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ABSTRACT

Genome-wide association studies (GWAS) facilitate large-
scale identification of genomic variants that are associated
with complex traits. However, susceptibility loci identified
by GWAS so far generally account for a limited fraction of
the genotypic variation in patient populations. Predictive
models based on identified loci also have modest success in
risk assessment and therefore are of limited practical use.
In this paper, we propose a new method to identify sets of
loci that are collectively associated with a trait of interest.
We call such sets of loci ”population covering locus sets”
(PoCos). The main contribution of the proposed approach
is three-fold: 1) We consider all possible genotype models for
each locus, thereby enabling identification of combinatorial
relationships between multiple loci. 2) We use a network
model to incorporate the functional relationships among ge-
nomic loci to drive the search for PoCos. 3) We develop a
novel method to integrate the genotypes of multiple loci in
a PoCo into a representative genotype to be used in risk
assessment. We test the proposed framework in the context
of risk assessment for two complex diseases, Psoriasis (PS)
and Type 2Diabetes (T2D). Our results show that the pro-
posed method significantly outperforms individual variant
based risk assessment models.
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Genome-wide association studies (GWAS) had a trans-
formative effect on the search for genetic variants that are
associated with complex traits, since they enable screening
of hundreds of thousands of genomic variants for their asso-
ciation with trait of interest [1]. Recently published GWAS
led to the discovery of susceptibility loci for many complex
diseases, including type 2 diabetes [2], psoriasis [3], multiple
sclerosis [4], and prostate cancer [5], to name a few. For im-
proved identification of risk variants, researchers have drawn
information from clinical, microarray, copy number, and sin-
gle nucleotide polymorphism (SNP) data to build disease
risk models, which are then used to predict an individual’s
susceptibility to the disease of interest [6, 7]. Several compa-
nies, such as deCODE genetics (http://www.decodeme.com)
and 23andme (https://www.23andme.com) have started us-
ing SNPs identified by GWAS, to provide personal genomic
test services in the United States and health related genomic
test services in Canada and the United Kingdom.

An important problem with GWAS is that the identified
variants account for little heritability [8, 9]. Empirical ev-
idence from model organisms [10] and human studies [11]
suggests that the interplay among multiple genetic variants
contribute to complex traits. Epistasis among pairs of loci,
i.e., significantly improved association with the phenotype
when two loci are considered together, is also shown to pro-
vide provide further insights into disease mechanisms [12,
13, 14]. Therefore, recent studies focus on identifying the
interactions among pairs of genomic loci, as well as among
multiple genomic loci [15, 16, 17]. These studies suggest that
consideration of more than one locus together can better
capture the relationship between genotype and phenotype.
For this reason, genetic markers that involve the aggrega-
tion of multiple genomic loci can be used to design effective
strategies for risk assessment and guiding treatment deci-
sions [18]. The Polygenic score is a commonly used method
that has been used to identify the joint association of a large
mass of the loci to predict disease risk. The first application
of polygenic score on GWAS data showed the genetic risk for
schizophrenia is a predictor of bipolar disorder [19]. There
are also several studies that demonstrate that the polygenic
risk score is a powerful tool in risk prediction [19, 20, 21].

The importance of epistasis or higher order interactions
among multiple loci is commonly recognized. However, de-
tecting such interactions requires tremendous amount of com-
putational resources. So detecting epistatic interactions on
GWAS data containing hundreds of thousands of loci is not
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usually feasible. Identifying the optimal number of loci for
high-order interactions also makes the problem even more
computationally expensive. Furthermore, the issue of mul-
tiple hypothesis testing leads to challenging statistical prob-
lems. Therefore, several methods and software packages
are developed to identify the statistical interactions between
pairs of genomic loci [22, 23, 24]. It is often observed that
the risk loci for many diseases are clustered in common
pathways [25]. Based on this observation, many methods
overcome the multiple testing issue by filtering SNP pairs
based on prior biological knowledge [26, 27]. However, such
filtering-based approaches are biased toward established func-
tional relationships, therefore they can miss important causal
variants. In contrast, some approaches prioritize pairs of loci
based on simpler statistics on the relationship between the
genotypes of loci [28, 29].

Since detection of epistasis and higher order interactions
is costly, many methods first assess the disease association
of individual loci and then use functional knowledge to inte-
grate these associations [25, 30]. The key idea behind these
methods is that functionally related variants, e.g., those
that induce dense subnetworks in protein-protein interac-
tion (PPI) networks, can provide stronger statistical signals
when they are considered together [31]. Based on similar
insights, some researchers integrate GWAS with pathway
information to identify the statistically significant pathways
that are associated with the disease [32, 33]. Azencott et

al propose a method to discover sets of genomic loci that
are associated with a phenotype while being connected in
an underlying biological network which is defined between
SNPs [34]. They use an additive model to integrate the
genotypes of loci and they build a network by integrating
the proximity of genetic loci as well as interacting genes.
Then they use graph structured features to select a set of
disease associated SNPs.

