
Integrated Querying of Disparate Association and
Interaction Data in Biomedical Applications

Shi Qiao
Case Western Reserve University

Cleveland, OH, 44106
sxq18@case.edu

Mehmet Koyutürk
Case Western Reserve University

Cleveland, OH, 44106
mxk331@case.edu

Z. Meral Özsoyoğlu
Case Western Reserve University

Cleveland, OH, 44106
mxo2@case.edu

ABSTRACT
In biomedical applications, network models are commonly used to
represent interactions and higher-level associations among
biological entities. Integrated analyses of these interaction and
association data has proven useful in extracting knowledge, and
generating novel hypotheses for biomedical research. For example,
integrated mining of clinical similarity among diseases, known
disease-gene associations, and molecular interactions among
proteins provide insight on prioritizing candidate disease genes.
However, since most datasets provide their own schema and query
interface, opportunities for exploratory and integrative querying of
disparate data are currently limited. In this study, we capitalize on
RDF-based representations of biomedical interaction and
association data to develop a querying framework that enables
efficient processing and flexible specification of graph template
matching queries. The proposed framework enables integrative
querying of biomedical databases to discover complex patterns of
associations among a diverse range of biological entities, including
biomolecules, biological processes, organisms, and phenotypes.
Our experimental results on the UniProt dataset show the proposed
framework can be used to efficiently process complex queries, and
identify biologically relevant patterns of associations that cannot be
readily obtained by querying each dataset independently.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: General

General Terms
Algorithms

Keywords
UniProt, RDF, Graph Template Matching

1. INTRODUCTION
In post-genomic biology, networks are commonly used to model
molecular interactions, as well as high-level associations among
various biological entities. These entities include biomolecules,
ligands, cellular functions, functional modules, biological
processes, tissues, organisms, and phenotypes. Networks are useful
to represent a broad range of interactions among biomolecules,
including protein-protein interactions (PPIs) [1], gene co-
expression [2], transcriptional regulation [3], metabolic pathways

[4], genetic interactions [5], and signaling pathways [6]. Higher
level associations represented by networks include gene-disease
associations [7], clinical similarity or co-morbidity of diseases [7],
disease-drug associations [8], molecular response to drugs [9],
functional annotation of genes and proteins, and evolutionary
relationships among molecules and organisms [10]. The current
state-of-the-art in the querying and analysis of disparate interaction
and association data is limited to querying each type of data in
isolation, or downloading different datasets in bulk and joining
them in house for specific analysis and mining tasks. In other
words, it is not straightforward for a researcher to identify or infer
indirect associations among biological entities by incorporating
data in multiple forms. Recently, heterogeneous network models
that incorporate multiple types of interactions and associations have
been shown to be effective in the identification of unknown
relationships among biomolecules, biological processes, diseases
and drugs. The applications of such integrative models include
disease gene prioritization [11], drug repositioning [12], and
functional annotation of proteins [13].

In this study, we build on the demonstrated promise of
heterogeneous network models and develop an RDF (Resource
Description Framework) -based querying framework to facilitate
exploratory querying of integrated biological networks. Here, the
term “integrated biological network” refers to the collection of all
known functional, physical and statistical interactions, as well as
associations among biological entities. RDF is the first W3C
standard for enriching information resources on the web with
detailed descriptions (i.e. Meta data). It is the commonly used data
model for the linked data, and knowledge bases that are shared and
exchanged on the web. An RDF dataset consists of a set of triples,
in the form (s,p,o), stating that a subject s has the property p whose
value is the object o. RDF data can also be visualized as a graph
where subjects and objects are nodes and properties (predicates) are
edges. Unique identifiers (URI’s) can be used for subjects,
properties or objects to uniquely refer to entities, relationships or
concepts. Literals can also be used for objects [20]. RDF can easily
represent a wide range of data and information from structured,
semi-structured, or unstructured sources. Thus, it enables seamless
interoperability and integration of the data on the web. Since each
RDF triple (edge in graph representation) corresponds to a binary
predicate, it lends itself for reasoning and inference based
applications as well. Traditional approaches for biomedical
applications require querying different biology datasets (e.g.,
UniProt, MeSH, OMIM, Reactome) using a relational database to
build a knowledge base by integrating various query results. In
comparison, using an integrated RDF dataset offers several
advantages. Namely, creating a knowledgebase using a relational
database requires parsers for each dataset, designing a schema,
tuning the system. Typically, the file formats, and schema changes
occur frequently, which requires costly updates for the parsers, the
schema, and the queries to keep the system up-to-date and
functional. Using RDF, data is integrated seamlessly, queries do

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
BCB '15, September 09-12, 2015, Atlanta, GA, USA
© 2015 ACM. ISBN 978-1-4503-3853- 0/15/09 $15.00
DOI: http://dx.doi.org/10.1145/2808719.2808734

ACM-BCB 2015 146

not depend on the schema as in relational databases, and the
integrated RDF dataset can be queried directly for interactions and
associations between disparate biological entities for information
coming from different sources. Here, we propose a graph template-
based query framework for querying biological associations and
interactions from an RDF knowledge base. In this framework,
queries are expressed as a graph template where the nodes are
biological entities involved in the query, and edges represent
interactions and/or associations between these entities. Our main
contribution in this paper is the development of a tool that provides
a “shortcut” to data integration in the bioinformatics pipeline. By
providing a powerful mechanism for seamlessly querying an RDF
dataset integrating various types of biological interactions and
associations, this framework enables simple querying and efficient
processing for highly sophisticated queries that can provide novel
biological insights.

The rest of the paper is organized as follows. In Section 2, we
provide examples of using graph template queries for extracting
associations and interactions among biological entities that are
studied by biomedical scientists. Section 3 provides an overview
of RDF data model and Querying RDF using graph templates. In
Section 4, we describe the UniProt knowledge base and its
components that are utilized in this paper. In Section 5, we present
the experimental analysis, queries, and query results. We discuss
the related work in Section 6, and conclude in Section 7.

