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Visually Meaningful Histopathological Features
for Automatic Grading of Prostate Cancer
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Thomas LaFramboise, and Metin Gurcan

Abstract—Histopathologic features, particularly Gleason
grading system, have contributed significantly to the di-
agnosis, treatment, and prognosis of prostate cancer for
decades. However, prostate cancer demonstrates enor-
mous heterogeneity in biological behavior, thus establish-
ing improved prognostic and predictive markers is partic-
ularly important to personalize therapy of men with clini-
cally localized and newly diagnosed malignancy. Many au-
tomated grading systems have been developed for Gleason
grading but acceptance in the medical community has been
lacking due to poor interpretability. To overcome this prob-
lem, we developed a set of visually meaningful features to
differentiate between low- and high-grade prostate cancer.
The visually meaningful feature set consists of luminal and
architectural features. For luminal features, we compute: 1)
the shortest path from the nuclei to their closest luminal
spaces; 2) ratio of the epithelial nuclei to the total number
of nuclei. A nucleus is considered an epithelial nucleus if
the shortest path between it and the luminal space does
not contain any other nucleus; 3) average shortest distance
of all nuclei to their closest luminal spaces. For architec-
tural features, we compute directional changes in stroma
and nuclei using directional filter banks. These features are
utilized to create two subspaces; one for prostate images
histopathologically assessed as low grade and the other for
high grade. The grade associated with a subspace, which
results in the minimum reconstruction error is considered
as the prediction for the test image. For training, we utilized
43 regions of interest (ROI) images, which were extracted
from 25 prostate whole slide images of The Cancer Genome
Atlas (TCGA) database. For testing, we utilized an indepen-
dent dataset of 88 ROIs extracted from 30 prostate whole
slide images. The method resulted in 93.0% and 97.6% train-
ing and testing accuracies, respectively, for the spectrum
of cases considered. The application of visually meaningful
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features provided promising levels of accuracy and consis-
tency for grading prostate cancer.

Index Terms—Color deconvolution, cytological and archi-
tectural features, geodesic distance, shortest path.

I. INTRODUCTION

A LTHOUGH prostate cancer is the second most common
cancer in males in the United States, the risk of dying from

prostate cancer is several-fold lower. An average male’s lifetime
risk of prostate cancer is approximately 11%, while the risk of
death from prostate cancer risk is 4% [1]. The discrepancy could
be due to our inability to distinguish those with indolent disease
and those with a more aggressive variant, especially in the early
stages. This lack of prognostic ability results in unnecessary
and potentially harmful treatment. A widely used prognostic
method relies on histopathologic information derived from the
tumor identified in the prostate needle core biopsy known as
the Gleason score. Developed by Dr. Donald Gleason in the
1960s, Gleason scoring relies on identifying changes in primar-
ily glandular architecture of prostate and is applied manually
using light microscopy on hematoxylin and eosin (H&E) stained
glass tissue by pathologists [2]. In the absence of more reliable
biomarkers, the evaluation based on a Gleason score from nee-
dle biopsy is utilized along with other clinicopathologic features
such as serum prostate-specific antigen, often as components of
nomograms, to risk stratify patients as an aid to define treatment
options [3]. A key goal is to simultaneously reduce overtreat-
ment of indolent cancer and its complications while providing
appropriate curative therapy and options for experimental strate-
gies in those at greatest risk. Previous studies have demonstrated
significant interreader variability among practicing pathologists
depending on experience and training [4]–[6]. Prognostication,
treatment decisions, and research-oriented stratification made
based on the reported Gleason score may be inappropriate [7].
However, recent advances seem to indicate significant prognos-
tic differences even within intermediate grades such as Gleason
score 7 [8], indicating a need for precise and accurate histologic
evaluation. The objective in this study is to develop, calibrate,
and validate visually meaningful features to provide automated
criteria for prostate risk grading.

The literature contains a plethora of methodology to auto-
mate the Gleason grading system [9]. In [10], Diamond et al.
presented an automated method to classify prostate cancer im-
ages into tumor, stroma, and normal regions based on Haralick
features. To discriminate moderately from poorly differentiated
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cancers, the authors extracted statistical and structural features
of the nuclei [11]. These features were extracted by using a
partly trained multilayer neural network. The classification was
performed with the quadratic Bayesian classifier. The eigen-
value analysis of the Fourier transformed prostate images was
utilized in [12] to replicate the Gleason grading. In [13], archi-
tectural features were derived by constructing spanning trees.
These trees were generated by connecting the cell nuclei over a
prostate image. The Gleason scoring was performed by match-
ing the properties of these trees to the training trees in the
database. In [14], energy and entropy features were extracted
from multiwavelet coefficients of the prostate image. It was
followed by simulated annealing to determine the most discrim-
inating features. The resulting features were assigned a prostate
score based on a k-nearest neighbor classifier.

In another effort [15] to automate the Gleason scoring, the
glands were extracted using texture features and k-means clus-
tering. Then the tree structure architecture (similar to classifica-
tion trees) was applied along with a linear classifier to classify
the image into Gleason scores. The tree structure architecture
relied on the shape and intensity-based features of the glands.
In [16], a Gleason grading system was presented which incor-
porated low-level knowledge, high-level knowledge, and struc-
tural constraints via domain knowledge to segment the prostate
images. Morphological and architectural features from these
segmented images were used to perform Gleason grading. A
texton-based Gleason scoring was presented in [17]. The au-
thors combined textons with support vector machines to clas-
sify pixels into Gleason patterns 3 and 4. In [18], Sparks and
Madabhushi presented a statistical shape model to perform man-
ifold regularization and its application to differentiate between
Gleason patterns 3 and 4.