In this paper, we propose a novel criterion to assess the
collective disease association of multiple genomic loci. The
proposed method builds on the concept of ”Population Cov-
ering Locus Sets” (PoCos), which is introduced in our pre-
vious work and used to prioritize pairs of genomic loci for
testing epistasis [29]. Namely, a PoCo is a set of loci that
harbor at least one susceptibility allele in samples with the
phenotype of interest. Here, we extend the notion of PoCos
to enable the adaptive identification of ”susceptibility geno-
type” (as opposed to susceptibility allele) for each locus. We
also develop a method for aggregating the genotypes of mul-
tiple loci in a PoCo to compute representative genotypes
for use in risk assessment. Finally, in order to capture the
functional relationship between genomic loci, we incorporate
the human protein-protein interaction (PPI) network in the
identification procedure of PoCos.
We use the PoCos identified by the proposed framework

to develop models for risk assessment. For this purpose, we
perform nested cross-validation and use a feature selection
algorithms to select PoCos used in the model. We evalu-
ate the performance of PoCos in risk assessment on GWAS
datasets for Type 2 Diabetes (T2D) and Psoriasis (PS), us-
ing Area Under ROC Curve (AUC) in a cross-validation
setting. We compare the risk assessment performance of
models built using PoCos to that of models built using in-
dividual loci. Our experimental results show that PoCos
significantly outperform individual loci in risk assessment.
Furthermore, we investigate the effect of adaptively selecting

”susceptibility genotypes” on improving risk assessment. Fi-
nally, we compare the risk assessment performance of PoCos
identified using the network with PoCos that are identified
independent of network. In order to show the significant
improvement of risk assessment using the proposed frame-
work, we also compare the performance of our method with
polygenic risk score.

In the next section, we describe the proposed procedure
for modeling the genotypes and identifying PoCos. Then
we describe how we use PoCos to develop a model for risk
assessment. In section 3, we present comprehensive experi-
mental results on two GWAS data sets for T2D and PS. We
conclude with a discussion of our results and future research
in section 4.

2. METHODS
In this section, we first present the set-up for genome-wide

association analysis. We then define “Population Covering
Locus Sets” (PoCos) and describe the algorithm we use to
identify PoCos. Finally, we describe our framework for risk
assessment using PoCos and the feature selection method
we use to identify an optimal set of PoCos to be used for
risk assessment.

2.1 Problem Formulation
The input to the problem is a genome-wide association

(GWA) dataset D = (C, S, g, f), where C denotes the set
of genomic loci that harbor the genetic variants (e.g., single
nucleotide polymorphisms or copy number variants) that are
assayed, S denotes the set of samples, g(c, s) denotes the
genotype of locus c ∈ C in sample s ∈ S, and f(s) denotes
the phenotype of sample s ∈ S. Here, we assume that the
phenotype variable is dichotomous, i.e., f(s) can take only
two values: if sample s is associated with the phenotype of
interest (e.g. was diagnosed with the disease, responds to
a certain drug etc.), s is called a “case” sample (f(s) = 1),
otherwise (e.g., was not diagnosed with the disease, does not
respond to a certain drug etc.), s is called a “control” sample
(f(s) = 0). We denote the set of case samples with S1 and
the set of control samples with S0, where S1∪S0 = S. While
we focus on qualitative traits here for brevity, the proposed
methodology can also be extended to quantitative traits (i.e.,
when f(s) is a continuous phenotype variable).

2.2 Identifying Genotypes of Interest
The minor allele for a locus is usually defined as the allele

that is less frequent in the population. While it is com-
mon to focus on the minor allele to assess the effect of the
SNPs on the phenotype, specific genotypes can also be as-
sociated with a phenotype [35, 36, 37]. Here, we argue that
considering the effect of all possible genotype combinations
can provide more information in distinguishing case sam-
ples from control samples. This notion is particularly useful
when the genotypes of multiple loci are being integrated. For
example, heterozygosity on one locus can be associated with
increased susceptibility to a disease, while homozygous mi-
nor allele on another locus may be protective at the presence
of heterozygosity in the former locus [38]. In this case, the
interaction between the two loci can be detected by consid-
ering the association of all possible genotype combinations
with the phenotype.