2. QUERY EXAMPLES and MOTIVATION
For a broad range of biomedical applications, researchers query
large public databases to interpret their findings, to verify their
predictions, or to identify relationships that will help develop novel
hypotheses. Common queries that are utilized by biomedical
scientists include the exploration of various types of information
on a single protein, enrichment analyses for sets of genes or
proteins, and identification of genes/protein associated with a given
phenotype, function, process, tissue, or drug. However, the current
state-of-the-art in integrated mining of biological data shows that
disparate databases, when considered together, contain information
that cannot be directly extracted by such queries [11-13]. Inspired
by the success of integrative data mining efforts, we propose that
queries that integrate multiple types of association and integration
data will enable scientists to more effectively explore indirect
relationships among biological entities. Such queries include:

 Overlap in the molecular bases of diseases: The overlap in the
identity of genes that are associated with different diseases may be
useful in discovering unknown relationships among different
diseases [7]. Motivated by this observation, biomedical scientists

may be interested in searching for all diseases that share at least a
number of gene associations with a disease of interest. Such a
question can be addressed by a graph template matching query
shown in Figure 1(a). In this query, the user specifies a disease
(QD) and queries for all diseases (TD) such that a protein associated
with QD is also associated with TD.

 Shared molecular interactions between diseases: Diseases
with similar molecular etiology may not necessarily overlap in
terms of the identity of gene associations, but the relationship may
be revealed through molecular interactions among these genes [14].
This provides systems level insights into the shared molecular
mechanisms among different diseases [15]. Such relationships can
be discovered using a query like the one shown in Figure 1(b). In
this query, the user specifies a disease (QD) and queries for all
diseases (TD) such that a protein associated with QD interacts with
a protein associated with TD.

 Shared molecular interactions between diseases and drugs:
Drug repositioning has recently become a prominent application in
computational biology [16]. This is due to the need to repurpose
established drugs to reduce cost, as well as the opportunity provided
by omic data to discover unknown relationships between
biomolecules targeted by drugs and biological processes involved
in pathogenesis. Ability to query for drugs that share a number of
molecular interactions with a given disease (i.e., molecular
interactions between the targets of the drug and the genes
associated with the disease) can provide an excellent starting point
for identifying candidate drugs for repositioning [8]. A graph
template matching query that can be used for this purpose is shown
in Figure 1(c). In this query, the user specifies a disease (QD) and
queries for all drugs (TU) such that a protein associated with QD
interacts with a protein associated with TU.

 Network schemas: Integrated mining of molecular interaction
networks and functional annotations led to the identification of
network schemas, i.e., small subgraphs of functional terms that
recur frequently in molecular interaction networks [18]. These
network schemas provide insights into conserved functional
modules and the design principles of cellular networks [19]. A
graph template matching query such as the one in Figure 1(d) can
be used to search for network schemas involving specific biological
processes or molecular functions. In this query, the user specifies a
specific molecular function (QF) and queries for all proteins
associated with QF that interact with each other.

 Shared pathways between diseases: Organization of systems
biology knowledge in the form of pathways provides well-
established, reliable, and tractable access to state-of-the-art

Figure 1. Query Examples and Motivation

(blue nodes represent user specified entities, e.g. “QD” and “QF”;
red nodes with “?” represent query output entities, e.g. “?TD” and “?TU”; double line edges represent path connections)

ACM-BCB 2015 147

knowledge on biological processes. For this reason, incorporation
of pathway data in analyzing the relationship among phenotypes
provides information that is complementary to high-throughput
interaction data that is organized into networks [17]. For example,
identification of shared pathways among different diseases can be
useful in understanding similarities in disease development and
progression [19]. A sample graph template matching query that can
be used for this purpose is shown in Figure 1(e). In this query, the
user specifies a disease (QD) and queries for all diseases (TD) such
that a pathway that contains a protein associated with QD also
contains a protein associated with TD.

As demonstrated by these examples, the ability to seamlessly query
interactions and associations among biological entities enables
biomedical scientists to get quick answers to a broad range of
sophisticated questions on the relationships between these entities.
While the examples above are mostly limited to mining indirect
associations, it is also possible to use the proposed framework to
identify relationships with mechanistic biological interpretations.
For example, experimental data derived from gene knock-out or
RNA interference experiments are commonly used to identify
associations among gene and proteins in terms of their effect on
phenotype [21, 22]. For signaling proteins, strong positive or
negative correlation between two proteins’ influence on the
phenotype may be indicative of common downstream effects [23].
Scientists can quickly discover potential candidates for these
common effects by querying for paths that go through these
proteins and converge into the same node in the integrated network
of protein-protein and transcriptional regulatory interactions.
Today, the most common way of interpreting observed
experimental associations among a group of proteins is to identify
subnetworks that connect the proteins of interest, e.g., using Steiner
tree based algorithms [24]. Biomedical researchers often use
commercial software (e.g., Ingenuity Pathway Analysis, Pathway
Studio) that do not provide algorithmic transparency or clearly
defined criteria for the identified subnetworks. To this end,
semantically meaningful queries that integrate multiple data types
can generate significant mechanistic insights into the relationships
among proteins of interest and provide the researchers with new
ways of thinking about their research questions.

While all of the sample queries listed above can be currently
processed by downloading bulk datasets from multiple databases
and subsequent processing and joining of these datasets, this is
often time-consuming and challenging for many biomedical
scientists. Therefore, the main contribution of this study is the
development of a querying framework that provides a “shortcut” to
data integration in the bioinformatics pipeline. This is useful for

two types of applications: 1) “targeted” queries, that is when the
researcher is interested in identifying new associations for one or
more specific entities (e.g.., a group of genes, a particular disease,
a particular drug). 2) “high-throughput” queries for mining tasks,
that is when the researcher is interested in identifying all
associations that exhibit a specific pattern (e.g., all disease-drug
pairs that share a reasonably large number of interactions).

3. RDF QUERY FRAMEWORK
We present the RDF query framework here; see [42] for more
details. We first give the basic definitions:

An RDF Graph is a directed graph ܩ ൌ 	 ሼܸ, ,ܧ ݈, ݂ሽ	where ܸ is a
set of vertices representing either subjects, objects or both. ܧ ⊆
ܸ ൈ ܸ is a set of directed edges representing predicates pointing
from subjects to objects. ݈ is a label set for subjects, objects and
predicates. 	݂:	ܸ/ܧ → ݈		 denotes the mapping function between
vertices/edges to labels.

Connection edge (
ா
⇔) represents a path ω௜,௝	 between two nodes ݊௜

and ௝݊ . Expression ܧ describes the distance constraints of 	ω௜,௝
(Distance is the length of the shortest path). In Figure 3(c), the edge
between node “<http://purl.uniprot.org/uniprot*” and node “breast
cancer” is a connection edge representing a path of length 4 or less.

A GBE (Graph by Example) Query Template is a directed
graph	ܩ௤ ൌ ሼܸ, where vertices (objects or ,ܩ ሽ for an RDF graphܧ
subjects) are labeled by partial keywords (that are substrings of
labels in the label set ݈ of RDF graph ܩ), and edges represent
predicates or connection edges.