All of these methods were reported to have a reasonable
accuracy. However, none of these methods presents visually
meaningful and clinically interpretable features, especially to
pathologists. Moreover, these methods do not add anything new
to the pathologist’s knowledge. Unfortunately, these methods
lack the necessary ingredients to:

1) Allow the pathologist to interpret a certain score by visu-
ally meaningful features.

2) Enable the pathologists to share their findings with
peers/residents/students in clinically relevant language.

In the current effort, we address these shortcomings.
The paper is organized as follows. The segmentation and

feature extraction methodologies are presented in Section II.
Section III presents the databases used in this study. The results
are presented in Section IV followed by the discussion in Section
V. Conclusions from this study are presented in Section VI.

II. METHOD

A. Segmentation

For segmentation of H&E-stained prostate tissue sample im-
ages, we have adopted a texture-based methodology to classify
biologically meaningful components from the region of interest
(ROI) images of the prostate tissue, inspired by the statistical
approach of Varma and Zisserman [19]. Our objective is to au-

tomatically construct a deconvolution matrix [20] to perform
segmentation of prostate images from a single channel. The
method relies on texture instead of color to derive the color
deconvolution matrix, and automatically establishes a corre-
spondence between the hematoxylin-stained, eosin-stained, and
background pixels in the training image to those in the test
image. Once the correspondence is established, pixels in each
group are individually averaged to compute the color deconvo-
lution matrix.

In their work, Varma and Zisserman [19] modeled texture by
joint probability distribution of filter responses. Each distribu-
tion was represented by the cluster centroids (textons). Their
approach can be divided into three stages: 1) texton dictionary
generation; 2) model generation; and 3) classification. During
the first stage, the filter responses from the training images of
the same texture class are vector quantized by modeling the
probability density functions in the filter response space with
the texton distributions. In the second (i.e., model generation)
stage, the model of each training image (within the same class)
is generated by first convolving it with the same set of filters
in the first stage and then labeling each filter response with the
texton that lies closest to it in the filter response space. The fre-
quency, with which each texton occurs in the labeling, forms the
model, i.e., a histogram of the occurrence of cluster centroids.
This results in as many models as the number of training images
in each texture class. In the third stage, classification, a test im-
age is classified by forming its histogram and then choosing the
closest model histogram learned from the training set.

At the first stage, one may choose from multiple filter banks
[19], [21], [22]. Each of these filter banks are reported to have
similar performances on several texture databases. For this
study, we opted to use maximum response filter bank, MR8,
which consists of 38 filters [23]. The MR8 filter bank contains
filters at multiple orientations, but their filter responses are “col-
lapsed” by recording only the maximum filter response across
all orientations [19], resulting in rotational invariance. The filter
bank consists of an isotropic Gaussian and an isotropic Lapla-
cian of Gaussian filter, an edge filter at three scales and a bar
filter at the same three scales. Both edge and bar filters are di-
rectional in nature and contain six orientations at each scale.
Measuring only the maximum response across orientations re-
duces the number of responses from 38 to 8.

The segmentation method starts by applying an MR8 filter
bank to the red channel of the H&E prostate images. The red
channel of the RGB prostate image is selected as it provides
relatively higher contrast between the nuclei and the stroma.
The segmentation method uses a set of five training images.
Each training image Tx is manually segmented into nuclei (N ),
stroma (S), and luminal spaces (L) and the filtered response
FTx

is clustered into k clusters using k-means clustering. To
automatically determine k, the number of clusters is sequen-
tially increased from three to 15 to find a cluster WN that maxi-
mizes #{WN ∩Ns 3 and minimizes #{(WN ∩S ) ∪ (WN ∩L )},
simultaneously, where Ns is a subset of N , i.e., Ns ⊆ N . Here
# represents the cardinality of a set, and ∩ the set intersection.
Based on our experiments, the optimal values of k varies be-
tween eight to 10 for the training images. Once k is de-
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termined, we pick another cluster WS from the remaining
k − 1 clusters that maximizes #{WS ∩Ss } and minimizes
#{(WS ∩N ) ∪ (WS ∩L )}, simultaneously. Similarly, we pick
another cluster WL from the remaining k − 2 clusters that max-
imizes #{WL ∩Ls } and minimizes #{(WL ∩N ) ∪ (WL ∩S )},
simultaneously where, SS ⊆ S and LS ⊆ L. It is obvious from
the discussion that the selection of k is mainly driven by WN .
This points toward the directional nature of MR8 filter bank,
which require a higher value of k to separate circular objects
(nuclei) than the linear objects (stroma), i.e., it is relatively
more difficult for MR8 filter bank to cluster circular objects
than linear objects. For this reason, we maximize #{WS ∩NS }
instead of #{WS ∩N } as it is difficult to cluster the whole nuclei
into a single cluster. Let Cx = {Cx1 , Cx2 , . . . Cxk} represent
the centroids of Tx where x ∈ {1, 2, 3, 4, 5}. Cx is a set of k
eight-dimensional feature vectors. For any test image Vy , we
compute the filtered response FVy

, and compute the Euclidean
distance, Dis, between each pair in FVy

and Cx . For each point
in FVy

, Dis helps to determine the closest centroid in Cx , i.e.,
to establish correspondence between points (pixels) in FVy

and
cluster centroids in Cx. This whole process is graphically illus-
trated in Fig. 1.