In this paper, we adaptively binarize the genotypes of each
locus by considering all possible allele combinations. Given
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the genotype of a locus, we consider five different binary
genotype models m(i), i ∈ {1, . . . 5}. Based on each model,
we generate a binary genotype profile for the locus. We then
separately assess the association of the resulting five geno-
type profiles with the phenotype of interest. Subsequently,
we choose the model that leads to greatest discrimination
between cases and controls, and use the respective binary
genotype profile as the representative genotype of that lo-
cus. This process is illustrated in Figure 1. Namely, we
consider the following genotype models:

1. Homozygous Minor Allele: This corresponds to the
case when the possible effect of the minor allele is“recessive”,
i.e., the locus is considered to harbor a genotype of interest
if both copies contain the minor allele.

m
(1)(c, s) =

{
1 if g(c, s) ∈ {aa}

0 otherwise
(1)

2. Heterozygous Genotype: The locus is considered
to harbor a genotype of interest if the two copies contain
different alleles.

m
(2)(c, s) =

{
1 if g(c, s) ∈ {Aa}

0 otherwise
(2)

3. Homozygous Major Allele: The locus is considered
to harbor a genotype of interest if both copies contain the
major allele.

m
(3)(c, s) =

{
1 if g(c, s) ∈ {AA}

0 otherwise
(3)

4. Presence of Minor Allele: This corresponds to the
case when the possible effect of the minor allele is “domi-
nant”, i.e., the locus is considered to harbor a genotype of
interest if at least one copy contains the minor allele. This
is the complement of m(3).

m
(4)(c, s) =

{
1 if g(c, s) ∈ {Aa, aa}

0 otherwise
(4)

5. Presence of Major Allele: The locus is considered to
harbor a genotype of interest if at least one copy contains
the major allele. This is the complement of m(1).

m
(5)(c, s) =

{
1 if g(c, s) ∈ {Aa,AA}

0 otherwise
(5)

These five models represent all possible allele combina-
tions for a single locus. Note that, although models m4 and
m5 are complements of other models, we consider them sep-
arately. This is because, as we discuss in the next section,
the 1s and 0s in the binary genotype profiles are considered
asymmetrically while integrating the genotypes of multiple
loci.

Given the five |S|-dimensional binary genotype profiles

m(i)(c), i ∈ {1, . . . 5}, we compute the difference in the frac-
tion of case and control samples that harbor the genotype
of interest as follows:

D
(i)(c) =

〈
f,m(i)(c)

〉
|S1|

−

〈
1− f,m(i)(c)

〉
|S0|

. (6)

where 1 denotes a vector of all 1’s and < . > denotes the
inner product of two vectors. We then determine the binary

genotype model for each locus as the model that maximizes
the difference of relative coverage between case samples and
control samples, i.e.:

k(c) = argmaxi∈{1...5}{D
(i)(c)}. (7)

Based on the selected model for each locus, we compute the
binary genotype profile for each locus accordingly:

M(c, s) = m
(k(c))(c, s). (8)

2.3 Population Covering Locus Sets (PoCos)
Once we compute the binary genotype profiles for all loci,

we identify Population Covering Locus Sets (PoCos). In
previous work, we define and use PoCos in the context of
prioritizing locus pairs for testing epistasis [29]. In this ear-
lier definition, the genotypes of interest are limited to the
presence of the minor or major allele; i.e., only the last two
models described in the previous section are used to deter-
mine the binary genotype profile of each locus. Here, we
generalize the concept of PoCo to utilize five different mod-
els for determining the genotypes of interest, as described in
section 2.2.

A PoCo is a set of genomic loci that collectively “cover”
a larger fraction of case samples while minimally covering
control samples. Namely for a given set P ⊆ C of loci,
we define the set of case and control samples covered by P

respectively as

E(P ) = ∪c∈P {s ∈ S1 : M(c, s) = 1} (9)

and

T (P ) = ∪c∈P {s ∈ S0 : M(c, s) = 1}. (10)

Given a parameter α that defines the population coverage
threshold, we define a PoCo as a set P of loci that satisfies
|E(P )| ≥ α|S1| while minimizing |T (P )|. Note that, since
we are interested in finding all sets of loci with potential
relationship in their association with phenotype, we do not
define an optimization problem that aims to find a single
PoCo with minimum |T (P )|. We rather develop an algo-
rithm to heuristically identify all non-overlapping PoCos
with minimal |T (P )|.

2.4 Identification of PoCos
To identify all non-overlapping PoCos, we use a greedy

algorithm that progressively grows a set of loci to maximize
the difference of the fraction of case and control samples
covered by the loci that are recruited in a PoCo. In another
words, we initialize P to ∅ and at each step, add to P the
locus that maximize

δ(c) =
|E({c}) ∩ S′|

|S1|
−

|T ({c}) ∩ S′|

|S0|
(11)

where S′ = S \ (E(P ) ∪ T (P )). The algorithm stops when
a sufficient number of case samples are covered, i.e., when
|E(P )| ≥ α|S|. We then record P , remove the loci in P

from the dataset, and identify another PoCo. This process
continues until it is not possible to find a set of loci that
covers a sufficient fraction of case samples.