Given RDF graph ܩ ൌ 	 ሼܸ, ,ܧ ݈, ݂ሽ and query template ܩ௤ ൌ ሼܸ,
 that satisfy both ܩ ሽ, Template Matching finds all subgraphs ofܧ
structural and label constraints in ܩ௤ based on graph isomorphism.

A small subset of the UniProtKB RDF dataset represented as a
graph is shown in Figure 2, which contains two proteins (BRCA2
and RAD51) and two cancers (Pancreatic cancer and Breast
cancer). In general, proteins are associated with diseases through
disease annotation nodes. Protein-Protein interactions are from
IntAct dataset. Note that two IntAct EBI resources need to be
identified for a binary protein–protein interaction in the UniprotKB
dataset. This is due to the quality requirements of UniProtKB that
only binary interactions which are experimentally supported by
multiple observations are imported from the IntAct dataset. Disease
information comes from the OMIM dataset. By using this example
graph, we demonstrate RDF representations of the association and
interaction among different biological entitles from various
datasets. We define graph template matching with GBE (graph by
example) query templates which support paths, distance
constraints, and partial matching of keywords. An example GBE
query template is shown in Figure 3 (c) which finds any cancer
associated with a protein that is also associated with “Breast
cancer” (this query is also shown in Figure 1 (a) and corresponds
to query Q3 in Section 5). Evaluating this query over the example
RDF dataset shown in Figure 2 will return “Pancreatic cancer” as
the answer since the protein BRCA2 is the protein associated with
both diseases.

3.1 INDEXES
We utilize two indexes to evaluate graph template queries with
partial keywords and connection edges efficiently. The first index
is IDMap, which maps RDF labels into integer IDs in lexicographic
order. For partial keywords specified as prefixes of RDF labels, the
look-up time is ܱሺ݈ܰ݃݋ሻ, where N is the total number of RDF

Figure 2. UniProtKB RDF Graph Example

ACM-BCB 2015 148

Algorithm: Neighborhood Check (݊௜, (௝ݍ

Input: ݊௜ ∈ ܸሺܩሻ ௝ݍ , ∈ ܸሺܩ௤ሻ , ID Intervals Ժ∗ , {Distance,

Count} ߰௝
∗, NI Index ܰܫ௜ for node ݊௜

Output: If ݊௜ pass neighborhood check of ݍ௝ , return true;

Otherwise, return false
1 FOR all ݇	݁ݎ݄݁ݓ	|݇| ൑ ݀௠௔௫
2 FOR any partial keyword ऀ௞
3 FOREACH value pair {݀, ܿ} in ߰௝

௞

4 Exact all entries from ܰܫ௜ where ID interval
intersect with Ժ௞ and Distance	൑ ݀

5 Count all IDs in Ժ௞ as ܿ′
6 IF ܿ′ ൑ ܿ, RETURN false
7 RETURN true

labels, since all matching IDs form one interval of consecutive
integers. The look up time for partial keywords can be further
accelerated by using additional indexes.

The second index, Neighborhood Interval (NI) index, which is built
based on the IDMap index by grouping the labels (IDs) of
neighbors of each node into ID intervals. For any node	݊௜ ∈ NI ,ܩ
index contains ID of ݊௜, Distance, Label ID interval, Number of
indexed neighbor nodes in this entry, and neighbor node IDs. The
Distance is the length of the shortest path from ݊௜ to the indexed
neighbor node. Given two vertices ݊௜ and ௝݊ in graph ܩ, if there is
a directed path from ݊௜ to ௝݊, ௝݊ is a forward neighbor of ݊௜ and
݊௜ is a backward neighbor of ௝݊.The positive (negative) distance
indicates that the indexed node is a forward (backward) neighbor.

There are two pre-defined parameters for the NI index: maximum
indexed distance ݀௠௔௫ and binning factor ݉ (m is the maximum
number of indexed neighbor nodes in each index entry). The
neighbor nodes sharing the same distance are grouped together,
ordered by their IDs, and partitioned into rows by the binning factor
m. The space required by NI index increases with the increasing the
maximum indexed distance ݀௠௔௫ since more neighbors are
indexed for each node. However, larger ݀௠௔௫ results in better
pruning of candidate matches, and improves running time to
process connection edges with long distance constraints. NI index
is designed to be most effective when partial keywords are
specified as prefixes of RDF node labels. NI index can be viewed
as a general form of the signatures utilized in both GraphQL [37]
and SPath [38]. NI index is also utilized for accelerating the
evaluation of connection edges.

3.2 Query Framework
The RDF query framework consists of the following steps:

1. Decomposition of query template into connection edges and
components without connections edges.
2. Candidate generation and Pruning: Using IDMap index, generate
matching candidates for each query node. Using NI index for
Neighborhood Check selectively to prune the candidates.
3. Decomposing each component into a set of smaller basic
querying units. We use one level directed trees, named D-trees.
4. Candidate generation for each component: All matching
candidates for each D-tree of a component are generated, and joined
together to find matching results for each component.
5. Connectivity check: Connection edges between components are
processed using NI index to generate the final matches for the query
template.

Neighborhood Containment Check (step 2) Component Matching
(steps 3 and 4) and Connectivity Check (step 5) are discussed in
more detail below.

3.2.1 Neighborhood Containment Check
The neighborhood containment check for NI index is based on ID
interval check (here, we assume partial keywords are specified as
prefixes of node labels).

The ID Interval, Ժ௝ , of a partial keyword ऀ௝ of any query node
௝ݍ ∈ ܸሺܩ௤ሻ, is all IDs of node set ௝ܰ where ∀݊௜ ∈ ௝ܰ, the label ݈௜
of ݊௜ is a valid match of ऀ௝.

The K-Neighbor of a node ݊௜ , where ݊௜ ∈ ܸሺܩሻ , denoted as
 ௞ሺ݊௜ሻ, is a set of nodes that are forward or backwardݎ݋ܾ݄݃݅݁ܰ
neighbors of ݊௜ via paths of length k or less. That is, if ݇ is
positive, ∀	 ௝݊ ∈ ௞ሺ݊௜ሻ, there is a directed path from ݊௜ toݎ݋ܾ݄݃݅݁ܰ

௝݊ with no more than |݇| hops; if ݇ is negative, ∀	 ௝݊ ∈
 ௞ሺ݊௜ሻ, there is a directed path from ௝݊ to ݊௜ with no moreݎ݋ܾ݄݃݅݁ܰ
than |݇| hops.

