
Integrated Querying of Disparate Association and 
Interaction Data in Biomedical Applications 

Shi Qiao 
Case Western Reserve University 

Cleveland, OH, 44106 
sxq18@case.edu 

Mehmet Koyutürk 
Case Western Reserve University 

Cleveland, OH, 44106 
mxk331@case.edu 

Z. Meral Özsoyoğlu 
Case Western Reserve University 

Cleveland, OH, 44106 
mxo2@case.edu 

 

ABSTRACT 
In biomedical applications, network models are commonly used to 
represent interactions and higher-level associations among 
biological entities. Integrated analyses of these interaction and 
association data has proven useful in extracting knowledge, and 
generating novel hypotheses for biomedical research. For example, 
integrated mining of clinical similarity among diseases, known 
disease-gene associations, and molecular interactions among 
proteins provide insight on prioritizing candidate disease genes. 
However, since most datasets provide their own schema and query 
interface, opportunities for exploratory and integrative querying of 
disparate data are currently limited. In this study, we capitalize on 
RDF-based representations of biomedical interaction and 
association data to develop a querying framework that enables 
efficient processing and flexible specification of graph template 
matching queries. The proposed framework enables integrative 
querying of biomedical databases to discover complex patterns of 
associations among a diverse range of biological entities, including 
biomolecules, biological processes, organisms, and phenotypes. 
Our experimental results on the UniProt dataset show the proposed 
framework can be used to efficiently process complex queries, and 
identify biologically relevant patterns of associations that cannot be 
readily obtained by querying each dataset independently.   

Categories and Subject Descriptors 
H.4 [Information Systems Applications]: General  

General Terms 
Algorithms 

Keywords 
UniProt, RDF, Graph Template Matching 

1. INTRODUCTION 
In post-genomic biology, networks are commonly used to model 
molecular interactions, as well as high-level associations among 
various biological entities. These entities include biomolecules, 
ligands, cellular functions, functional modules, biological 
processes, tissues, organisms, and phenotypes. Networks are useful 
to represent a broad range of interactions among biomolecules, 
including protein-protein interactions (PPIs) [1], gene co-
expression [2], transcriptional regulation [3], metabolic pathways 

[4], genetic interactions [5], and signaling pathways [6]. Higher 
level associations represented by networks include gene-disease 
associations [7], clinical similarity or co-morbidity of diseases [7], 
disease-drug associations [8], molecular response to drugs [9], 
functional annotation of genes and proteins, and evolutionary 
relationships among molecules and organisms [10]. The current 
state-of-the-art in the querying and analysis of disparate interaction 
and association data is limited to querying each type of data in 
isolation, or downloading different datasets in bulk and joining 
them in house for specific analysis and mining tasks. In other 
words, it is not straightforward for a researcher to identify or infer 
indirect associations among biological entities by incorporating 
data in multiple forms. Recently, heterogeneous network models 
that incorporate multiple types of interactions and associations have 
been shown to be effective in the identification of unknown 
relationships among biomolecules, biological processes, diseases 
and drugs. The applications of such integrative models include 
disease gene prioritization [11], drug repositioning [12], and 
functional annotation of proteins [13].  

In this study, we build on the demonstrated promise of 
heterogeneous network models and develop an RDF (Resource 
Description Framework) -based querying framework to facilitate 
exploratory querying of integrated biological networks. Here, the 
term “integrated biological network” refers to the collection of all 
known functional, physical and statistical interactions, as well as 
associations among biological entities. RDF is the first W3C 
standard for enriching information resources on the web with 
detailed descriptions (i.e. Meta data). It is the commonly used data 
model for the linked data, and knowledge bases that are shared and 
exchanged on the web.  An RDF dataset consists of a set of triples, 
in the form (s,p,o), stating that a subject s  has the property p whose 
value is the object o. RDF data can also be visualized as a graph 
where subjects and objects are nodes and properties (predicates) are 
edges.  Unique identifiers (URI’s) can be used for subjects, 
properties or objects to uniquely refer to entities, relationships or 
concepts. Literals can also be used for objects [20]. RDF can easily 
represent a wide range of data and information from structured, 
semi-structured, or unstructured sources. Thus, it enables seamless 
interoperability and integration of the data on the web. Since each 
RDF triple (edge in graph representation) corresponds to a binary 
predicate, it lends itself for reasoning and inference based 
applications as well. Traditional approaches for biomedical 
applications require querying different biology datasets (e.g., 
UniProt, MeSH, OMIM, Reactome) using a relational database to 
build a knowledge base by integrating various query results. In 
comparison, using an integrated RDF dataset offers several 
advantages. Namely, creating a knowledgebase using a relational 
database requires parsers for each dataset, designing a schema, 
tuning the system.  Typically, the file formats, and schema changes 
occur frequently, which requires costly updates for the parsers, the 
schema, and the queries to keep the system up-to-date and 
functional.  Using RDF, data is integrated seamlessly, queries do  
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not depend on the schema as in relational databases, and the 
integrated RDF dataset can be queried directly for interactions and 
associations between disparate biological entities for information 
coming from different sources. Here, we propose a graph template-
based query framework for querying biological associations and 
interactions from an RDF knowledge base. In this framework, 
queries are expressed as a graph template where the nodes are 
biological entities involved in the query, and edges represent 
interactions and/or associations between these entities. Our main 
contribution in this paper is the development of a tool that provides 
a “shortcut” to data integration in the bioinformatics pipeline. By 
providing a powerful mechanism for seamlessly querying an RDF 
dataset integrating various types of biological interactions and 
associations, this framework enables simple querying and efficient 
processing for highly sophisticated queries that can provide novel 
biological insights.  