Since we are trying to find the sets of variants that are
related to each other in their association with the disease,
utilizing interaction data can be a powerful tool to provide
a functional context for PoCos. Motivated by this observa-
tion, we use two different methods to guide the search for
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Figure 1: Model selection and computation of binary genotype profiles for each genomic locus. The genotypes
of four loci on a hypothetical case-control dataset are shown on the left. The five possible binary genotype profiles for each
SNP are computed, as shown in the middle. Blue squares indicate the presence of the genotype of interest in the respective
sample for each model (respectively, homozygous minor allele, heterozygous, homozygous major allele, presence of minor
allele, presence of major allele). The resulting binary genotype profiles for each locus are shown on the right. Red squares

indicate the existence of genotype of interest according the selected model. In this example, models m(4), m(1), m(5), and
m(2) are respectively selected for the four loci. .

PoCos: (i) Network-free PoCos and (ii) Network-guided
PoCos (NetPocos).

2.4.1 Network-Free PoCos

For network-free PoCos, the search space for the problem
contains all the loci that are genotyped and no restriction is
applied on the search space. We use δ(.) to guide the search
for PoCos, and require the search to proceed until α|S1|
case samples are covered.

2.4.2 NetPocos

We also identify PoCos by restricting the search space
to the human protein-protein interaction network (PPI).
The basic idea is inspired by the NetCover algorithm that
is used to identify dysregulated subnetworks [39]. The in-
puts to this problem are GWAS data and also a network
G = (V ∪ U,E ∪ F ), which represents the functional rela-
tionships among genomic loci through a backbone that is
derived from the PPI network. The two types of nodes in
the network represent proteins and genomic loci. Namely,
V denotes the set of proteins and U denotes the set of loci
that are genotyped in the GWAS. The interactions and as-
sociations between these two different types of nodes are
also represented by two different sets of edges. The set of
pairwise interactions between proteins is represented by E.
The association between genomic loci and proteins are rep-
resented by edge set F . Namely, there is an edge between
a locus and a protein if the locus is in the region of interest
(RoI) for the coding gene (in our experiments, RoI is de-

fined to be within 20Kb of the coding region). Therefore,
in this network, two loci that are in the RoI of two func-
tionally associated genes are 3 hops apart from each other.
The constructed subnetwork is more sparse compared to the
networks between loci that is used by Azencott et al [34].

The algorithm for identifying NetPocos is illustrated in
Figure 2. This algorithm proceeds similarly to the origi-
nal algorithm, but the set of loci that can be recruited is
restricted by the network. Namely, at any step of the al-
gorithm, only loci that are at most three hops away from
at least one locus in P are considered as candidates for ad-
dition into P . This ensures that the loci in a NetPoco

are functionally associated with each other; i.e., each locus
in a NetPoco is associated with a protein that interacts
with a protein that is associated with another locus in the
NetPoco.

When the algorithm terminates, it returns the set Π of all
discovered PoCos. As we discuss in Section 3, each identi-
fied PoCo in practice contains multiple loci and most of the
loci in the dataset are not assigned to any of the PoCos.
For this reason, we usually have |Π| << |C|.

2.5 Model Development for Risk Assessment
One potential utility of the PoCos is risk assessment.

Since each PoCo provides a means to aggregate the effects
of multiple loci in their association with the disease, these
PoCos may provide more robust and reproducible features
to be used in predictive models, as compared to individual
variants. To investigate the utility of these multi-locus fea-
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Figure 2: Identification of NetPocos. Each vi represents
a protein (V ) and each cj represents a genomic locus (U).
Blue edges represent the interactions between proteins (E)
and orange edges indicate that the respective locus is in the
RoI of the coding gene for the respective protein (F ). Ini-
tially, P is empty and all loci are considered and the locus
(c6) that maximizes δ(.) is added to P . After this point, the
search space is restricted to loci that are three hops away
from c6. We continue this procedure until the set of selected
loci cover a sufficient fraction of the case samples. Red nodes
and green nodes show the selected loci and proteins respec-
tively.

tures in risk assessment, we build a model for risk assessment
using a Näıve Bayes classifier.

2.5.1 Representative Genotypes of PoCos

To facilitate the use the PoCos for risk assessment, we
compute a representative genotype for each PoCo. For this
purpose, we use the fraction of the loci in the PoCo that
harbor a genotype of interest in the respective sample. To
be more precise, for each PoCo P ∈ Π, we compute the
profile of P as

h(P, s) =

∑
c∈P

M(c, s)

|P |
(12)

The set of features utilized by the classifier is comprised
of h(P, s) for all P ∈ Π. Next, we perform feature selection
to identify a parsimonious set of PoCos to be used in risk
assessment.