Now we define the Neighborhood Check: Given a node ݊௜ ∈ ܸሺܩሻ,
and a query node ݍ௝ ∈ ܸ൫ܩ௤൯, ݊௜ passes the Neighborhood Check
of ݍ௝ if	∀	ݍ௞ ∈ ௝൯, ID Interval Ժ௞ݍ௞൫ݎ݋ܾ݄݃݅݁ܰ uniquely contains
ID of any ݊௚ 	∈ |݇| ௞ሺ݊௜ሻ, for allݎ݋ܾ݄݃݅݁ܰ ൑ ݀௠௔௫.

An interval of consecutive integers is formed for each partial
keyword in query template utilizing IDMap index. Since query
templates can contain query nodes with the same partial keyword,
value pairs as {Distance, Count (total appearance within Distance)}
for each partial keyword are maintained for each query node. The
neighborhood check is performed based on partial keywords one
by one, and the count of occurrences of this partial keyword is taken
into consideration. The term “uniquely contains” in the
Neighborhood Check definition means that the node ݊௚ cannot be
used to match more than one ID interval. If one partial keyword
contains another partial keyword, Count in value pairs is updated.
In the Algorithm showing the neighborhood check process,
{Distance, Count} pairs associated with query node ݍ௝ and partial

keyword ऀ௜ are denoted as ߰௝
௜. Neighborhood check based on NI

index is optimized for partial keywords: 1) only index entries with
Label ID interval intersecting with the ID interval of the partial
keyword needs to be retrieved; 2) all IDs in the index entries are
valid matches for the partial keyword if the ID interval of the partial
keyword contains the Label ID interval.

3.2.2 Component Matching
Matching candidates for each component is found by first
decomposing the components into D-trees, then joining the
matching candidates of the D-trees of the component. Time
complexity of component matching is proportional to ∏ |௧೔ܥ|

௄
௜ୀଵ

where ܭ is number of all decomposed 1 level D-trees and |ܥ௧೔| is
the number of matching candidates for each D-tree. Finding D-tree
decomposition with minimum number of D-trees is likely to
improve the time complexity; however it is equivalent to the vertex
cover problem [43]. Similar to the vertex cover approximation, we
use 2-approximation algorithm to generate D-tree decomposition.
Basically, an edge ሺݍ௜, ௝ሻ is picked recursively from the queryݍ
component, and D-trees rooted at ݍ௜ and ݍ௝ are added to the result.

We define selectivity value function ܵሺݍ௝ሻ ൌ
ௗ௘௚	ሺ௤ೕሻ

|஼೜ೕ|
 which takes

both query node’s degree and its corresponding candidate set size
into consideration as a good measurement of the priority to be

ACM-BCB 2015 149

selected as root nodes for two reasons: (i) choosing large degree
nodes first is likely to yield better results since D-trees rooted at
these nodes can cover more edges in the query component which
leads to a smaller K value; (ii) choosing nodes with small candidate
sets first is likely to yield less matching candidates for a D-tree. In
the second step, NI indexes for all possible root nodes of a
decomposed D-tree are checked to generate all D-tree candidate
matches. The last step is to join all D-tree candidates together to
form component matches. We define the join process as
,௜ܥሺ࢔࢏࢕࢐ ௝ are candidate sets for two subgraphsܥ ௜ andܥ ௝ሻ, whereܥ
of ܩ௖ (it can either be a decomposed D-tree or joined D-trees).
,௜ܥ൫࢔࢏࢕ࡶ ௝൯ combines each pair of matches from two candidateܥ
sets by evaluating the predicate: all shared query nodes of two
candidate matches need to have equal matching IDs to join. In order
to improve the join performance, a new join order J் for the
decomposed D-trees is used as follows: 1. begin with D-tree ݐ௜ with
smallest candidate set and add ݐ௜ to J் ; 2. add D-tree ݐ௝ with
smallest candidate set to J் which connects to any already selected
D-trees in J். Component matching used here is similar to the one
used in STWIG [43] with the following differences: 1) D-trees are
used as basic join units; 2) new selectivity function is defined based
on the size of candidate sets; 3) the NI index is used to generate all
D-tree candidates; 4) tree join order is determined by the sizes of
tree candidate sets.

3.2.3 Connectivity Check
Connectivity check verifies the paths in the data graph between the
nodes that are connected by connection edges in the query graph.
If the connection edge is between nodes of the same component
then the connectivity check is used to prune the candidates of that
component. Otherwise, connectivity check is used to determine
whether the two component candidates can join or not. For
component connection edges that are within a component, the
number of connectivity checks is exactly the size of the component
candidate set. For a connection edge between components, the
number of connectivity checks depends on the product of the sizes
of components’ candidate sets. In the worst case, if we have a
sequence of N components to be joined by connection edges, the
number of connectivity checks that need to be performed can be as
large as ∏ |∗೎ீܥ|

ே
௜ୀଵ . In order to improve query performance, two

rules are utilized to determine the order to process connection
edges: 1) connection edges inside components are processed before
connection edges between components; 2) connection edges
between components are processed in the order of the smallest
product of candidate sets first. NI index is utilized in processing
connection edges. The Connectivity check of connection edge
between ݊௜ and ௝݊ is performed by retrieving neighbor IDs of ݊௜
and ௝݊ from NI indexes, and then checks whether the neighbors of
݊௜ intersect with the neighbors of ௝݊ . Here, we assume the
maximum indexed distance ݀௠௔௫ of neighborhood index is greater

than	݈݅݁ܥሺ
ௗ೎	

ଶ
ሻ, where ݀௖ is the distance specified with connection

edge. Otherwise, we need to combine index entries of	݊௜ and ݊௜’s
neighbor nodes together in order to get more hops of neighborhood
information for ݊௜.

4. DATASETS
The UniProt Knowledgebase (UniProtKB) [25] is a central hub of
protein information which provides an integrated view of
association and interaction data from different biomedical datasets.
One important motivation of UniProtKB is to allow users query the
related but dispersed information across disparate protein related
datasets. Each protein entry recorded in UniProtKB provides a

variety of information related to this protein including protein and
gene names (mnemonic name, structured name and alternate
names), protein sequences, protein function, catalytic activity, co-
factors, subcellular localization, patterns of expression, protein–
protein interactions, and disease association. Besides the rich
information provided for each protein, another advantage of
UniProtKB is its high update rate and availability in different
formats. UniProtKB data is released every 4 weeks to provide the
most up to date protein information in multiple formats including
plain text, XML, RDF and GFF.