Once the correspondence is established, we create F V y x by
replacing each point in F V y

with its corresponding centroid
from Cx . Now, the Cx , which results in minimum reconstruc-
tion error E is chosen as the representative centroid for F V y

E = minx

(∑ (
F V y x − F V y

)2
)

. (1)

Let Cc represent the centroids that results in mini-
mum reconstruction error, i.e., x = c. Then, we can create
F V y c

by replacing each point in F V y
with its correspond-

ing centroid from Cc . Let CcN Be the cluster centroid of
the cluster WN , CcS for cluster WS and LcS for cluster WL .
These cluster centroids (CcN , CcS , LcS ) correspond to a sub-
set of hematoxylin, eosin, and background pixels in the training
images, respectively. Accordingly, pixel locations correspond-
ing to these cluster centroids in F V y c

should correspond to
hematoxylin, eosin, and background pixels in the test image

Ω = {ω | F V y c
(ω) == CcN} (2)

K = {κ | F V y c
(κ) == CcS} (3)

Γ = {γ | F V y c
(γ) == CcL} (4)

where Ω, K, and Γ contain the pixel locations corresponding
to subset of hematoxylin, eosin, and background regions in the
test image, respectively. Now, one can compute the color de-
convolution matrix as

〈
CD = −log

∑V y (Ω)∣∣∣∑V y (Ω)
∣∣∣

∣∣∣∣∣−log
∑V y (K)∣∣∣∑V y (K)

∣∣∣

∣∣∣∣∣

− log
∑V y (Γ)∣∣∣∑V y (Γ)

∣∣∣

〉−1

(5)

Fig. 1. Block diagram of the segmentation method. The N, S, and L
in the block diagram represent nuclei, stroma, and luminal spaces, re-
spectively. During the training, the input image is filtered through a set
of filters. The filter set contains 38 different types of filters at multiple
orientations. For each filter type, only maximum response across all ori-
entation is recorded. So, for every pixel, this results in its corresponding
eight-dimensional feature vector. This eight-dimensional feature vectors
are utilized to create clusters. For testing, the whole process is repeated
except for clustering. In testing, clustering is replaced by computing the
minimum distance between the eight-dimensional feature vectors in the
test image to the cluster centroids (resulting from the clusters in the
training). Exclusion of clustering from the test phase makes it efficient.
Moreover, it provides a straight forward way to establish correspondence
between training and test clusters.

and the stain concentration (SC) at each point can be determined
by

SC = CD × (−logT x). (6)

The first channel of SC approximates stain concentration
of hematoxylin at each pixel in Tx while the second and third
channels approximate the concentration of Eosin at each pixel in
Tx and background pixels, respectively. Fig. 2 shows an exam-
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Fig. 2. Examples of color deconvolution with the proposed segmenta-
tion method. All images are scanned at 40 × magnification. The image
size is 3000× 3000 pixels. (a) An example of prostate image. (b) Concen-
tration of hematoxylin (a). (c) Concentration of eosin in (c). (d) Another
example of prostate image. e) Concentration of hematoxylin in (d). (e)
Concentration of eosin in (d). It is obvious that the hematoxylin concen-
tration within nuclei is higher in (b) and (e) as compare to (c) and (f).
Moreover, the eosin concentration is higher in (c) and (f) as compared
to (b) and (e).

ple of color devolution achieved by the proposed segmentation
method.

The SC is further subjected to entropy thresholding [24] to
segment nuclei and stroma from Tx . To identify the individ-
ual nuclei from nuclei clusters, we used normalized multiscale
difference of Gaussian as described in [25]; further details of
the segmentation method are discussed in [26]. Fig. 3 shows an
example of resulting nuclei and stroma.

B. Lumen, Nuclei, and Stroma Feature Extraction

The first section introduces the methodology to extract novel
features related to luminal spaces, while the second section
presents a framework to extract architectural changes in nuclei
and stroma and use them as features for classification.

1) Luminal Spaces-Based Features: The feature extrac-
tion method starts by detecting the set of most discriminatory
(low vs. high grade) luminal spaces (LD ) from the segmented
image, L. First, we compute the shortest distance of each skele-
ton to its region border to remove regions whose maximum
shortest distance to its border is less then δh (we experimentally
set δh = 20). Let L = {ς1 , ς2 , · · · , ςn} represents the set of n
potential luminal regions. This can be efficiently computed as

LD = {ςi|max (℘ (ς ′i)) > δh} . (7)

Here ℘ represents the distance transform [27] and ςi
′ denotes

the complement of the binary region ςi . The maximum distance
computed via the distance transform from the complement of a
binary region is equivalent to computing the maximum distance
from the skeleton of a binary region to its border. Fig. 4(a) shows
an example of a prostate image scanned at 40 × magnification.
Fig. 4(b) shows the set of potential luminal spaces resulting

Fig. 3. Example of nuclei detection and stroma segmentation. (a) Orig-
inal image scanned at 40 × magnification and size 900 × 900 pixels. (b)
Nuclei detected by the proposed method. Nuclei are overlaid in green for
clarity. (c) ROI example image scanned at 40 × magnification and size
2600 × 2600 pixels. (d) Segmented stroma region.

from the segmentation of the unstained pixels, i.e., the third
channel of SC (6). Fig. 4(c) shows the distance transform of
the complement of the binary regions from the borders to the
skeleton of their respective regions. Fig. 4(d) shows the set of
set of discriminatory luminal spaces LD .

Clearly, we do not include small luminal spaces in LD . Due
to the huge variation in the shape of luminal spaces, we did not
add any further constraints except for the one mentioned in (7).
Moreover, it was shown in [28] and [29] that the shape of the lu-
minal spaces has the potential to discriminate between interme-
diate Gleason grades. So, there is a possibility that adding further
constraints might decrease the potential of luminal spaces.