The rest of the paper is organized as follows. In Section 2, we 
provide examples of using graph template queries for extracting 
associations and interactions among biological entities that are 
studied by biomedical scientists.  Section 3 provides an overview 
of RDF data model and Querying RDF using graph templates. In 
Section 4, we describe the UniProt knowledge base and its 
components that are utilized in this paper. In Section 5, we present 
the experimental analysis, queries, and query results. We discuss 
the related work in Section 6, and conclude in Section 7. 

2. QUERY EXAMPLES and MOTIVATION 
For a broad range of biomedical applications, researchers query 
large public databases to interpret their findings, to verify their 
predictions, or to identify relationships that will help develop novel 
hypotheses. Common queries that are utilized by biomedical 
scientists  include the exploration of various types of information 
on a single protein, enrichment analyses for sets of genes or 
proteins, and identification of genes/protein associated with a given 
phenotype, function, process, tissue, or drug. However, the current 
state-of-the-art in integrated mining of biological data shows that 
disparate databases, when considered together, contain information 
that cannot be directly extracted by such queries [11-13]. Inspired 
by the success of integrative data mining efforts, we propose that 
queries that integrate multiple types of association and integration 
data will enable scientists to more effectively explore indirect 
relationships among biological entities.  Such queries include: 

 Overlap in the molecular bases of diseases: The overlap in the 
identity of genes that are associated with different diseases may be 
useful in discovering unknown relationships among different 
diseases [7]. Motivated by this observation, biomedical scientists 

may be interested in searching for all diseases that share at least a 
number of gene associations with a disease of interest. Such a 
question can be addressed by a graph template matching query 
shown in Figure 1(a). In this query, the user specifies a disease 
(QD) and queries for all diseases (TD) such that a protein associated 
with QD is also associated with TD. 

 Shared molecular interactions between diseases: Diseases 
with similar molecular etiology may not necessarily overlap in 
terms of the identity of gene associations, but the relationship may 
be revealed through molecular interactions among these genes [14]. 
This provides systems level insights into the shared molecular 
mechanisms among different diseases [15]. Such relationships can 
be discovered using a query like the one shown in Figure 1(b). In 
this query, the user specifies a disease (QD) and queries for all 
diseases (TD) such that a protein associated with QD interacts with 
a protein associated with TD. 

 Shared molecular interactions between diseases and drugs: 
Drug repositioning has recently become a prominent application in 
computational biology [16]. This is due to the need to repurpose 
established drugs to reduce cost, as well as the opportunity provided 
by omic data to discover unknown relationships between 
biomolecules targeted by drugs and biological processes involved 
in pathogenesis. Ability to query for drugs that share a number of 
molecular interactions with a given disease (i.e., molecular 
interactions between the targets of the drug and the genes 
associated with the disease) can provide an excellent starting point 
for identifying candidate drugs for repositioning [8]. A graph 
template matching query that can be used for this purpose is shown 
in Figure 1(c). In this query, the user specifies a disease (QD) and 
queries for all drugs (TU) such that a protein associated with QD 
interacts with a protein associated with TU. 

 Network schemas: Integrated mining of molecular interaction 
networks and functional annotations led to the identification of 
network schemas, i.e., small subgraphs of functional terms that 
recur frequently in molecular interaction networks [18]. These 
network schemas provide insights into conserved functional 
modules and the design principles of cellular networks [19]. A 
graph template matching query such as the one in Figure 1(d) can 
be used to search for network schemas involving specific biological 
processes or molecular functions. In this query, the user specifies a 
specific molecular function (QF) and queries for all proteins 
associated with QF that interact with each other. 

 Shared pathways between diseases: Organization of systems 
biology knowledge in the form of pathways provides well-
established, reliable, and tractable access to state-of-the-art  

 
Figure 1. Query Examples and Motivation 

(blue nodes represent user specified entities, e.g. “QD” and “QF”; 
red nodes with “?” represent query output  entities, e.g. “?TD” and “?TU”; double line edges represent path connections) 
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knowledge on biological processes. For this reason, incorporation 
of pathway data in analyzing the relationship among phenotypes 
provides information that is complementary to high-throughput 
interaction data that is organized into networks [17]. For example, 
identification of shared pathways among different diseases can be 
useful in understanding similarities in disease development and 
progression [19].  A sample graph template matching query that can 
be used for this purpose is shown in Figure 1(e). In this query, the 
user specifies a disease (QD) and queries for all diseases (TD) such 
that a pathway that contains a protein associated with QD also 
contains a protein associated with TD. 