The decisive factor to choose UniProtKB rather than another
database available in RDF format for our experiment relies on its
high quality and accuracy of data integration. Since RDF format
has no pre-defined schema, RDF data is designed to integrate with
ease by combining the triples from different sources directly if
unified resource identifiers are utilized. For UniProtKB, each entry
undergoes both automated and manual checks to ensure the high
accuracy and consistency of the data before it is integrated. The
automated check is performed through a quality control software to
ensure the correctness of syntax and verification of different
biological rules for the entry. Besides this, the manual review
process provides extra effort to ensure that all relevant literature,
annotation and analysis results are included. As the correctness of
the querying results across multiple datasets is determined by the
lowest quality data integrated, the high quality standards provided
by UniProtKB is essential to provide high confidence of querying
results in the experiments.

4.1 Integrated Datasets
In this section, we describe the three integrated datasets in
UniProtKB which are extracted and queried in our experiments
reported in the next section: IntAct (protein-protein interaction),
Reactome (pathway), and OMIM (disease and phenotype).

4.1.1 IntAct
IntAct [26] provides open-source molecular interaction data
populated by interactions curated from the literature, as well as
from direct data depositions. The information within the IntAct
database primarily consists of protein–protein interaction (PPI)
data. An important aspect of the IntAct dataset is that each entry in
IntAct is peer reviewed by a senior curator, and not released until
accepted by that curator. UniProtKB database is readily integrated
with the IntAct database to provide protein–protein interaction data.
In order to meet the required quality standard of UniProtKB, only
a subset of high quality interactions are imported from IntAct based
on a statistical scoring system. A score threshold is chosen by
UniProtKB to exclude binary interactions supported by only one
experimental observation. In addition to the score-based filter, a set
of defined rules are utilized to exclude certain types of data, such
as interactions observed in larger complexes, or interactions that
have not been experimentally validated. By using these strict
criteria, only experimentally validated binary interactions
supported by multiple observations are imported into UniProtKB.

4.1.2 Reactome
Reactome [27] is a manually curated open-source human pathway
and reaction dataset. In order to provide a unified identifier,
Reactome merges pathway identifier mapping, over-representation
and expression analysis tools into a single portal. Reactome uses
UniProtKB protein identifiers to provide a list of pathways in which
the protein functions. Compared with the pathway annotation
provided by UniProtKB directly, the cross referenced Reactome
pathways provide more complete information for each protein.

ACM-BCB 2015 150

4.1.3 OMIM
Online Mendelian Inheritance in Man (OMIM) database [28] is
utilized in UniProtKB to provide disease/phenotype information
for disease annotations associated with proteins. OMIM is a
comprehensive, authoritative and timely knowledgebase of human
genes and genetic disorders. Each OMIM entry has a full-text
summary of a genetically determined phenotype. UniProtKB
carefully links the OMIM entry with the protein entry and describes
the natural variant(s) of the protein sequence potentially associated
with disease according to the scientific literature.

4.2 Data Extraction
The data utilized in our experiments is a subset of triples from the
UniProtKB RDF dataset. We focus on only human proteins that
currently have active entries. The UniProtKB raw data,
downloaded from the UniProt website on 4-10-2015, contains
about 150 million triples from 971,583 (both reviewed and
unreviewed) protein entries. Note that different protein isoforms
are represented as different protein entries in UniProtKB. In order
to provide a more concise RDF graph to support efficient signature-
based indexes, only protein entries associated with at least one of
the following statements are extracted: disease annotation, function
annotation, PTM annotation, cofactor annotation, subunit
annotation and protein interaction. For each protein entry, the
following properties are extracted: protein names (mnemonic
name, recommended name and alternate name), protein organisms
(including the taxonomy information), protein keywords, protein
tissues, protein gene information (including different gene labels),
and protein pathway information (Reactome pathway associated
with the protein). The extracted RDF graph contains 89,915
proteins (including different protein isoforms), 4,211 diseases,
1,278 pathways, 18,243 interactions and 35,063 annotations. The
size of the extracted RDF graph is about 11.6 million triples
including 9 million triples from the taxonomy data. Data extraction
can be systematically done from any version of the UniProtKB

RDF graph, and more types of annotations can be extracted by
changing the specification of the data extraction process.

5. EXPERIMENTAL RESULTS
The proposed framework is implemented with Visual C# 2010 and
SQL Server 2008. All experiments were performed on a 2.93GHZ
Intel(R) Xeon machine with 48GB RAM running Windows Server
2008 R2. The average space needed for the NI index is
ܱሺܰሺ2/ߤሻௗ೘ೌೣ/݉ሻ, where ܰ is the number of vertices in ܩ, is ߤ
the average node degree, ݀௠௔௫ is the maximum hops of neighbors
indexed and ݉ is the binning factor. The NI index with a larger
݀௠௔௫ value results in higher pruning power and ability to handle
connection edges with large distance constraints at the cost of
requiring more storage space. By using the IDMap index to hash
the RDF labels into IDs, the 2 hop NI index achieves a similar size
as the original RDF graph while 3 hop NI index is 8 times larger.
As we explain in Section 3.2, 2 hops NI index can evaluate
connection edges with distance constraints up to 4 hops efficiently
which is sufficient for all proposed queries. Here, we decide to use
2 hops NI indexes for graph template matching.

In this section, we primarily investigate the ease of utilization of
GBE query templates to specify integrated queries and the strength
of these queries in discovering interesting patterns across the
integrated network from disparate biological entities. For this
purpose, we focus on 10 queries that require integrated querying
across multiple interaction and/or association datasets. We
categorize these 10 queries into two groups: 1) single protein
patterns: querying the relationships among one protein and other
types of resources; 2) multiple protein patterns: querying protein-
protein joining based on protein-protein interactions, shared
pathways, shared diseases, or shared function. Rather than
displaying the results in tabular form, we export query results into
Cytoscape [29] to produce meaningfully summarized graphs. For
each query, the query results can produce multiple summarized
graphs by specifying different relationships among various types of
resources.

Figure 3. Query Specifications of Q3

Figure 4. Query Specifications of Q5

ACM-BCB 2015 151

5.1 Single Protein Patterns
Single protein patterns focus on querying relationships between one
protein and other types of resources across different datasets. Four
queries are proposed as single protein patterns:

Q1. Finding pathways that contain at least one protein associated
with “Breast Cancer”.

Q2. Finding molecular functions that are associated with at least
one protein associated with “Breast Cancer”.

Q3. Finding cancers that are associated with at least one protein that
is also associated with “Breast Cancer”. (Motivated by Figure 1 (a))

Q4. Finding tissues that are associated with at least one protein
which is associated with “Breast Cancer”.