LD detection is followed by finding the “nearest” epithelial
nuclei for each ςi in LD . Here “nearest” is defined as the inner-
most layer of epithelial nuclei (Epi) surrounding ςi . Once Epi

nuclei for each ςi are extracted, we compute the percentage of
Epi to the total number of nuclei in an image

P LD
=

(∑
i |Epi| /total number of nuclei

)
×100.

(8)
Our hypothesis is that for low-grade Gleason images, PLD

will be higher. Our hypothesis is mainly driven by two observa-
tions:

1) In high-Gleason-score images, the luminal spaces tend
to get smaller. Due to their smaller size, (7) will discard
them from LD . This will result in a fewer luminal spaces
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Fig. 4. Finding the set of discriminatory luminal spaces. (a) Prostate
image of size 3000 × 3000 pixel scanned at 40 × magnification. (b) Re-
sult of stain deconvolution followed by image segmentation. (c) Shortest
distance of border pixels to the skeleton computed using (7). (d) LD , set
of discriminatory luminal spaces found by using δh = 20. It is obvious
that LD only contains large luminal spaces.

Fig. 5. High-score prostate image. (a) Prostate image of size 3000 ×
3000 pixel scanned at 40 × magnification. (b) Zoomed version of Fig.
3.2(a). The yellow outline shows a nuclei cluster formed due to the fusion
of lumens. These clusters are common in high-Gleason-score images.

in LD . As a consequence, this will reduce the number of
nuclei in Epi.

2) Stroma is mainly responsible for holding the shape of a
tissue. In high-Gleason-score images, the stroma tends to
disappear or get considerably small between the lumens,
i.e., the lumens tend to fuse together. This gives rise to
“nuclei clusters” at the junction of lumen borders. One
such cluster is outlined in Fig. 5(b). As a consequence of

these clusters, the percentage of Epi to the total number
of nuclei in the image decreases (7).

Based on these two observations, we believe that PLD
has the

potential to differentiate between low and high Gleason scores.
Moreover, PLD

is a histopathologically meaningful feature. To
extract Epi , we utilized the framework which we presented in
[30]. Briefly, in [30], we presented a gray weighted distance
transform to compute the inter-nuclei distances to detect and
classify high cell-density regions. Here, we utilized the same
framework to compute the shortest distance between ςi and
Epi. To compute this, let us consider an image f defined over
a digital space. An nD (n-dimensional) digital space usually
refers to an nD grid space that only contains integer points in
nD Euclidean space, i.e., Zn ⊂ Rn , where Zn represents the n-
dimensional discrete space while Rn stands for real coordinate
space. An nD digital image f , can be defined as a function
on Zn . Here, f is a binary image with all pixels set to one
except the interior of each nucleus. Here the nuclei image (SC2)
is computed by subjecting the second channel of SC in (6)
to entropy thresholding [24]. The interior can be set to zero
by using SC2− (SC2 � SE). Here, SE is a 3 × 3 square
structuring element and� represents the morphological erosion.

Let p, q ∈ Zn and Ppq represent the set of all possible paths
between pixels p (border pixels in ςi) and q (border pixel of
nuclei). Let π ∈ Ppq represent a path of length H as H-tuple
such that

π = (p = p0 ; p1 ; · · · ; pH−1 = q) (9)

where pi and pi+1 are adjacent pixels (8 connectivity). Then,
the length Len of the path π is defined as

Len (π) =
H−1∑
i=0

f (pi) + f
(
pi+1

)
(10)

= f (p) + f (q) + 2
H−2∑
i=1

f (pi) . (11)

Exclusion of spatial weighting in (11) ensures that pixels set to
zero do not play a role in distance computation, i.e., the distance
should not change within the nucleus boundary. This ensures
that the nuclei sizes do not affect the distance computation.
Essentially, one can travel within the nuclei without incurring
any cost, i.e., two different pixels are separated by null distance
if there exists a path with zero values linking the pixels [31]. So,
this will favor paths through the nuclei instead of paths outside
nuclei. From implementation point of view, f(q) corresponds
to the seed image to initialize the distance computation, i.e.,
the border of the nuclei, while f(p) represents the border of
the lumens. Now, the gray-weighted distance between p and q
can be defined as a combinatorial optimization problem as [32],
[33]

d (p, q) =

{
min

π∈P p q
Len (π) , if Len (π) 	= +∞
+∞, otherwise.

(12)

This basically corresponds to the shortest distance between
pixels p and q. Now, for each nuclei, the location with the mini-
mum distance is utilized to initialize the backtracking toward the
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Fig. 6. Schematic diagram of the shortest path of nuclei to the lumen.
Here the white circles represent the nuclei. The green line shows the
shortest path, while the red line shows few of the longest paths. At first
glance, the red paths might look shorter; however, as the cost of traveling
through another nucleus is zero, the farthest nuclei will prefer to travel
through the other nuclei instead.

Fig. 7. Example of epithelial nuclei (Epi ) detection. (a) Original image
of size 1036 × 624 pixels. (b) The nonepithelial nuclei overlaid in green.
(c) The Epi nuclei overlaid in green.

closest point in ςi [34]. If this path does not contain (crosses) any
other nuclei in its path during backtracking, then that nucleus is
considered as part of Epi. Fig. 6 shows the resulting paths as a
schematic diagram. Fig. 7(c) shows an example image where all
Epi are overlaid in green. Once Epi is computed, computing
PLD

becomes trivial. Moreover, we also use the average shortest
distance of Epi to its closest nuclei as a proxy to average nuclear
to cytoplasmic (NC) ratio. We represent this as NC.

