogs 0.745±0.051 0.810±0.050 0.813±0.057 0.709±0.049 0.698±0.190
Facebook 0.865±0.037 0.890±0.034 0.897±0.035 0.789±0.063 0.613±0.142

Precision@20
CiteSeer 0.784±0.236 0.837±0.243 0.836±0.247 0.820±0.250 0.448±0.502

Cora 0.927±0.112 0.950±0.093 0.931±0.123 0.904±0.120 0.676±0.398
Polblogs 0.994±0.026 0.998±0.012 0.987±0.043 0.982±0.043 0.852±0.320
Facebook 0.985±0.039 0.989±0.026 0.981±0.038 0.957±0.083 0.786±0.353

Precision@100
CiteSeer 0.658±0.250 0.726±0.272 0.703±0.266 0.623±0.252 0.367±0.392

Cora 0.828±0.145 0.875±0.133 0.850±0.146 0.751±0.149 0.556±0.363
Polblogs 0.953±0.029 0.981±0.018 0.976±0.029 0.932±0.051 0.828±0.306
Facebook 0.984±0.020 0.989±0.013 0.975±0.033 0.935±0.082 0.673±0.401

9

Figure 3: Predictive performance of label propagation algorithms as a function of training

set size. Positive training sets are sampled of sizes 2%, 5% and 10% of available positive examples (seed

nodes) for each label. Negative examples are sampled to be of equal size from nodes at a k-hop distance of

1 to positive examples. The reported values are averages across 50 validation instances.

1 to the seeds result in optimal performance. For RWR, CusTaRd, CusTaRdsq and some QUINT
results, performance was inversely correlated with k (i.e. performance decreased as k-hop distance
increased). However, some QUINT results exhibited lowest performance at k-hop distance 2 rather
than 3, making them less correlated but still consistent with the observation that the negatives
sample at distance 1 are most informative. RWER achieved optimal performance at k-hop dis-
tance 2, though the performance was still lower than the optimal performance of CusTaRd and
CusTaRdsq. Based on the results, it would be reasonable to sample negatives as close to the seeds
as possible. This behavior has the nice property of limiting the neighborhood of nodes that must
be evaluated in the search to manually annotate negatives.

10

Figure 4: The effects of sampling of negative examples and redirecting edge weights on pre-

dictive performance Left: As discussed in Section 2.4, we sample negatively-labeled training nodes from

the set of nodes that are not positively labeled, by constructing pools of candidate nodes based on their

distance to positively-labeled nodes. The curves show the effect of this distance on predictive performance

for all algorithms on all datasets according to all performance criteria that are considered. Right: Our

reformulated random walk depends on the redirection factor λ as defined in Equation 5. The plot shows

the effects of varying the redirection factor for different sizes of training data. The value of λ was varied

over [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]. Training sets were sampled of sizes 2% and 5% for each label and negative

nodes were sampled at a k-hop distance of 1.

3.4 Effect of Redirection Factor.

Figure 4 (right) plots the performance metrics for CusTaRd versus the redirection factor λ for
different sample sizes and fixed negative node k-hop distance 1. The overall response curve shapes
do not exhibit significant differences when varying the sample size, but the curves are quite dif-
ferent between networks. The AUC curves for CORA and CITESEER show slight decreases in
performance at the highest values of λ, while the POLBLOGS result shows increasing performance
all the way to λ = 1.0. The gain in performance is more pronounced for Precision@100 than for
Precision@20 showing that increasing λ helps to increase the ranking of more distant nodes.

4 Conclusion

In this study, we reformulated random walks to enable variable restarts, which in turn gave rise to
CusTaRd, an algorithm for effectively utilizing negatively-labeled nodes in label propagation. Cus-
TaRd does not “learn” parameters or solve an optimization problem, it uses a single parameter to

11

directly modify the entries of the stochastic matrix to redirect flow from negatively-labeled nodes to
positively-label nodes. In addition to reformulation of random walks, CusTaRd samples negatively-
labeled nodes from the neighborhood of positively-labeled nodes, thereby learning to discriminate
between positively and negatively labeled nodes. Our comprehensive experiments on four bench-
mark networks showed that CusTaRd consistently outperforms competing optimization/learning-
based algorithms, and its predictions are consistently robust to scarce training samples. Finally, our
systematic experiments showed that sampling negative examples in the neighborhood of positive
examples improves prediction accuracy for all algorithms.

These results lay the foundations for more effective incorporation of label propagation into
machine learning frameworks. Integration of the algorithm described here with machine learning
models that use node features can further improve the accuracy and robustness of such models.

References

[1] Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided
they blog. In Proceedings of the 3rd international workshop on Link discovery, pages 36–43,
2005.

[2] Lars Backstrom and Jure Leskovec. Supervised random walks: Predicting and recommending
links in social networks. In Proceedings of the Fourth ACM International Conference on Web
Search and Data Mining, WSDM ’11, page 635–644, New York, NY, USA, 2011. Association
for Computing Machinery.