2.5.2 Feature Selection

In order to find the optimal set of PoCos to be used for
risk assessment, we use a forward selection based wrapper
method. To avoid overfitting, we use nested 5-fold cross-
validation. Namely, we divide the set of samples into 5
groups {T1, . . . , T5} while keeping the proportion of case

and control samples fixed across groups. We use T1 as an
independent test group and the rest of population for train-
ing the model. We divide the training group further into 5
groups and use this partitioning to perform feature selection.
The objective function that we try to maximize within the
inner fold is the area under the ROC curve (AUC), described
in the next subsection.

We start with an empty model and select the PoCo that
provides the best AUC score in cross-validation to be added
to the model. We then add the next PoCo that provides
the best improvement in the AUC. We repeat these steps
until adding a new PoCo does not improve the AUC. We
use the final set of selected PoCos in the final model to be
tested on an independent part T1. We then repeat the same
procedure by using T2, T3, T4, T5 as the test group.

2.5.3 Performance Evaluation for Risk Asssessment

Risk assessment models produce quantitative predictions
of susceptibility to the disease of interest. To evaluate the
predictive ability of these risk assessment models, we apply
different thresholds on the predicted risk to obtain a binary
prediction for each test sample. Using these binary predic-
tions, we obtain the counts of true positives (predicted to
be in risk, has the disease), false positives (predicted to be
in risk, does not have the disease), and false negatives (pre-
dicted not to be in risk, has the disease), and compute the
precision (fraction of true positives among all predicted to
have risk) and recall (fraction of true positives among all
who have the disease) figures based on these counts. We as-
sess the performance of each risk assessment model based on
the area under the ROC curve (AUC), which characterizes
the ability of the model in trading off precision and recall
for varying thresholds on the quantitative prediction.

3. RESULTS AND DISCUSSION
To assess the ability of PoCos in producing informative

multi-locus features, we evaluate their utility in the context
of risk assessment. For this purpose, we use GWA data for
two different complex diseases: Type 2 Diabetes (T2D) and
Psoriasis (PS). On each dataset, we first identify PoCos,
select features to build a model for risk assessment, and
then evaluate the performance of the resulting model. To
avoid overfitting and to ensure that the performance figures
are not biased, we use nested cross validation.

We first compare the risk assessment performance of the
multi-locus features against the standard approach of using
individually significant loci. Subsequently, to gain insights
into the effects of genotype models and network information
we also compare the performance of NetPocos vs. network-
free PoCos, and minor-allele based PoCos vs. multiple
genotype model based PoCos. Moreover, we compare the
performance of NetPocos vs. polygenic score which is a
commonly used method for risk assessment. Finally, we as-
sess the potential biological relevance of the performance
improvement provided by PoCos by repeating our experi-
ments on datasets with permuted phenotypes and permuted
genotypes. To facilitate fair comparisons, we use the classifi-
cation and feature selection methods described in Section 2.5
identically for all types of multi-locus and individual-locus
based features.
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3.1 Experimental Setup
Datasets: We use GWA data for type II diabetes (T2D)

and Psiorasis (PS), both obtained from the Wellcome Trust
Case-Control Consortium (WTCCC) [40]. We filter out the
loci with minor allele frequency (MAF) ≥ 5%. While iden-
tifying the PoCos, in order to avoid marginal effect of in-
dividual loci, we filter the loci with nominal p-value of in-
dividual association less than ≤ 10−7 (this corresponds to
a corrected p-value threshold of 0.05). Since we utilize the
PPI network to identify NetPocos, we focus the SNPs that
are in 20kb upstream and downstream of the gene intervals.
After all filters are applied, the remaining T2D dataset con-
tains genotype calls for 86181 loci on 1999 case and 1504
control samples. The final PS dataset contains genotype
calls for 52346 loci on 2178 case and 5175 control samples.
We use a human PPI network downloaded from the HIP-
PIE (Human Integrated Protein-Protein Interaction rEfer-
ence) database, which integrates multiple experimental PPI
datasets [41]. The HIPPIE PPI network contains 160561
interactions among 14611 proteins.

SNP-gene mapping: We do not use gene information to
identify network-free PoCos. To facilitate the identification
of NetPocos, we map SNPs to genes by defining the region
of interest (RoI) for a gene as the genomic region that ex-
tends from 20kb upstream to 20kb downstream of the coding
region for that gene.

Association analysis for individual loci: In order to com-
pare the multi-locus features with single-locus features, we
need to identify the individually significant loci. For this
purpose, we use PLINK [42], a well-established toolkit for
GWA analysis. We assess the disease-association of all loci
in each dataset based on minor allele frequency, obtaining
a p-value for the association of each locus with the disease.
We adjust the p-values for multiple hypothesis testing using
Bonferroni correction and set a threshold of 0.05 to identify
the individually significant loci.