As demonstrated by these examples, the ability to seamlessly query 
interactions and associations among biological entities enables 
biomedical scientists to get quick answers to a broad range of 
sophisticated questions on the relationships between these entities. 
While the examples above are mostly limited to mining indirect 
associations, it is also possible to use the proposed framework to 
identify relationships with mechanistic biological interpretations. 
For example, experimental data derived from gene knock-out or 
RNA interference experiments are commonly used to identify 
associations among gene and proteins in terms of their effect on 
phenotype [21, 22]. For signaling proteins, strong positive or 
negative correlation between two proteins’ influence on the 
phenotype may be indicative of common downstream effects [23]. 
Scientists can quickly discover potential candidates for these 
common effects by querying for paths that go through these 
proteins and converge into the same node in the integrated network 
of protein-protein and transcriptional regulatory interactions. 
Today, the most common way of interpreting observed 
experimental associations among a group of proteins is to identify 
subnetworks that connect the proteins of interest, e.g., using Steiner 
tree based algorithms [24]. Biomedical researchers often use 
commercial software (e.g., Ingenuity Pathway Analysis, Pathway 
Studio) that do not provide algorithmic transparency or clearly 
defined criteria for the identified subnetworks. To this end, 
semantically meaningful queries that integrate multiple data types 
can generate significant mechanistic insights into the relationships 
among proteins of interest and provide the researchers with new 
ways of thinking about their research questions. 

While all of the sample queries listed above can be currently 
processed by downloading bulk datasets from multiple databases 
and subsequent processing and joining of these datasets, this is 
often time-consuming and challenging for many biomedical 
scientists. Therefore, the main contribution of this study is the 
development of a querying framework that provides a “shortcut” to 
data integration in the bioinformatics pipeline. This is useful for 

two types of applications: 1) “targeted” queries, that is when the 
researcher is interested in identifying new associations for one or 
more specific entities (e.g.., a group of genes, a particular disease, 
a particular drug).  2) “high-throughput” queries for mining tasks, 
that is when the researcher is interested in identifying all 
associations that exhibit a specific pattern (e.g., all disease-drug 
pairs that share a reasonably large number of interactions). 

3. RDF QUERY FRAMEWORK 
We present the RDF query framework here; see [42] for more 
details. We first give the basic definitions: 

An RDF Graph is a directed graph ܩ ൌ 	 ሼܸ, ,ܧ ݈, ݂ሽ	where ܸ is a 
set of vertices representing either subjects, objects or both. ܧ ⊆
ܸ ൈ ܸ is a set of directed edges representing predicates pointing 
from subjects to objects. ݈ is a label set for subjects, objects and 
predicates. 	݂:	ܸ/ܧ → ݈		 denotes the mapping function between 
vertices/edges to labels.  

Connection edge (
ா
⇔) represents a path ω,	 between two nodes ݊ 

and ݊ . Expression ܧ  describes the distance constraints of 	ω, 
(Distance is the length of the shortest path). In Figure 3(c), the edge 
between node “<http://purl.uniprot.org/uniprot*” and node “breast 
cancer” is a connection edge representing a path of length 4 or less. 

A GBE (Graph by Example) Query Template is a directed 
graph	ܩ ൌ ሼܸ,  where vertices (objects or ,ܩ ሽ for an RDF graphܧ
subjects) are labeled by partial keywords (that are substrings of 
labels in the label set ݈  of RDF graph ܩ ), and edges represent 
predicates or connection edges.  

Given RDF graph ܩ ൌ 	 ሼܸ, ,ܧ ݈, ݂ሽ  and query template ܩ ൌ ሼܸ,
 that satisfy both ܩ ሽ, Template Matching finds all subgraphs ofܧ
structural and label constraints in ܩ based on graph isomorphism. 

A small subset of the UniProtKB RDF dataset represented as a 
graph is shown in Figure 2, which contains two proteins (BRCA2 
and RAD51) and two cancers (Pancreatic cancer and Breast 
cancer). In general, proteins are associated with diseases through 
disease annotation nodes. Protein-Protein interactions are from 
IntAct dataset. Note that two IntAct EBI resources need to be 
identified for a binary protein–protein interaction in the UniprotKB 
dataset.  This is due to the quality requirements of UniProtKB that 
only binary interactions which are experimentally supported by 
multiple observations are imported from the IntAct dataset. Disease 
information comes from the OMIM dataset. By using this example 
graph, we demonstrate RDF representations of the association and 
interaction among different biological entitles from various 
datasets. We define graph template matching with GBE (graph by 
example) query templates which support paths, distance 
constraints, and partial matching of keywords. An example GBE 
query template is shown in Figure 3 (c) which finds any cancer 
associated with a protein that is also associated with “Breast 
cancer” (this query is also shown in Figure 1 (a) and corresponds 
to query Q3 in Section 5). Evaluating this query over the example 
RDF dataset shown in Figure 2 will return “Pancreatic cancer” as 
the answer since the protein BRCA2 is the protein associated with 
both diseases. 

3.1 INDEXES 
We utilize two indexes to evaluate graph template queries with 
partial keywords and connection edges efficiently. The first index 
is IDMap, which maps RDF labels into integer IDs in lexicographic 
order. For partial keywords specified as prefixes of RDF labels, the 
look-up time is ܱሺ݈ܰ݃ሻ, where N is the total number of RDF  

 
Figure 2. UniProtKB RDF Graph Example 
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Algorithm: Neighborhood Check (݊,  (ݍ

Input: ݊ ∈ ܸሺܩሻ ݍ , ∈ ܸሺܩሻ , ID Intervals Ժ∗ , {Distance, 

Count} ߰
∗, NI Index ܰܫ for node ݊ 

Output: If ݊  pass neighborhood check of ݍ , return true; 

Otherwise, return false 
1 FOR all ݇	݁ݎ݄݁ݓ	|݇|  ݀௫ 
2 FOR any partial keyword ऀ 
3 FOREACH value pair {݀, ܿ} in ߰

 

4 Exact all entries from ܰܫ where ID interval 
intersect with Ժ and Distance	 ݀ 

5 Count all IDs in Ժ as ܿ′ 
6 IF ܿ′  ܿ, RETURN false 
7 RETURN true 
  

labels, since all matching IDs form one interval of consecutive 
integers. The look up time for partial keywords can be further 
accelerated by using additional indexes.  