Using the same framework, we also compute the distance,
DN

i of each nucleus to its closest luminal space. The only dif-
ference is in the construction of f which additionally contains
+∞ in stroma regions, i.e., cost of traveling through the stroma
region is +∞. This prevents the nuclei of one lumen to be as-
signed to another by creating a natural dam (stroma) between
the lumens. Once DN

i is computed, we take the average of DN
i

and use this as a feature. In low-grade prostate images, this value
will be lower due to the presence of well-defined stroma bound-
aries; however, it will increase in high grade prostate images
due to the presence of nuclei clusters at lumen boundaries. The
denser the cluster gets, the longer this distance will be.

2) Measure of Architectural Changes: In prostate can-
cer, stroma regions as well as the nuclei have a variable edge
(boundary) thickness. We are interested in finding the relation-

ship between “architectural changes of these edges” in different
orientations to Gleason grading. Here, orientation needs to be
defined in a manner as perceived by the human visual system.

During visual analysis, we do not look for orientation changes
at the pixel level; instead, we observe changes at the global level.
So, finding the relationship between the architectural changes of
edges in different orientations requires the selection of suitable
methods for the following: 1) edge detection; 2) edge orientation
estimation; and 3) measuring architectural changes.

From a technical point of view, variable edge thickness im-
plies that the edges appear at different scales [35]. Generally,
edge detection can be performed either at a fixed or at a vari-
able scale [36]. However, we are interested in filters that can
concurrently detect edges occurring at different scales. Sobel,
Prewitt, Laplacian [37], etc., are normally used for detecting
edges occurring at a fixed scale. However, the filter response is
poor at locations where the filter window is smaller or larger
than the edge thickness. To overcome this issue, we can apply
varying size filters to detect edges occurring at different scales.
However, designing a large size filter is a challenging problem.
Moreover, due to the local nature of the window of these filters,
the orientation estimates are local in nature, and that is not how
humans perceive edges in an image.

Gabor filters [38] are good alternatives for detecting edges
at different scales. Gabor filters provide directional analysis for
particular frequency and orientation, but are local in nature.
While Gabor filters provide a mechanism to detect edges oc-
curring at different scales and orientation, how to combine dif-
ferent scales and orientations is an open problem. Decimation
free Directional Filter bank (DDFB) appears to be an appropri-
ate candidate as it provides a mechanism to design orientation
selective filters irrespective of the scale [36], [38], [39]. These
filters split the Fourier transform of an image into wedge shaped
passbands. In the spatial domain, these passbands correspond to
all features (edges) in a specific orientation irrespective of the
scale. Moreover, DDFB detects edges at a global level, i.e., how
it is perceived by humans as it is not affected by small changes
in orientation.

Let f1 , f2 , f3 , and f4 represent the directional filters responsi-
ble for extracting edges having orientation [π

2
3π
4 ], [π

4
π
2 ], [ 3π

4 π],
and[π π

4 ], respectively.
Now to estimate the architectural changes of the edges in dif-

ferent orientations for an image I with size m × n,we compute

Ωj = f j ⊗ I (13)

Cj =

( ∑n
x=1

∑=m
y=1 |Ωj (x,y)|

)

m ∗ n
. (14)

Here j {1, 2, 3, 4} ,and fj represents the spatial domain di-
rectional filters. Cj (stroma) denotes the architectural changes
of edges in a certain orientation. To make Cj rotation invariant,
we compute

k = max
j

(Cj ) with j ε {1, 2, 3, 4} (15)

C ′
j = C((4−k+j) modulo 4)+1 . (16)
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Fig. 8. Example of architectural features of stroma. (a) Original image
of size 3000 × 3000 pixels. (b) Extracted stroma region. (c)–(f) The four
architectural features proposed in this study. The stroma distribution is
not uniform across these images, which according to our hypothesis is
associated with high Gleason score.

TABLE I
FEATURES BASED ON THE RELATIONSHIP OF LUMINAL SPACES TO NUCLEI

C ′
j in (15) denotes the rotation invariant version of Cj . Equa-

tions (15) and (16) force the maximum Cj to become C ′
1 by

circularly shifting the vector {C1 , C2 , C3 , C4}.For instance, if
C3 is maximum among {C1 , C2 , C3 , C4}, the application of
(15) and (16) will change it to {C3 , C4 , C1 , C2}. Fig. 8 shows
an example of architectural features extraction from stroma. Fig.
8(c)–(f) shows the four oriented images. As can be noticed, the
energy of stroma is non-uniformly distributed across all ori-
entated images. Similarly, we compute N ′

j , which denotes the
architectural changes of nuclei edges in different orientations.

As mentioned earlier, in high-score images the stroma tends
to disappear or get considerably small between the lumens. The
stroma may also get extraordinarily large in high-score images.
So, our hypothesis is that the directional energy will not be
uniformly distributed across all directions in high-score images.
In case of low-score images, the stroma tends to be uniformly
oriented across all directions.

Once the features from Section III-A and Section III-B are
extracted, we stack these features, [PLD

,DN
i ,NC, C ′

j , N
′
j ],

together to create a 11-dimensional feature vector (see Tables I
and II for details). Then, we utilize the linear subspace method
presented in [44] to classify images into low and high Gleason
grade. The linear subspace method is based on singular value
decomposition which facilitates to formulate the classification
problem as least square minimization problem. It helps us to

TABLE II
SUMMARY OF ARCHITECTURAL FEATURES OF STROMA AND NUCLEI

Fig. 9. Low-score ROI image of size 949 × 1325 misclassified during
the training. The proposed method failed to detect all the luminal spaces
and nuclei in this ROI image.

create two separate linear subspaces (four-dimensional), one for
the low grade and the other for the high grade prostate images.
The grade associated with a linear subspace, which results in the
minimum reconstruction error in terms of Euclidean distance is
considered as the prediction for the test image.