To evaluate these four queries, at least two types of biological
resources/entities need to be integrated: protein resource (Uniprot)
and disease resource (OMIM). UniProtKB has already linked
protein resource with disease information which makes some of
queries solvable through manual effort, e.g. one can search all
protein entries associated “Breast Cancer” on Uniprot website and
manually check all these entries to find any other cancers associated.
As UniProtKB also provides a beta SPARQL endpoint which
allows user to specify SPARQL queries, some of these queries can
also be specified in SPARQL. However, both manual check and
specifying the complete SPARQL queries requires significantly
more effort compared with using GBE query templates in our
framework.

In Figure 3, we illustrate three possible ways to specify Q3. One
can easily observe that both alternatives of specifying the complete
query template (Figure 3 (b)) and the SPARQL query (Figure 3 (a))
need not only strong database background but also a good
understanding of the underlying graph structure of the UniProt

RDF graph. In comparison, by using connection edges and partial
keywords, GBE query templates can be much simpler to formulate.
As shown in Figure 3 (c), the GBE query template uses connection
edges to avoid specifying the intermediate annotation node and the
disease ID node in identifying the relationship between a protein
and disease name. With a little background of UniProt RDF dataset,
the GBE query framework provides simpler query specifications as
demonstrated by the abstract queries in Figure 1. Note that, using
connection edges may yield more results compared to specifying
all edges in the complete graph template. For all these four queries,
the simplified GBE query templates return the same set of results
as the complete graph template on the extracted UniProtKB graph.
The GBE framework also supports displaying the results in graph
templates. Thus, the researchers can choose a subset of the results
they are interested, and display them as graph templates to perform
exploratory search. Due to space limits, the details of using the
GBE framework to display query results as templates to perform
exploratory search is not included here.

Q1 returns 60 Reactome pathways potentially associated with
“Breast Cancer”. 13 protein function annotations associated with
proteins which are associated with “Breast Cancer” are found in Q2.
Q3 discovers 5 cancers that have overlapping molecular bases with
“Breast Cancer”. 23 tissues are identified in Q4 related to proteins
associated with “Breast Cancer”. As we explain in Section 2,
identification of diseases with overlapping molecular bases may be
useful in identifying unknown disease-disease relationships. Here,
we display the results of Q3 in Figure 5 using Cytoscape. In Figure
5 (a), we display the connections among proteins and diseases
identified in the query results of Q3 by making the disease and the
protein in each query result as the source and target in Cytoscape.
To further provide more clear relationships between “Breast Cancer”
and other cancers, another summarized graph is produced in Figure
5 (b) by making the two diseases in each query result as the source

(a) Disease-Protein (b) Disease-Disease
Figure 5. Query Result Visualization of Q3

Figure 6. Disease-Disease Relationships for Q5

Figure 7. Full Visualization of Query Results for Q5

ACM-BCB 2015 152

and target in Cytoscape. The width of the edge between two
diseases is determined by the number of proteins shared by this
disease pair. The size of the cancer node is based on the number of
shared proteins. The more proteins shared between one disease and
“Breast Cancer”, the larger disease node is (same for edge width,
the more shared proteins, the wider the edge is). One can observe
that “Pancreatic Cancer” and “Breast Cancer” have strong shared
molecular bases (3 shared proteins) and are more likely to relate
with each other. Such a network is utilized in [7] which can be
constructed via a single query in our framework.

5.2 Multiple Protein Patterns
Compared to single protein patterns, multiple protein patterns are
more complex for query specification and evaluation. We consider
three types of protein-protein joining conditions: protein-protein
interaction, shared functions and shared pathways. Some of the
multiple protein pattern queries also require joining proteins based
on multiple criteria.

5.2.1 Protein-Protein Interaction
Protein–protein interactions reveal functional relationships
between genes. Though a large number of protein–protein
interaction datasets are available, no direct way is proposed for
querying patterns of protein–protein interactions related with other
types of biological entities, e.g. certain phenotypes. By using the
extracted UniprotKB graph, we demonstrate the potential power of
seamlessly querying the integrated biology datasets. We consider
two queries here:

Q5. Finding cancers associated with at least one protein that
interacts with another protein associated with “Breast Cancer”.
(Motivated by Figure 1 (b))

Q6. Finding all pairs of cancers associated with pairs of proteins
that interact with each other. (Motivated by Figure 1 (b))

Specifying queries of multiple protein patterns is more difficult
compared to queries involving single protein patterns. Similar to
Figure 3 of Q3, all three possible ways (SPARQL, complete graph
template and simplified GBE template) to specify Q5 are shown in
Figure 4. Note that the binary interaction between two proteins are
identified by two EBI observations which is the requirement of
UniprotKB dataset.

Q6 is a more general form of Q5 as Q6 tries to identify all pairs of
cancers with shared molecular interactions while Q5 specifies one
disease as “Breast Cancer”. Complete visualization of query results
for Q5 is shown in Figure 7. The width of the edge between two
proteins (represents the binary interaction between two proteins) is
proportional to the number of disease pairs shared this interaction.
Four protein-protein interaction patterns are identified to connect
different cancers with “Breast cancer”. Compared with Figure 5 (a),
one can observe that there is no edge between BRCA1 protein and
“Breast Cancer” in Figure 7. This is a result of graph isomorphism
matching of the query template as each query node should match a
unique node in the RDF graph. Since there is no protein associated
with other cancers which interacts with BRCA1 protein, no query
results contain an edge between BRCA1 protein and “Breast
Cancer” for Q5. The summarized disease-disease relationships
identified by Q5 is shown in Figure 6. Similar to Figure 5 (b), the
edge width represents the number of protein-protein interactions
shared by the respective disease pair. For Q6, the complete disease-
disease relationships among all pairs of cancers is shown in Figure
8. These two queries are motivated by Section 2, Figure 1 (b) as
finding shared molecular interactions between diseases.

Figure 8. Disease-Disease Relationships for Q6

Figure 9. Protein-Protein Relationships for Q7

Figure 10. Protein-Protein Relationships for Q8

Figure 11. Protein-Protein Relationships for Q10

ACM-BCB 2015 153

5.2.2 Shared Functions
Identifying network schemas requires protein-protein joining
through both shared functions and protein-protein interactions as
shown in Section 2, Figure 1 (c). We consider one query:

Q7. Finding pairs of proteins which have general function
description as “Component of the Mediator complex” and interact
with each other. (Motivated by Figure 1 (c))

The query results are displayed in Figure 9 using Cytoscape. Three
groups of proteins are identified where proteins closely interact
with each other in the same group.