The second index, Neighborhood Interval (NI) index, which is built 
based on the IDMap index by grouping the labels (IDs) of 
neighbors of each node into ID intervals. For any node	݊ ∈  NI ,ܩ
index contains ID of ݊, Distance, Label ID interval, Number of 
indexed neighbor nodes in this entry, and neighbor node IDs. The 
Distance is the length of the shortest path from ݊ to the indexed 
neighbor node. Given two vertices ݊ and ݊ in graph ܩ, if there is 
a directed path from  ݊ to ݊, ݊ is a forward neighbor of ݊ and 
݊ is a backward neighbor of ݊.The positive (negative) distance 
indicates that the indexed node is a forward (backward) neighbor.  

There are two pre-defined parameters for the NI index: maximum 
indexed distance ݀௫ and binning factor ݉ (m is the maximum 
number of indexed neighbor nodes in each index entry). The 
neighbor nodes sharing the same distance are grouped together, 
ordered by their IDs, and partitioned into rows by the binning factor 
m. The space required by NI index increases with the increasing the 
maximum indexed distance ݀௫  since more neighbors are 
indexed for each node. However, larger ݀௫  results in better 
pruning of candidate matches, and improves running time to 
process connection edges with long distance constraints. NI index 
is designed to be most effective when partial keywords are 
specified as prefixes of RDF node labels. NI index can be viewed 
as a general form of the signatures utilized in both GraphQL [37] 
and SPath [38]. NI index is also utilized for accelerating the 
evaluation of connection edges.  

3.2 Query Framework 
The RDF query framework consists of the following steps: 

1. Decomposition of query template into connection edges and 
components without connections edges. 
2. Candidate generation and Pruning: Using IDMap index, generate 
matching candidates for each query node. Using NI index for 
Neighborhood Check selectively to prune the candidates. 
3. Decomposing each component into a set of smaller basic 
querying units. We use one level directed trees, named D-trees. 
4. Candidate generation for each component: All matching 
candidates for each D-tree of a component are generated, and joined 
together to find matching results for each component. 
5. Connectivity check: Connection edges between components are 
processed using NI index to generate the final matches for the query 
template.  

Neighborhood Containment Check (step 2) Component Matching 
(steps 3 and 4) and Connectivity Check (step 5) are discussed in 
more detail below.   

3.2.1 Neighborhood Containment Check 
The neighborhood containment check for NI index is based on ID 
interval check (here, we assume partial keywords are specified as 
prefixes of node labels).  

The ID Interval, Ժ , of a partial keyword ऀ  of any query node 
ݍ ∈ ܸሺܩሻ,  is all IDs of node set ܰ where ∀݊ ∈ ܰ, the label ݈ 
of ݊ is a valid match of ऀ.  

The K-Neighbor of a node  ݊ , where ݊ ∈ ܸሺܩሻ ,  denoted as 
 ሺ݊ሻ, is a set of nodes that are forward or backwardݎܾ݄݃݅݁ܰ
neighbors of  ݊   via paths of length k or less. That is, if  ݇  is 
positive, ∀	 ݊ ∈  ሺ݊ሻ, there is a directed path from ݊ toݎܾ݄݃݅݁ܰ

݊  with no more than |݇|  hops; if ݇  is negative, ∀	 ݊ ∈
 ሺ݊ሻ, there is a directed path from ݊ to ݊ with no moreݎܾ݄݃݅݁ܰ
than |݇| hops.  

Now we define the Neighborhood Check: Given a node ݊ ∈ ܸሺܩሻ, 
and a query node ݍ ∈ ܸ൫ܩ൯, ݊ passes the Neighborhood Check 
of ݍ  if	∀	ݍ ∈ ൯, ID Interval Ժݍ൫ݎܾ݄݃݅݁ܰ  uniquely contains 
ID of any ݊ 	∈ |݇| ሺ݊ሻ, for allݎܾ݄݃݅݁ܰ  ݀௫. 

An interval of consecutive integers is formed for each partial 
keyword in query template utilizing IDMap index. Since query 
templates can contain query nodes with the same partial keyword, 
value pairs as {Distance, Count (total appearance within Distance)} 
for each partial keyword are maintained for each query node. The 
neighborhood check is performed based on partial keywords one 
by one, and the count of occurrences of this partial keyword is taken 
into consideration. The term “uniquely contains” in the 
Neighborhood Check definition means that the node  ݊ cannot be 
used to match more than one ID interval. If one partial keyword 
contains another partial keyword, Count in value pairs is updated. 
In the Algorithm showing the neighborhood check process, 
{Distance, Count} pairs associated with query node ݍ and partial 

keyword ऀ are denoted as ߰
. Neighborhood check based on NI 

index is optimized for partial keywords: 1) only index entries with 
Label ID interval intersecting with the ID interval of the partial 
keyword needs to be retrieved; 2) all IDs in the index entries are 
valid matches for the partial keyword if the ID interval of the partial 
keyword contains the Label ID interval. 