III. DATABASES

The importance of histopathological diagnosis of prostate
cancer led to the establishment of prostate whole slide (PWS)
imaging database within The Cancer Genome Atlas (TCGA)
[40]. This TCGA database contains H&E images of prostate pa-
tients along with their associated Gleason score. For the training
of the proposed method, we used nine PWS images from TCGA
database with Gleason sore ≤ 6 (low score) and 19 PWS images
with Gleason score ≥ 8 (high score). From each of these 28 im-
ages (9+19), tumor regions were manually identified and ROIs
were extracted by both an expert pathologist and a pathology
resident. ROIs were extracted to account for the heterogeneity
of the prostate cancer. Most of the PWS images contain two
pieces of tissue per slide which allowed us to extract multiple
ROIs per image. A total of 43 ROI images were extracted; 14
ROIs from low grade PWS images and 29 from the high grade
PWS images. Fig. 9(a) shows one of two tissues from a PWS
image. Here, the tumor regions are outlined in green by an ex-
pert pathologist. An ROI of size 1889 x 2452 was extracted from
the image on the left. Fig. 9(b) shows an ROI image extracted
from one of the cancer regions shown in Fig. 9(a).

All ROI images were presented to an expert pathologist for
Gleason scoring using an in-house software which provides the
functionality to score the images via a web browser.
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Fig. 10. High-score ROI images misclassified during the training. (a)
A high-score ROI image of size794 × 1051. The segmentation method
failed to detect the nuclei in this ROI image. (b) An ROI of size 2204 ×
2560 where the segmentation method failed to detect the nuclei. The
aspect ratio of both ROI images was changed for better visualization.

For the validation of the proposed method, we used an inde-
pendent PWS H&E image database. These images are part of a
collection of images obtained from the Physicians’ Health Study
and the Health Professionals Follow-up Study, a prospective co-
hort of US male health professionals. These images represent a
subset of subjects who developed prostate cancer and underwent
prostatectomy [41]. The database consists of 17 low-score and
13 high-score PWS images. Again, tumor regions were man-
ually identified and ROI images were extracted by an expert
pathologist and a pathology resident. A total of 88 ROI images
were extracted from these 30 PWS images (17+13); 49 from
low-score PWS images and 39 from high-score PWS images.
Both TCGA and OSUWMC databases were acquired at 20 ×
magnification. The TCGA and Ohio State University Wexner
Medical Center (OSUWMC) ROI images have an average size
of 2 K × 2 K and 2.5 K × 2.5 K, respectively.

IV. RESULTS

For the sake of clarity, we have divided this section into
training and test results.

A. Training Results

The ROIs from TCGA database were used in the training
of the proposed method. We used the score assigned by the
expert pathologist as the ground truth. Based on leave-one-out-
cross validation, the method correctly classified 40 out of the 43
ROI images from the TCGA database. So, the overall training
accuracy was 93.0% (40/43). One ROI image (see Fig. 10) from
low-score PWS image was misclassified because the proposed
method failed to detect all the luminal spaces and nuclei in this
ROI image.

The reason for the misclassification of the other two ROIs
from the high-score PWS images was a segmentation error; the
nuclei could not be segmented properly (see Fig. 10).

Table III shows the results in terms of a confusion matrix. The
columns of the confusion matrix represent the predicted score,
while the rows represent the Gleason score assigned by the

TABLE III
CONFUSION MATRIX BASED ON THE 43 ROI IMAGES DURING THE TRAINING

OF THE PROPOSED METHOD

The columns represent the predicted score, while the rows represent the ground truth.
The first row shows that 13 out of 14 low-score ROI images were correctly classified.
The second row shows that 27 out of 29 high-score ROI images were correctly classified.
The antidiagonal of the confusion matrix shows the number of misclassified ROI images.

TABLE IV
CONFUSION MATRIX BASED ON THE 25 PWS IMAGES DURING THE

TRAINING OF THE PROPOSED METHOD

We followed the majority voting rule to assign a score to a PWS image. The main
diagonal of this matrix represents the number of correctly classified PWS images, while
the antidiagonal shows the number of misclassified PWS images.

expert pathologist, i.e., the ground truth. The main diagonal of
this matrix represent the number of correctly classified images
while the anti-diagonal shows the number of miss-classified
images.

One might think that the notion of “visually meaningful fea-
tures interpretable to the pathologist” is perhaps lost when used
in conjunction with a subspace method. To address this issue,
we repeated our experiments with random forest, a classifier
whose results are relatively simple to interpret. We randomly
divided the TCGA database into approximately 10 equal sized
partitions. The objective was to choose nine different partitions
for training and the remaining partition for validation. During
the subsequent folds, it was repeated by considering a differ-
ent partition for validation and remaining partitions for training.
This resulted in an average accuracy of 92.1% with standard
deviation of ±0.9258. These results are nearly identical to what
we have achieved with the subspace method. From here, one
can conclude that with a bit of effort, one can easily interpret
which features are responsible for the predicted score. So, for
ambiguous cases, the pathologist can actually see the features
which are responsible for a certain score. However, for computa-
tional efficiency and slightly better performance of the subspace
method, we preferred it over random forest.