[3] Dimitris Berberidis, Athanasios N. Nikolakopoulos, and Georgios B Giannakis. Random walks
with restarts for graph-based classification: Teleportation tuning and sampling design. In
2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP
2018 - Proceedings, volume 2018-April of ICASSP, IEEE International Conference on Acous-
tics, Speech and Signal Processing - Proceedings, pages 2811–2815. Institute of Electrical and
Electronics Engineers Inc., September 2018.

[4] Lenore Cowen, Trey Ideker, Benjamin J Raphael, and Roded Sharan. Network propagation: a
universal amplifier of genetic associations. Nature Reviews Genetics, 18(9):551–562, 2017.

[5] Bin Fu, Zhihai Wang, Guandong Xu, and Longbing Cao. Multi-label learning based on iterative
label propagation over graph. Pattern Recognition Letters, 42:85–90, 2014.

[6] Sara E Garza and Satu Elisa Schaeffer. Community detection with the label propagation
algorithm: A survey. Physica A: Statistical Mechanics and its Applications, 534:122058, 2019.

[7] Lise Getoor. Link-based Classification, pages 189–207. Springer London, London, 2005.

[8] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining label
propagation and simple models out-performs graph neural networks. ICLR, 2021.

[9] Taehyun Hwang and Rui Kuang. A heterogeneous label propagation algorithm for disease gene
discovery. In Proceedings of the 2010 SIAM International Conference on Data Mining, pages
583–594. SIAM, 2010.

12

[10] Woojeong Jin, Jinhong Jung, and U. Kang. Supervised and extended restart in random walks
for ranking and link prediction in networks. PLOS ONE, 14(3):1–23, 03 2019.

[11] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In ICLR, 2019.

[12] Liangyue Li, Yuan Yao, Jie Tang, Wei Fan, and Hanghang Tong. Quint: On query-specific
optimal networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, page 985–994, New York, NY, USA, 2016.
Association for Computing Machinery.

[13] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

[14] Yongxin Liao, Shenxi Yuan, Jian Chen, Qingyao Wu, and Bin Li. Joint classification with het-
erogeneous labels using random walk with dynamic label propagation. In James Bailey, Latifur
Khan, Takashi Washio, Gill Dobbie, Joshua Zhexue Huang, and Ruili Wang, editors, Advances
in Knowledge Discovery and Data Mining, pages 3–13, Cham, 2016. Springer International
Publishing.

[15] Jia-Yu Pan, Hyung-Jeong Yang, Christos Faloutsos, and Pinar Duygulu. Automatic multime-
dia cross-modal correlation discovery. KDD ’04, page 653–658, New York, NY, USA, 2004.
Association for Computing Machinery.

[16] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to
detect community structures in large-scale networks. Phys. Rev. E, 76:036106, Sep 2007.

[17] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding,
2019.

[18] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-
Rad. Collective classification in network data. Technical report, University of Maryland,
College Park and Lawrence Livermore National Laboratory, 2008.

[19] Tal Wagner, Sudipto Guha, Shiva Kasiviswanathan, and Nina Mishra. Semi-supervised learn-
ing on data streams via temporal label propagation. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 5095–5104. PMLR, 10–15 Jul 2018.

[20] Binghui Wang, Jinyuan Jia, and Neil Zhenqiang Gong. Semi-supervised node classification
on graphs: Markov random fields vs. graph neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 10093–10101, 2021.

[21] Guobo Xie, Bin Huang, Yuping Sun, Changhai Wu, and Yuqiong Han. Rwsf-blp: a novel
lncrna-disease association prediction model using random walk-based multi-similarity fusion
and bidirectional label propagation. Molecular Genetics and Genomics, pages 1–11, 2021.

[22] Pinchen Xie, Zhongzhi Zhang, and Francesc Comellas. On the spectrum of the normal-
ized laplacian of iterated triangulations of graphs. Applied Mathematics and Computation,
273:1123–1129, 2016.

13

[23] Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard Schölkopf.
Learning with local and global consistency. In Advances in neural information processing
systems, pages 321–328, 2004.

[24] Olga Zoidi, Anastasios Tefas, Nikos Nikolaidis, and Ioannis Pitas. Positive and negative label
propagations. IEEE Transactions on Circuits and Systems for Video Technology, 28(2):342–
355, 2018.

14

	1 Introduction
	2 Methods
	2.1 Problem Definition and Existing Approaches.
	2.2 Proposed Approach: Combining Edge Re-weighting and Restart Tuning.
	2.3 Label Propagation via CusTaRd.
	2.4 Sampling Negatively Labeled Nodes.

	3 Results
	3.1 Experimental Setup.
	3.2 Predictive Performance.
	3.3 Effect of Sampling of Negative Examples.
	3.4 Effect of Redirection Factor.

	4 Conclusion