3.2.2 Component Matching 
Matching candidates for each component is found by first 
decomposing the components into D-trees, then joining the 
matching candidates of the D-trees of the component. Time 
complexity of component matching is proportional to ∏ |௧ܥ|


ୀଵ  

where ܭ is number of all decomposed 1 level D-trees and |ܥ௧| is 
the number of matching candidates for each D-tree. Finding D-tree 
decomposition with minimum number of D-trees is likely to 
improve the time complexity; however it is equivalent to the vertex 
cover problem [43]. Similar to the vertex cover approximation, we 
use 2-approximation algorithm to generate D-tree decomposition. 
Basically, an edge ሺݍ,  ሻ is picked recursively from the queryݍ
component, and D-trees rooted at ݍ and ݍ are added to the result. 

We define selectivity value function ܵሺݍሻ ൌ
ௗ	ሺೕሻ

|ೕ|
 which takes 

both query node’s degree and its corresponding candidate set size 
into consideration as a good measurement of the priority to be 
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selected as root nodes for two reasons: (i) choosing large degree 
nodes first is likely to yield better results since D-trees rooted at 
these nodes can cover more edges in the query component which 
leads to a smaller K value; (ii) choosing nodes with small candidate 
sets first is likely to yield less matching candidates for a D-tree. In 
the second step, NI indexes for all possible root nodes of a 
decomposed D-tree are checked to generate all D-tree candidate 
matches. The last step is to join all D-tree candidates together to 
form component matches. We define the join process as 
,ܥሺ   are candidate sets for two subgraphsܥ  andܥ ሻ, whereܥ
of ܩ  (it can either be a decomposed D-tree or joined D-trees). 
,ܥ൫ࡶ  ൯ combines each pair of matches from two candidateܥ
sets by evaluating the predicate: all shared query nodes of two 
candidate matches need to have equal matching IDs to join. In order 
to improve the join performance, a new join order J்  for the 
decomposed D-trees is used as follows: 1. begin with D-tree ݐ with 
smallest candidate set and add ݐ  to J் ; 2. add D-tree ݐ  with 
smallest candidate set to J் which connects to any already selected 
D-trees in J். Component matching used here is similar to the one 
used in STWIG [43] with the following differences: 1) D-trees are 
used as basic join units; 2) new selectivity function is defined based 
on the size of candidate sets; 3) the NI index is used to generate all 
D-tree candidates; 4) tree join order is determined by the sizes of 
tree candidate sets. 

3.2.3 Connectivity Check 
Connectivity check verifies the paths in the data graph between the 
nodes that are connected by connection edges in the query graph.  
If the connection edge is between nodes of the same component 
then the connectivity check is used to prune the candidates of that 
component. Otherwise, connectivity check is used to determine 
whether the two component candidates can join or not. For 
component connection edges that are within a component, the 
number of connectivity checks is exactly the size of the component 
candidate set. For a connection edge between components, the 
number of connectivity checks depends on the product of the sizes 
of components’ candidate sets. In the worst case, if we have a 
sequence of N components to be joined by connection edges, the 
number of connectivity checks that need to be performed can be as 
large as ∏ |∗ீܥ|

ே
ୀଵ . In order to improve query performance, two 

rules are utilized to determine the order to process connection 
edges: 1) connection edges inside components are processed before 
connection edges between components; 2) connection edges 
between components are processed in the order of the smallest 
product of candidate sets first. NI index is utilized in processing 
connection edges.  The Connectivity check of connection edge 
between ݊ and ݊ is performed by retrieving neighbor IDs of  ݊ 
and ݊  from NI indexes, and then checks whether the neighbors of  
݊  intersect with the neighbors of ݊ . Here, we assume the 
maximum indexed distance ݀௫ of neighborhood index is greater 

than	݈݅݁ܥሺ
ௗ	

ଶ
ሻ, where ݀ is the distance specified with connection 

edge. Otherwise, we need to combine index entries of	݊   and  ݊’s 
neighbor nodes together in order to get more hops of neighborhood 
information for ݊. 

4. DATASETS 
The UniProt Knowledgebase (UniProtKB) [25] is a central hub of 
protein information which provides an integrated view of 
association and interaction data from different biomedical datasets. 
One important motivation of UniProtKB is to allow users query the 
related but dispersed information across disparate protein related 
datasets. Each protein entry recorded in UniProtKB provides a 

variety of information related to this protein including protein and 
gene names (mnemonic name, structured name and alternate 
names), protein sequences, protein function, catalytic activity, co-
factors, subcellular localization, patterns of expression, protein–
protein interactions, and disease association. Besides the rich 
information provided for each protein, another advantage of 
UniProtKB is its high update rate and availability in different 
formats. UniProtKB data is released every 4 weeks to provide the 
most up to date protein information in multiple formats including 
plain text, XML, RDF and GFF.  