If we follow the majority voting rule (two or more ROI im-
ages from the same PWS image need to be correctly identified)
to make a decision, then 24 out of the 25 PWS images were
correctly classified, resulting in a training accuracy of 96.0%
(24/25). The respective confusion matrix is shown in Table IV.
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TABLE V
CONFUSION MATRIX BASED ON THE 25 PWS IMAGES DURING THE

TRAINING OF THE PROPOSED METHOD

A PWS image is considered correctly classified if all its respective ROI images are
correctly identified.

TABLE VI
CONFUSION MATRIX BASED ON THE 88 ROI IMAGES IN THE OSUWMC

DATABASE

However, the training accuracy drops to 88.0% (22/25) if we
require all the ROI images from the same PWS image to be
correctly identified. Table V shows the results in terms of a
confusion matrix.

B. Test Results

The 88 ROI from the OSUWMC database were used for the
evaluation of the proposed method. The method correctly classi-
fied 80 out of the 88 ROI images from the OSUWMC database,
resulting in an overall testing accuracy of 90.9% (80/88). The
resulting confusion matrix is shown in Table VI. As indicated
in the confusion matrix, the proposed method misclassified six
low and two high score ROI images. It is worth mentioning that
none of the images in the OSUWMC database were used dur-
ing training. This makes our evaluation completely unbiased.
Moreover, the OSUWMC database was acquired at a different
institution. So, there exist variations in slide preparation and
digitization between training and test dataset. The higher classi-
fication accuracy on OSUWMC database shows the robustness
of the proposed method to variations in slide preparation and
digitization.

The ROI images in the OSUWMC database, along with the
predicted scores, were presented to the expert pathologist to
review the results. Table VII reports the findings of the expert
pathologist on the misclassified ROI images.

The expert pathologist considered 6 out of the 8 misclassified
ROI images as controversial, and recommended that we dis-
card them from the OSUWMC database. The expert pathologist
considered it as a failure of the proposed method in two of the
remaining ROI images. This resulted in an overall test accuracy
of 97.6%. Table VIII shows the resulting confusion matrix after
the thorough analysis of the results.

TABLE VII
THOROUGH EVALUATION OF THE PROPOSED METHOD BY AN EXPERT

PATHOLOGIST

Here GT represents the ground truth. PS stands for the predicted score by the proposed
method. The conclusion column shows the final recommendations of the pathologist.

TABLE VIII
CONFUSION MATRIX AS A RESULT OF THE REVISED ROI OSUWMC

DATABASE

The term “revised” emphasize the fact that the misclassified images were reviewed and
analyzed by the expert pathologist as mentioned in Table VII.

TABLE IX
CONFUSION MATRIX RESULTING FROM THE 30 PWS IMAGES IN OSUWMC

DATABASE

A PWS image is considered correctly classified if all its respective ROI images are
correctly identified.

Based on majority voting, all 30 slides were correctly clas-
sified, which resulted in a test accuracy of 100.0% (30/30).
However, the training accuracy drops to 93.3% (28/30) if we
require all the ROI images from the same PWS image to be
correctly identified. The resulting confusion matrix is shown in
Table IX.

We have also compared our proposed method with [17]. The
method in [17] resulted in an overall accuracy of 79.07% with
standard deviation of ±2.45 on the ROI images in the training
database during tenfold cross validation. It misclassified a total
of nine images (three from low-score ROI while six from high-
score ROI images) while the accuracy dropped to 74.39% for
OSUWMC database. A total of 21 images out of 82 were mis-
classified. We picked [17] for comparison as it is also designed
to differentiate between low Gleason score from high. We fur-
ther compared our results with [42]. For the training database,
it resulted in an overall accuracy of 81.65% with standard de-
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viation of ±4.79 during tenfold cross validation. For OSUMC
database, the accuracy dropped to 78.32%.

We have used multiple ROI images per patient during leave-
one-out cross classification. So, one can think that this might re-
sult in over-fitting. However, leave-one-out cross validation was
only used during training. The test set (OSUWMC dataset) was
completely independent of the training dataset. So, if there had
been any over-fitting during training, the method would not have
generalized to an independent dataset (the OSUWMC dataset).
Leave-one-out for the training set enabled us to make best use
of the available data. Moreover, prostate cancer is well known
to be heterogeneous, so ROI images from the same patient are
relatively different from one another. In fact, leave-one-out cross
validation during training shows the consistency of the proposed
method within same patient.

V. DISCUSSION

Our contribution in this paper is twofold: 1) identification of
visually meaningful architectural and cytological features that
can be employed to classify prostate cancer differentiation; and
2) development of a novel method to encode these features for
prostate cancer.

The main emphasis of this study is to define a perceptually
meaningful objective criterion for prostate cancer grading. The
lack of human interpretation is arguably one of the main reasons
why current systems have not gained acceptance in the pathol-
ogy community, although several systems have the required reg-
ulatory approval. For instance, in [17], Khurd et al. presented a
Gleason grading system to differentiate Gleason pattern 3 from
4. They combined textons with support vector machines to clas-
sify pixels into Gleason patterns 3 and 4. In [18], Sparks and
Madabhushi presented a statistical shape model to perform man-
ifold regularization. They successfully showed that their model
could be utilized to differentiate between Gleason patterns 3 and
4. Although these methods reported a high accuracy, the meth-
ods are not easily interpretable by the pathologist. The visually
meaningful features are designed to provide a pathologist with
additional source of information during diagnosis/prognosis as
they are motivated by clinical observations.