5.2.3 Shared Pathways
Understanding the roles of proteins in higher order interconnected
pathways is critical to understanding molecular reactions at cellular
level. Some conceptualizations of protein-protein interactions also
consider proteins in the same pathway interact with each other
directly or indirectly. Identifying protein-protein patterns with
shared pathways provides complementary information to binary
protein-protein interactions. Here, we consider three queries:

Q8. Finding any pair of proteins that are involved in the same
pathway and are both associated with “Breast Cancer”.

Q9. Finding cancers associated with a protein that is involved in the
same pathway with a protein associated with “Breast Cancer”.
(Motivated by Figure 1 (e))

Q10. Finding two proteins that are involved in the same pathway
and interact with each other such that one protein is associated with
“Breast Cancer” and the other is associated with another cancer.

The query results of Q8 are visualized in Figure 10. We observe
that there are two groups of proteins where the proteins in each
group are closely related with each other through shared pathways.
Four proteins associated with three cancers which interact with
each other and share three common pathways are identified in Q10
as shown in Figure 11. Note that “Breast Cancer”, “Pancreatic
Cancer” and “Breast-Ovarian Cancer” are also observed to share
molecular interactions in Figure 6 and Figure 8. The query results
of Q9 returns 24 distinct proteins, 31 pathways and 15 cancers (not
include “Breast Cancer”). Q9 is motivated by Section 2, Figure 1
(e) as finding diseases with shared pathways.

5.3 Query Evaluation Efficiency
The neighborhood signature index is considered as a strong
candidate to evaluate GBE templates as it can: 1) reduce the
unnecessary candidates in subgraph isomorphism matching, and 2)
handle connection edges with short distance constraints efficiently.
By indexing all neighbor node IDs in the NI index, the connection
edges can be evaluated efficiently. Query running time and the
number of matching results for all 10 queries are shown in Table 1.
We find that single protein pattern queries are more efficient to
evaluate compared with multiple protein pattern queries. For single
protein pattern query, Q2 requires the longest running time as the
component of matching any protein associated with function
annotations results in a large number of matching candidates which
leads to a large number of connection checks. Q6 is the most time
consuming multiple protein pattern query as each decomposed
component is small and all components are connected through
connection edges. Compared with Q6, Q5 requires less effort as one
of the cancers is specified as “Breast cancer” which significantly
reduce the intermediate matches. Except for Q6, all queries can be
evaluated in less than thirty seconds or so which is good enough to
support real time biomedical applications.

Table 1. Query Running Times for all Queries

Query ID Q1 Q2 Q3 Q4 Q5
of Results 72 13 10 48 25
Run Time 3.86 s 10.26 s 1.42 s 1.06 s 23.31 s
Query ID Q6 Q7 Q8 Q9 Q10

of Results 67 20 32 158 8
Run Time 156.4 s 15.71 s 15.79 s 22.09 s 31.74 s

6. RELATED WORK
RDF systems including Sesame [31], Virtuoso [32], 3Store [33]
and Jena [34], use SPARQL [30] as default query language.
SPARQL uses graph patterns as basic query units and is evaluated
by triple joins. Currently, SPARQL extends its functionalities to
support paths defined with regular expressions (property paths).
However, most of these systems have difficulties in answering the
GBE templates similar to the examples shown in Figure 3(c) and
4(c): 1). connection edges are complex to answer without specific
indexes; 2). partially entered labels are not properly addressed; 3).
query templates may generate too many intermediate candidates if
no pruning techniques are utilized.

Signature based indexes are commonly utilized in literature to
accelerate graph isomorphism matching [35-40]. TALE [35] and
SAPPER [36] use similar techniques where the labels of neighbors
for each node are indexed by hashing into bit arrays and these bit
arrays are utilized as signatures to check the neighborhood
containment. GraphQL [37] and SPath [38], on the other hand, use
neighborhood indexes directly index node labels. In GraphQL, the
neighbors of each node are indexed as a sequence of node labels in
lexicographic order. gStore [39, 40] extends the utilization of
signature-based pruning to RDF datasets. The neighborhood
signature is proposed as a bit string according to the adjacent edge
labels and node labels. All vertex neighborhood signatures are then
indexed using a special index schema, VS tree, to provide efficient
query evaluation.

Storing biology data in RDF is a current move. In addition to the
UniProt dataset utilized in our experiments, many other biology
datasets are available in RDF format from the Bio2RDF project
[41], including chEMBL, ClinicalTrials, DrugBank, iProClass,
KEGG, MeSH, Pharmacogenomics Knowledge Base.

7. CONCLUSIONS
In this paper we have demonstrated that, using simple graph
templates to query an integrated RDF knowledge base, graph
template matching based querying is a promising tool to express
sophisticated questions, and discover hidden connections among
biological or biomedical entities from diverse datasets. For data to
be published or exchanged in the web, RDF is increasingly being
adopted, and vast amounts of RDF data are already available. The
availability of ever increasing amounts of RDF data in various
fields of biomedical applications from public and private sources,
adds even more to the potential of querying integrated RDF data
sets for new insights and discovering knowledge about hidden
associations among biological and medical entities.

Future work includes building a web-based graphical user interface
to enable biomedical researchers to use this framework for
exploratory querying. Using more diverse and much larger
collections of RDF data, including data on publications, sequences,
and drugs as data sets, will enable us to query even more
sophisticated queries by directly using graph template querying.
Finally, we are currently working on the distributed version of our
querying framework and combining our work with compressive
genomics data.

ACM-BCB 2015 154

8. REFERENCES
[1] Mosca, R., Pons, T., Céol, A., Valencia, A., and Aloy, P.

2013. Towards a detailed atlas of protein–protein
interactions. Current opinion in structural biology, 929-940.

[2] Carter, S. L., Brechbühler, C. M., Griffin, M., and Bond, A.
T. 2004. Gene co-expression network topology provides a
framework for molecular characterization of cellular state.
Bioinformatics, 20(14), 2242-2250.

[3] Hu, Z., Killion, P. J., and Iyer, V. R. 2007. Genetic
reconstruction of a functional transcriptional regulatory
network. Nature Genetics, 39(5), 683-687.

[4] Pah, A. R., Guimera, R., Mustoe, A. M., and Amaral, L. A.
N. 2013. Use of a global metabolic network to curate
organismal metabolic networks. Scientific reports, 3.

[5] Tong, A. H. Y., Lesage, G., Bader, G. D., Ding, H., Xu, H.,
Xin, X... 2004. Global mapping of the yeast genetic
interaction network. Science, 303(5659), 808-813.

[6] Ritz, A., Tegge, A. N., Kim, H... 2014. Signaling
hypergraphs. Trends in biotechnology, 32(7), 356-362.