The decisive factor to choose UniProtKB rather than another 
database available in RDF format for our experiment relies on its 
high quality and accuracy of data integration. Since RDF format 
has no pre-defined schema, RDF data is designed to integrate with 
ease by combining the triples from different sources directly if 
unified resource identifiers are utilized. For UniProtKB, each entry 
undergoes both automated and manual checks to ensure the high 
accuracy and consistency of the data before it is integrated. The 
automated check is performed through a quality control software to 
ensure the correctness of syntax and verification of different 
biological rules for the entry. Besides this, the manual review 
process provides extra effort to ensure that all relevant literature, 
annotation and analysis results are included. As the correctness of 
the querying results across multiple datasets is determined by the 
lowest quality data integrated, the high quality standards provided 
by UniProtKB is essential to provide high confidence of querying 
results in the experiments.  

4.1 Integrated Datasets 
In this section, we describe the three integrated datasets in 
UniProtKB which are extracted and queried in our experiments 
reported in the next section: IntAct (protein-protein interaction), 
Reactome (pathway), and OMIM (disease and phenotype).  

4.1.1 IntAct 
IntAct [26] provides open-source molecular interaction data 
populated by interactions curated from the literature, as well as 
from direct data depositions. The information within the IntAct 
database primarily consists of protein–protein interaction (PPI) 
data. An important aspect of the IntAct dataset is that each entry in 
IntAct is peer reviewed by a senior curator, and not released until 
accepted by that curator. UniProtKB database is readily integrated 
with the IntAct database to provide protein–protein interaction data. 
In order to meet the required quality standard of UniProtKB, only 
a subset of high quality interactions are imported from IntAct based 
on a statistical scoring system. A score threshold is chosen by 
UniProtKB to exclude binary interactions supported by only one 
experimental observation. In addition to the score-based filter, a set 
of defined rules are utilized to exclude certain types of data, such 
as interactions observed in larger complexes, or interactions that 
have not been experimentally validated. By using these strict 
criteria, only experimentally validated binary interactions 
supported by multiple observations are imported into UniProtKB. 

4.1.2 Reactome 
Reactome [27] is a manually curated open-source human pathway 
and reaction dataset. In order to provide a unified identifier, 
Reactome merges pathway identifier mapping, over-representation 
and expression analysis tools into a single portal. Reactome uses 
UniProtKB protein identifiers to provide a list of pathways in which 
the protein functions. Compared with the pathway annotation 
provided by UniProtKB directly, the cross referenced Reactome 
pathways provide more complete information for each protein. 
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4.1.3 OMIM 
Online Mendelian Inheritance in Man (OMIM) database [28] is 
utilized in UniProtKB to provide disease/phenotype information 
for disease annotations associated with proteins. OMIM is a 
comprehensive, authoritative and timely knowledgebase of human 
genes and genetic disorders. Each OMIM entry has a full-text 
summary of a genetically determined phenotype. UniProtKB 
carefully links the OMIM entry with the protein entry and describes 
the natural variant(s) of the protein sequence potentially associated 
with disease according to the scientific literature.  

4.2 Data Extraction 
The data utilized in our experiments is a subset of triples from the 
UniProtKB RDF dataset. We focus on only human proteins that 
currently have active entries. The UniProtKB raw data, 
downloaded from the UniProt website on 4-10-2015, contains 
about 150 million triples from 971,583 (both reviewed and 
unreviewed) protein entries. Note that different protein isoforms 
are represented as different protein entries in UniProtKB. In order 
to provide a more concise RDF graph to support efficient signature-
based indexes, only protein entries associated with at least one of 
the following statements are extracted: disease annotation, function 
annotation, PTM annotation, cofactor annotation, subunit 
annotation and protein interaction. For each protein entry, the 
following properties are extracted: protein names (mnemonic 
name, recommended name and alternate name), protein organisms 
(including the taxonomy information), protein keywords, protein 
tissues, protein gene information (including different gene labels), 
and protein pathway information (Reactome pathway associated 
with the protein). The extracted RDF graph contains 89,915 
proteins (including different protein isoforms), 4,211 diseases, 
1,278 pathways, 18,243 interactions and 35,063 annotations. The 
size of the extracted RDF graph is about 11.6 million triples 
including 9 million triples from the taxonomy data. Data extraction 
can be systematically done from any version of the UniProtKB 

RDF graph, and more types of annotations can be extracted by 
changing the specification of the data extraction process.  

5. EXPERIMENTAL RESULTS 
The proposed framework is implemented with Visual C# 2010 and 
SQL Server 2008. All experiments were performed on a 2.93GHZ 
Intel(R) Xeon machine with 48GB RAM running Windows Server 
2008 R2. The average space needed for the NI index is 
ܱሺܰሺ2/ߤሻௗೌೣ/݉ሻ, where ܰ is the number of vertices in ܩ,  is ߤ
the average node degree, ݀௫ is the maximum hops of neighbors 
indexed and ݉ is the binning factor. The NI index with a larger 
݀௫ value results in higher pruning power and ability to handle 
connection edges with large distance constraints at the cost of 
requiring more storage space. By using the IDMap index to hash 
the RDF labels into IDs, the 2 hop NI index achieves a similar size 
as the original RDF graph while 3 hop NI index is 8 times larger. 
As we explain in Section 3.2, 2 hops NI index can evaluate 
connection edges with distance constraints up to 4 hops efficiently 
which is sufficient for all proposed queries. Here, we decide to use 
2 hops NI indexes for graph template matching.  