Comparing the ratio of the number of nuclei (“nearest” ep-
ithelial nuclei) within lumens to the total number of nuclei in an
image is a feature that can be easily understood by the pathol-
ogists. Instead of memorizing some complex and subjective
patterns, one can rely on these simple features, which in return
provide better discrimination and interpretability. In prostate
cancer, the NC ratio is often a useful feature to the pathologist.
However, encoding such a feature into an automated image anal-
ysis method is challenging as it is difficult to extract a cytoplas-
mic boundary from H&E images. To overcome this problem, we
provide an alternative by computing the shortest distance from
the nuclei within a lumen to the border of the luminal spaces.
This distance, on average, is smaller in low-score ROI images
as compared to high-score ROI images. Indeed, lower Gleason
grade patterns such as pattern 3 features discrete and individual
gland with minimal distance from the glandular epithelial nuclei
to the borders of each gland. Higher grade patterns tend to fea-

ture ill-defined or fused glands all the way up to disappearance
of glandular architecture, increasing the distance of glandular
epithelial cells to the borders of each gland. It is worth men-
tioning that the proposed method was trained and tested on ROI
images. For this reason, it would be illogical to correlate it any
other outcome except for Gleason grade. However, the system
is general enough to be correlated to any other type of outcome
provided that we have access to all slides.

The PWS images often show variations within/between them
due to: the type of tissue fixation, embedding, cutting, and stain-
ing protocols (such as stain concentration, and staining time)
and the image acquisition devices [43], [44]. Some of these
variations are very difficult to be addressed via color normal-
ization methods [20], [43], [45] only. These color normalization
methods lack explicit explanations on how they tackle these
variations. For these reasons, we adopted a variant of textons
[22], [46]. Most of our filters for texton generation rely on the
edge and curvature information from the red channel of the RGB
color image, hence, compensating for most of the color varia-
tions. However, the method still failed to segment a few ROI
images which points toward the complexity of the variations
in the PWS images. Unlike [17], we utilized textons to extract
nuclei, stroma, and lumens rather than use them for classifying
ROI images into low and high Gleason score.

The training and testing of the proposed method are reported
on a reasonable size dataset, i.e., 55 H&E slides. The nearly
identical results on two independent databases, TCGA and OS-
UWMC, indicate the robustness and generalizability of the pro-
posed method. We attribute the success of the method to visually
meaningful features generation. We believe that these features
can be considered as complimentary features to the existing fea-
ture set in the Gleason grading system. Moreover, these features
have the potential to be considered as independent features for
scoring of WSP images.

Replacing the MR8 filter bank in our segmentation frame-
work with the filter bank presented in [22] produces comparable
results; however, we preferred MR8 due to its computational ef-
ficiency [46]. It is also worth mentioning that the training takes
an average of 5 mins on the set of 5 training images of size
2500 × 2500 pixels in MATLAB 2012a. The majority of the
time is taken by k-means clustering. Fortunately, this can be
performed offline. As far as testing is concerned, it takes nearly
10 seconds to perform color deconvolution on a 2500 × 2500
pixels RGB color image. In testing, the majority of the time is
spent on solving (1). Increasing the number of training images
might increase the robustness of the color deconvolution; how-
ever, it will increase the computational cost during testing. Due
to the parallelizable nature of (1), the computational cost during
testing can be overcome by exploiting the parallel architecture
of modern day computers.

Although the proposed method performs at a reasonable
accuracy, the emphasis of this study was not to replace the
pathologists. The reasonable accuracy of the proposed method
establishes a new set of visually meaningful features that can
differentiate between low and high Gleason score. The objective
is to assist the pathologists in comparing and validating their
findings with that of the proposed method. A method that allows
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the pathologist to have an objective reason for a certain score
provides the pathologists with an extra bit of confidence during
diagnosis/prognosis, and will enable them to share their findings
with peers/residents/students in plain English. Our experience
with developing computer-assisted diagnosis systems for other
diseases [3], [47]–[50] indicates that pathologists have stronger
acceptance and trust for the tools and systems that they can
understand. This experience motivated the design of this study.

Dividing grades of Gleason scores into smaller numbers of
groups can reduce the variability [5], [6]. The current treatment
options for Gleason grades 3 + 3 or less (i.e., 1 + 1, 1 + 2, 2 +
1, etc.) is the same. Similarly, the current treatment options for
Gleason grades or 4 + 4 or more (i.e., 4 + 4, 4 + 5, 5 + 4, etc.)
is the same. Hence, smaller number of groups for these cate-
gories is possible and will reduce variability while not impact-
ing stratification. However, some categories 3 + 4 and 4 + 3
are quite different and their discrimination is very important.
There may even be further subcategories within these two. This
further emphasizes the need for objective, repeatable, quantita-
tive methods to grade different prostate cancers. Our effort is in
that direction and our future work will extend our feature set to
include intermediate Gleason patterns 3 (Gleason score3 + 4)
from pattern 4 (Gleason score4 + 3).

VI. CONCLUSION

In this paper, we introduced a new set of visually mean-
ingful features to inform a reproducible digital image analy-
sis method to quantify prostate cancer grade. The developed
method uses distilled, objective criteria derived from a widely
accepted Histopathological method that helps pathologist to
grade prostate cancer with better precision and accuracy. In
situations where there is a disagreement between the Gleason
score assigned by a pathologist and the proposed method, the
visually meaningful property allows the pathologist to further
scrutinize the results.

In our future work, we will extend this feature set to include
intermediate Gleason pattern 3 (Gleason score3 + 4) from pat-
tern 4 (Gleason Score4 + 3). One possibility would be to apply
the current method on small patches instead of ROI images and
investigating if the method can differentiate between Gleason
patterns 3 from 4. Currently, the system requires ROI images
from the tumor regions to predict a Gleason score. However, we
will investigate the possibility of automatically localizing tumor
regions from PWS images. We will further investigate the possi-
bility of including multiple pathologists into our future studies.
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