[7] Goh, K. I., Cusick, M. E., Valle, D., Childs, B., Vidal, M.,
Barabási, A. L. 2007. The human disease network. PNAS,
104(21), 8685-8690.

[8] Von Eichborn, J., Murgueitio, M. S., Dunkel, M... 2011.
PROMISCUOUS: a database for network-based drug-
repositioning. Nucleic acids research, 39. D1060-D1066.

[9] Vogt, I., and Mestres, J. 2010. Drug-target networks.
Molecular Informatics, 29(1-2), 10-14.

[10] Lisewski, A. M., Quiros, J. P... 2014. Supergenomic network
compression and the discovery of EXP1 as a glutathione
transferase inhibited by artesunate. Cell, 158(4), 916-928.

[11] Li, Y., and Patra, J. C. 2010. Genome-wide inferring gene–
phenotype relationship by walking on the heterogeneous
network. Bioinformatics, 26(9), 1219-1224.

[12] Cheng, F., Liu, C., Jiang, J... 2012. Prediction of drug-target
interactions and drug repositioning via network-based
inference. PLoS computational biology, 8(5), e1002503.

[13] Cao, M., Pietras, C. M., Feng, X., Doroschak, K. J... 2014.
New directions for diffusion-based network prediction of
protein function: incorporating pathways with confidence.
Bioinformatics, 30(12), i219-i227.

[14] Liu, Y., Koyutürk, M... 2012. Integrative analysis of
common neurodegenerative diseases using gene association,
interaction networks and mRNA expression data. AMIA
Summits Transl Sci Proc, 2012, 62.

[15] Menche, J., Sharma, A... 2015. Uncovering disease-disease
relationships through the incomplete interactome. Science,
347(6224), 1257601.

[16] Li, J., Zheng, S., Chen, B., Butte, A. J., Swamidass, S. J., and
Lu, Z. 2015. A survey of current trends in computational
drug repositioning. Briefings in bioinformatics, bbv020.

[17] M. Koyuturk. Using protein interaction networks to
understand complex diseases, IEEE Computer, 31-38, 2012.

[18] Banks, E., Nabieva... 2008. NetGrep: fast network schema
searches in interactomes. Genome biology, 9(9), R138.

[19] Pandey, J., Koyutürk, M., Kim, Y., Szpankowski, W... 2007.
Functional annotation of regulatory pathways.
Bioinformatics, 23(13), i377-i386.

[20] Z. Kaoudi, Ioana Manolescu. RDF in the Clouds: A Survey.
VLDB Jounal, Springer-Verlag, 2014.

[21] Baryshnikova, A., Costanzo, M., Dixon, S., Vizeacoumar, F.
J... 2010. Synthetic genetic array (SGA) analysis in

Saccharomyces cerevisiae and Schizosaccharomyces pombe.
Methods in enzymology, 470, 145-179.

[22] Vinayagam, A., Zirin, J... 2014. Integrating protein-protein
interaction networks with phenotypes reveals signs of
interactions. Nature methods, 11(1), 94-99.

[23] Falck, J., Petrini, J. H... 2002. The DNA damage-dependent
intra–S phase checkpoint is regulated by parallel pathways.
Nature genetics, 30(3), 290-294.

[24] Bailly-Bechet, M., Borgs... Finding undetected protein
associations in cell signaling by belief propagation. PNAS,
108(2), 882-887.

[25] UniProt C. 2015. UniProt: a hub for protein information.
Nucleic Acids Res, 43: D204–12.

[26] Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter
F, Chen C... 2012.The IntAct molecular interaction database.
Nucleic Acids Res. 2012

[27] Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, et
al. 2014. The Reactome pathway knowledgebase. Nucleic
Acids Res. 42(D1):D472–7.

[28] Hamosh A., Scott A.F... 2002. Online Mendelian Inheritance
in Man (OMIM), a knowledgebase of human genes and
genetic disorders. Nucleic Acids Res.

[29] Lopes C.T., Franz M., Kazi F., Donaldson S.L., Morris Q.,
Bader G.D. Cytoscape Web: an interactive web-based
network browser. Bioinformatics 2010.

[30] J. P´erez, M. Arenas, and C. Gutierrez. Semantics and
Complexity of SPARQL. ACM TODs, 2009.

[31] J. Broekstra, A. Kampman, and F. Harmelen. Sesame: A
generic architecture for storing and querying RDF and RDF
Schema. Proc. of ISWC, pages 54-68, 2002.

[32] O. Erling and I. Mikhailov. RDF support in the virtuoso
dbms. In CSSW, pages 59–68, 2007.

[33] S. Harris and N. Gibbins, 3store: Efficient bulk RDF storage.
Proc. of PSSS, pages 1-15, 2003.

[34] K. Wilknson, C. Sayers, H. Kuno... Efficient RDF storage
and retrieval in Jena2. PSWDB, pages 131-150, 2003.

[35] Tian, Y., & Patel, J. M. Tale: A tool for approximate large
graph matching. ICDE 2008, 963-972 (2008).

[36] Zhang, S., Yang, J., & Jin, W. (2010). SAPPER: subgraph
indexing and approximate matching in large graphs. PVLDB,
3(1-2), 1185-1194 (2010).

[37] He, H., & Singh, A. K. Graphs-at-a-time: query language and
access methods for graph databases. SIGMOD, 405-418
(2008).

[38] Zhao, P., & Han, J. On graph query optimization in large
networks. PVLDB, 3(1-2), 340-351 (2010).

[39] Zou, L., Ozsu, M. T., Chen, L., Shen, X., Huang, R., & Zhao,
D. gStore: a graph-based SPARQL query engine. VLDB
Journal, 23(4), 565-590 (2014).

[40] Zou, L., Mo, J., Chen, L., Ozsu, M. T., & Zhao, D. gStore:
answering SPARQL queries via subgraph matching.
PVLDB, 4(8), 482-493 (2011).

[41] F. Belleau, M. Nolin, N. Tourigny, P. Rigault and J.
Morissette. Bio2RDF: Towards a mashup to build
bioinformatics knowledge systems. 2008. Journal of
Biomedical Informatics 41:5 p706-716.

[42] Shi Qiao, Z. Meral Ozsoyoglu. One Size Does not Fit All:
When to Use Signature-based Pruning to Improve Template
Matching for RDF graphs. arXiv:1501.07184.

[43] Sun, Z., Wang, H., Wang, H., Shao, B., & Li, J. 2012.
Efficient subgraph matching on billion node graphs. PVLDB,
5(9), 788-799.

ACM-BCB 2015 155