3.2 Performance of PoCos in Risk Assessment
We identify PoCos in the two datasets using the method

described in Section 2.4.2. After identifying the NetPocos
across all samples, we divide the population to 5 groups
while preserving the proportion of case and control samples
in each group. Then we reserve one group for testing, and
train the model on the remaining four groups for feature
selection as described in Section 2.5. Then we test the per-
formance on the group reserved for testing. Note that the
NetPocos are identified using all samples. However, when
we compare the performance of different multi-locus based
features and individual locus based features, all of these fea-
tures are identified using all samples as well. Here, we com-
pare the risk prediction performance of different multi-locus
based features and individual locus based features based on
this nested cross-validation framework.

PoCos vs. Individual Loci: To investigate the benefit
of using multiple-locus features (PoCos) in risk assessment,
we compare the performance of PoCo-based risk assessment
models against that of individual locus based models. As
described in Section 2.5, we select individual locus based
features by identifying loci with statistically significant as-
sociation with the disease (p < 0.05 after correction for mul-
tiple hypothesis testing). Since the number of statistically
significant individual loci is smaller than number of multiple-
locus features, we also run the feature selection algorithm on

Figure 3: Comparison of the risk assessment perfor-

mance of PoCos and individual locus based features

on T2D and PS datasets. The colored bars show the av-
erage AUC score and error bars show the standard deviation
of AUC score across 10 different runs. The table shows de-
scriptive statistics of the features in the full and final models.
Significant SNPs are the SNPs that are significant after Bon-
ferroni correction (p-value < 0.05). Most significant SNPs
is a set of significant SNPs (before correction) that has the
same size with number of PoCos.

the a set of individual loci with the same size as the set of
multiple-locus features. For this purpose, we sort the loci
corresponding to their p-value and pick the top k loci such
that k is the number of multiple-locus features. We then per-
form feature selection for individual loci using the forward
selection algorithm as for multiple-locus features. We then
test the final model using cross-validation. The results of
this analysis are shown in Figure 3. Note that, the PoCos
utilized in this analysis are NetPocos that are identified
using multiple genotype models. We compare these PoCos
against individual locus based features, since as we discuss
in the rest of this section, this combination outperforms any
other combination on both datasets.

As seen in Figure 3, models that utilize multi-locus fea-
tures significantly outperform individual locus based fea-
tures in risk assessment for both T2D (p < 1.24E − 8) and
PS (p < 2.3E − 6). Here, the significance of the perfor-
mance gap between two different methods is assessed using
standard t-test.

Note that, particularly for T2D, non-genetic risk factors
including age, sex, and body-mass index (BMI) play an im-
portant role in risk. These factors can be also combined
with genetic factors to obtain better performance in risk as-
sessment [43]. Janipalli et al. [44] combine 32 genomic loci
with other conventional risk factors to obtain an AUC of
0.63 in an Indian population. Therefore the performance
improvement provided by the multi-locus features as com-
pared to the individual locus based features in a genetic
factor only setting suggests that combination of multi-locus
genomic features with other factors may lead to an even
greater predictive performance in risk assessment.
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Figure 4: Risk assessment performance of PoCos

identified using multiple genotype models vs. mi-

nor allele model based PoCos on T2D and PS. The
colored bars show the average AUC score and the error bars
shows the standard deviation of AUC score across 10 dif-
ferent runs. The table shows descriptive statistics of the
features in the full and final models.

Multiple Genotype Models vs. Minor Allele Based Model.

One of the important contributions of the proposed frame-
work is the ability to adaptively choose a genotype model
among all possible models while integrating the effects of
multiple loci. To understand whether this added flexibility
has an effect on the performance of risk assessment, we com-
pare the performance of multiple-genotype based PoCos to
PoCos identified by considering only the presence of the
minor allele. The results of this comparison are shown in
Figure 4. As seen in the figure, multiple allele based PoCos
significantly outperform minor allele based PoCos for both
T2D (p < 1.9E−8) and PS (p < 5E−5). Therefore, for the
rest of the paper, we use PoCos identified using multiple
models.