In this section, we primarily investigate the ease of utilization of 
GBE query templates to specify integrated queries and the strength 
of these queries in discovering interesting patterns across the 
integrated network from disparate biological entities. For this 
purpose, we focus on 10 queries that require integrated querying 
across multiple interaction and/or association datasets. We 
categorize these 10 queries into two groups: 1) single protein 
patterns: querying the relationships among one protein and other 
types of resources; 2) multiple protein patterns: querying protein-
protein joining based on protein-protein interactions, shared 
pathways, shared diseases, or shared function. Rather than 
displaying the results in tabular form, we export query results into 
Cytoscape [29] to produce meaningfully summarized graphs. For 
each query, the query results can produce multiple summarized 
graphs by specifying different relationships among various types of 
resources.  

 

Figure 3. Query Specifications of Q3 

 

Figure 4.  Query Specifications of Q5 
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5.1 Single Protein Patterns 
Single protein patterns focus on querying relationships between one 
protein and other types of resources across different datasets. Four 
queries are proposed as single protein patterns: 

Q1. Finding pathways that contain at least one protein associated 
with “Breast Cancer”. 

Q2. Finding molecular functions that are associated with at least 
one protein associated with “Breast Cancer”. 

Q3. Finding cancers that are associated with at least one protein that 
is also associated with “Breast Cancer”. (Motivated by Figure 1 (a)) 

Q4. Finding tissues that are associated with at least one protein 
which is associated with “Breast Cancer”. 

To evaluate these four queries, at least two types of biological 
resources/entities need to be integrated: protein resource (Uniprot) 
and disease resource (OMIM). UniProtKB has already linked 
protein resource with disease information which makes some of 
queries solvable through manual effort, e.g. one can search all 
protein entries associated “Breast Cancer” on Uniprot website and 
manually check all these entries to find any other cancers associated. 
As UniProtKB also provides a beta SPARQL endpoint which 
allows user to specify SPARQL queries, some of these queries can 
also be specified in SPARQL. However, both manual check and 
specifying the complete SPARQL queries requires significantly 
more effort compared with using GBE query templates in our 
framework.  

In Figure 3, we illustrate three possible ways to specify Q3. One 
can easily observe that both alternatives of specifying the complete 
query template (Figure 3 (b)) and the SPARQL query (Figure 3 (a)) 
need not only strong database background but also a good 
understanding of the underlying graph structure of the UniProt 

RDF graph. In comparison, by using connection edges and partial 
keywords, GBE query templates can be much simpler to formulate. 
As shown in Figure 3 (c), the GBE query template uses connection 
edges to avoid specifying the intermediate annotation node and the 
disease ID node in identifying the relationship between a protein 
and disease name. With a little background of UniProt RDF dataset, 
the GBE query framework provides simpler query specifications as 
demonstrated by the abstract queries in Figure 1. Note that, using 
connection edges may yield more results compared to specifying 
all edges in the complete graph template. For all these four queries, 
the simplified GBE query templates return the same set of results 
as the complete graph template on the extracted UniProtKB graph. 
The GBE framework also supports displaying the results in graph 
templates. Thus, the researchers can choose a subset of the results 
they are interested, and display them as graph templates to perform 
exploratory search. Due to space limits, the details of using the 
GBE framework to display query results as templates to perform 
exploratory search is not included here. 

Q1 returns 60 Reactome pathways potentially associated with 
“Breast Cancer”. 13 protein function annotations associated with 
proteins which are associated with “Breast Cancer” are found in Q2. 
Q3 discovers 5 cancers that have overlapping molecular bases with 
“Breast Cancer”. 23 tissues are identified in Q4 related to proteins 
associated with “Breast Cancer”. As we explain in Section 2, 
identification of diseases with overlapping molecular bases may be 
useful in identifying unknown disease-disease relationships. Here, 
we display the results of Q3 in Figure 5 using Cytoscape. In Figure 
5 (a), we display the connections among proteins and diseases 
identified in the query results of Q3 by making the disease and the 
protein in each query result as the source and target in Cytoscape. 
To further provide more clear relationships between “Breast Cancer” 
and other cancers, another summarized graph is produced in Figure 
5 (b) by making the two diseases in each query result as the source  

   

(a) Disease-Protein                                                   (b) Disease-Disease 
Figure 5. Query Result Visualization of Q3 

 

Figure 6. Disease-Disease Relationships for Q5 

 

Figure 7. Full Visualization of Query Results for Q5 
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and target in Cytoscape. The width of the edge between two 
diseases is determined by the number of proteins shared by this 
disease pair. The size of the cancer node is based on the number of 
shared proteins. The more proteins shared between one disease and 
“Breast Cancer”, the larger disease node is (same for edge width, 
the more shared proteins, the wider the edge is). One can observe 
that “Pancreatic Cancer” and “Breast Cancer” have strong shared 
molecular bases (3 shared proteins) and are more likely to relate 
with each other. Such a network is utilized in [7] which can be 
constructed via a single query in our framework. 

5.2 Multiple Protein Patterns 
Compared to single protein patterns, multiple protein patterns are 
more complex for query specification and evaluation. We consider 
three types of protein-protein joining conditions: protein-protein 
interaction, shared functions and shared pathways. Some of the 
multiple protein pattern queries also require joining proteins based 
on multiple criteria.  