Risk Assessment on Randomized Datasets: Since the pro-
posed framework provides the flexibility to choose the geno-
type model that provides the best disease association for
each locus, it may be prone to overfitting. Also, the per-
formance gain provided by the multi-locus based features
can be purely methodological. More specifically, while our
goal here is to identify loci that coordinately describe the
genotypic variability in the patient population, the use of
multiple loci in constructing a feature can be the main fac-
tor that results in more robust risk assessment. To inves-
tigate whether the performance improvement provided by
PoCos is biologically relevant, we compare the risk assess-
ment performance of PoCos on the original datasets to that
on randomized datasets. For this purpose, we generate two
sets of randomized datasets:

• Permuted phenotype: We generate 10 randomized
datasets by randomly permuting the phenotype labels
of the samples. Using this permutation, we assess
the statistical significance of the association of PoCos
with the disease.
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Figure 5: Comparison of the risk assessment perfor-

mance of PoCos on the original dataset and random-

ized datasets with permuted phenotypes and per-

muted genotypes for T2D and PS. The colored bars
show the average AUC score and the error bars shows the
standard deviation of AUC score across 10 different runs.
The table shows descriptive statistics of the features in the
full and final models.

• Permuted genotype: We generate 10 randomized
datasets by randomly permuting the genotype of loci
while preserving the phenotype labels. This permu-
tation preserves the individual disease association of
each locus, but randomizes the relationship between
the genotypes of different loci. We use this permuta-
tion to assess the significance of the performance im-
provement provided by PoCos.

As on the original dataset, we identify PoCos in each
randomized dataset and use the resulting PoCos to build
models for risk assessment. The results of this analysis are
shown in Figure 5. As seen in the figure, for both diseases,
the PoCos do not provide predictions better than random
guess on datasets with permuted phenotypes. This observa-
tion confirms that the use of multiple genotype models does
not lead to overfitting.

For the randomized genotypes, it is expected for the risk
assessment models to perform better than random guess
since the relationship between the genotypes of each locus
and the phenotype is preserved. However, the predictive
performance of PoCos on the original T2D dataset is sig-
nificantly (p < 5.8E−7) better than that on the T2D dataset
with randomized genotypes. This result suggests that the
proposed framework captures relationships among multiple
loci that is relevant in the context of susceptibility to T2D.
In contrast, the model based on PoCos performs slightly
better on the original PS dataset than on the randomized
PS dataset, and the performance gap is not significant. The
reasonably good performance of PoCos identified from per-
muted genotype data can be attributed to the strong asso-
ciation between psoriasis and individual loci in the genomic
region surrounding HLA [45].

NetPocos vs. network-free PoCos: Many computational
methods have been developed to integrate the GWAS data
with other biological datasets that provide information on
the functional relationships between individual biological en-
tities (here, genomic loci). Here, we utilize the human PPI
network in the identification of NetPocos. Since the iden-
tified PoCos are guided by the PPI network, we expect that
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Figure 6: Comparison of the risk assessment perfor-

mance of NetPocos and network-free PoCos on T2D

and PS. The colored bars show the average AUC score and
the error bars shows the standard deviation of AUC score
across 10 different runs.

NetPocos would be more informative and robust, since
they are composed of functionally related loci. To inves-
tigate whether this hypothesis is supported by empirical re-
sults, we compare the performance of NetPocos in risk
assessment with that of network-free PoCos. The results
of this analysis are shown in Figure 6. As seen in the fig-
ure, constraining the search space by functional interactions
based on PPIs results in reduced predictive power of PoCos,
and network-free PoCos provide more parsimonious final
models. This result suggests that interactions among pro-
teins may be limited in capturing the functional relationship
between genomic loci. For more effective utilization of func-
tional information, it may be more useful to incorporate
regulatory interactions (e.g., ENCODE [46]) as well.

NetPocos vs. polygenic score: A polygenic risk score is
a sum of associated loci, weighted by effect sizes which are
estimated using the training set. The features are selected
using the p-value threshold in training samples and they are
used to score the individuals in test samples. In order to
find the best performance of the polygenic score, we test
different p-value thresholds for a set of associated loci and
pick the threshold with the best performance in the risk
prediction. The results of the performance of risk assessment
are shown in Figure 7. As seen in the figure, the model that
uses PoCos significantly outperforms polygenic risk score
performance in risk assessment for both T2D (p < 1.4E−6)
and PS (p < 5.57E − 7).

Effect of Threshold on Population Coverage: As discussed
in the previous section, we define PoCos as a set of loci
that cover at least a sufficient number of case samples while
minimizing the number of covered control samples. We also
investigate the effect of the threshold (α) we use to decide
on what level of coverage is considered sufficient. For each
α ∈ {0.55, . . . , 0.95, 1}, we generate PoCos with limited
coverage of case samples and assess their performance in
prediction of risk. The results of this analysis for the PS
dataset are shown in Figure 8. As seen in the figure, reduc-

Figure 7: Comparison of the risk assessment perfor-

mance of NetPocos and polygenic score on T2D and

PS. The colored bars show the average AUC score and the
error bars shows the standard deviation of AUC score across
10 different runs.
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Figure 8: Effect of threshold on population coverage

on the risk assessment performance of PoCos on PS.

The x-axis shows α (the threshold on the coverage of case
samples) and the y-axis shows the Area Under ROC Curve
(AUC) provided by the PoCos identified using the respec-
tive threshold.

ing the coverage of case samples results in reduced perfor-
mance PoCos in risk assessment. As we reduce the cover-
age of case samples, the number of loci in PoCos also goes
down. Effectively, at a coverage threshold of around 55%,
most PoCos contain a single locus. Therefore, the risk as-
sessment performance of PoCos identified with a coverage
threshold of 55% is similar to that of individual locus based
models.

4. CONCLUSION
In this paper, we propose a novel criterion to assess the

collective disease-association of multiple genomic loci (PoCos)
and investigate the utility of these multiple-loci features in
risk assessment. We also perform extensive experiments to
evaluate the effect of using multiple genotype models, us-
ing network information to drive the search for multi-locus
features, and the coverage of control samples on risk assess-
ment. Moreover, we compare the proposed method with
the polygenic score which has been shown to be successful
in different studies. The result shows that our method is
significantly more powerful in risk assessment.

Our results show that multi-locus features provide im-
proved prediction performance as compared to individual
locus based features. Interestingly, however, we observe
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that integrating functional information provided by protein
protein interaction data does not provide significant per-
formance improvement. This is most likely to the limita-
tion of PPI data to physical interactions among proteins;
whereas many genomic variants may have regulatory effects
on the function of proteins, as well as other molecules such
as miRNA and lncRNA. Since PPI network-based search
limits the focus on genomic loci that are in close proxim-
ity of genomic regions, relevant information may be lost by
using only PPIs to incorporate functional information. An
important benefit of using PPI networks, however, is that it
reduces the search space to make the problem computation-
ally feasible.

Based on the success of multi-locus genomic features in
risk assessment, we conclude that combining these features
with non-genetic risk factors and other biological data may
lead to further improvements in risk assessment.
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[34] Chloé-Agathe Azencott, Dominik Grimm, Mahito
Sugiyama, Yoshinobu Kawahara, and Karsten M
Borgwardt. Efficient network-guided multi-locus association
mapping with graph cuts. Bioinformatics, 29(13):i171–i179,
2013.

[35] W. Li, B. Hu, G.L. Li, X.Q. Zhao, B.Z. Xin, and et al.
Heterozygote genotypes at rs2222823 and rs2811712 snp
loci are associated with cerebral small vessel disease in han
chinese population. CNS Neurosci. Ther., 2012.

[36] Zhang K, Wang YY, Liu QJ, Wang H, Liu FF, Ma ZY,
Gong YQ, and Li L. Two single nucleotide polymorphisms
in ALOX15 are associated with risk of coronary artery
disease in a chinese han population. Heart Vessels, 2010.

[37] Huang R, Huang J, Cathcart H, Smith S, and Poduslo SE.
Genetic variants in brain-derived neurotrophic factor
associated with alzheimer’s disease. J Med Genet, 2007.

[38] Can Yang, Xiang Wan, Qiang Yang, Hong Xue, and
Weichuan Yu. Identifying main effects and epistatic
interactions from large-scale snp data via adaptive group
lasso. BMC Bioinformatics, 11, 2010.

[39] Salim A Chowdhury and Mehmet Koyutürk. Identification
of coordinately dysregulated subnetworks in complex
phenotypes. In Pacific Symposium on Biocomputing,
volume 15, pages 133–144. World Scientific, 2010.

[40] W. T. C. C. Consortium. Genome-wide association study of
14,000 cases of seven common diseases and 3,000 shared
controls. Nature, 2007.

[41] Schaefer MH, Fontaine J-F, Vinayagam A, Porras P,
Wanker EE, and et al. Hippie: Integrating protein
interaction networks with experiment based quality scores.
PLoS ONE, 2012.

[42] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, and et al.
PLINK: a tool set for whole-genome association and
population-based linkage analyses. American journal of
human genetics, 81, 2007.

[43] H. Lango, C. N.A Palmer, and et al. Assessing the
combined impact of 18 common genetic variants of modest
effect sizes on type 2 diabetes risk. Nature genetics, 57,
2008.

[44] C. S. Janipallian, M. V. Kumar, and et al. Analysis of 32
common susceptibility genetic variants and their combined
effect in predicting risk of type 2 diabetes and related traits
in indians. Diabetic Medicine, 29(1), 2011.

[45] T.J. Russell, L.M. Schultes, and et al. Histocompatibility
(HLA) antigens associated with psoriasis. . N. Engl. J.
Med., 287, 1972.

[46] ENCODE Project Consortium. The ENCODE
(ENCyclopedia Of DNA Elements) Project. Science, 2004.

ACM-BCB 2015 385