5.2.1 Protein-Protein Interaction 
Protein–protein interactions reveal functional relationships 
between genes. Though a large number of protein–protein 
interaction datasets are available, no direct way is proposed for 
querying patterns of protein–protein interactions related with other 
types of biological entities, e.g. certain phenotypes. By using the 
extracted UniprotKB graph, we demonstrate the potential power of 
seamlessly querying the integrated biology datasets. We consider 
two queries here: 

Q5. Finding cancers associated with at least one protein that 
interacts with another protein associated with “Breast Cancer”. 
(Motivated by Figure 1 (b)) 

Q6. Finding all pairs of cancers associated with pairs of proteins 
that interact with each other. (Motivated by Figure 1 (b)) 

Specifying queries of multiple protein patterns is more difficult 
compared to queries involving single protein patterns. Similar to 
Figure 3 of Q3, all three possible ways (SPARQL, complete graph 
template and simplified GBE template) to specify Q5 are shown in 
Figure 4. Note that the binary interaction between two proteins are 
identified by two EBI observations which is the requirement of 
UniprotKB dataset.  

Q6 is a more general form of Q5 as Q6 tries to identify all pairs of 
cancers with shared molecular interactions while Q5 specifies one 
disease as “Breast Cancer”. Complete visualization of query results 
for Q5 is shown in Figure 7. The width of the edge between two 
proteins (represents the binary interaction between two proteins) is 
proportional to the number of disease pairs shared this interaction. 
Four protein-protein interaction patterns are identified to connect 
different cancers with “Breast cancer”. Compared with Figure 5 (a), 
one can observe that there is no edge between BRCA1 protein and 
“Breast Cancer” in Figure 7. This is a result of graph isomorphism 
matching of the query template as each query node should match a 
unique node in the RDF graph. Since there is no protein associated 
with other cancers which interacts with BRCA1 protein, no query 
results contain an edge between BRCA1 protein and “Breast 
Cancer” for Q5. The summarized disease-disease relationships 
identified by Q5 is shown in Figure 6. Similar to Figure 5 (b), the 
edge width represents the number of protein-protein interactions 
shared by the respective disease pair. For Q6, the complete disease-
disease relationships among all pairs of cancers is shown in Figure 
8. These two queries are motivated by Section 2, Figure 1 (b) as 
finding shared molecular interactions between diseases. 

 

Figure 8.  Disease-Disease Relationships for Q6 

 

Figure 9.  Protein-Protein Relationships for Q7 

Figure 10.  Protein-Protein Relationships for Q8 

 

Figure 11.  Protein-Protein Relationships for Q10 
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5.2.2 Shared Functions 
Identifying network schemas requires protein-protein joining 
through both shared functions and protein-protein interactions as 
shown in Section 2, Figure 1 (c). We consider one query: 

Q7. Finding pairs of proteins which have general function 
description as “Component of the Mediator complex” and interact 
with each other. (Motivated by Figure 1 (c)) 

The query results are displayed in Figure 9 using Cytoscape. Three 
groups of proteins are identified where proteins closely interact 
with each other in the same group. 

5.2.3 Shared Pathways 
Understanding the roles of proteins in higher order interconnected 
pathways is critical to understanding molecular reactions at cellular 
level. Some conceptualizations of protein-protein interactions also 
consider proteins in the same pathway interact with each other 
directly or indirectly. Identifying protein-protein patterns with 
shared pathways provides complementary information to binary 
protein-protein interactions. Here, we consider three queries: 

Q8. Finding any pair of proteins that are involved in the same 
pathway and are both associated with “Breast Cancer”. 

Q9. Finding cancers associated with a protein that is involved in the 
same pathway with a protein associated with “Breast Cancer”. 
(Motivated by Figure 1 (e)) 

Q10. Finding two proteins that are involved in the same pathway 
and interact with each other such that one protein is associated with 
“Breast Cancer” and the other is associated with another cancer.  

The query results of Q8 are visualized in Figure 10. We observe 
that there are two groups of proteins where the proteins in each 
group are closely related with each other through shared pathways. 
Four proteins associated with three cancers which interact with 
each other and share three common pathways are identified in Q10 
as shown in Figure 11. Note that “Breast Cancer”, “Pancreatic 
Cancer” and “Breast-Ovarian Cancer” are also observed to share 
molecular interactions in Figure 6 and Figure 8. The query results 
of Q9 returns 24 distinct proteins, 31 pathways and 15 cancers (not 
include “Breast Cancer”). Q9 is motivated by Section 2, Figure 1 
(e) as finding diseases with shared pathways.    

5.3 Query Evaluation Efficiency 
The neighborhood signature index is considered as a strong 
candidate to evaluate GBE templates as it can: 1) reduce the 
unnecessary candidates in subgraph isomorphism matching, and 2) 
handle connection edges with short distance constraints efficiently. 
By indexing all neighbor node IDs in the NI index, the connection 
edges can be evaluated efficiently. Query running time and the 
number of matching results for all 10 queries are shown in Table 1. 
We find that single protein pattern queries are more efficient to 
evaluate compared with multiple protein pattern queries. For single 
protein pattern query, Q2 requires the longest running time as the 
component of matching any protein associated with function 
annotations results in a large number of matching candidates which 
leads to a large number of connection checks. Q6 is the most time 
consuming multiple protein pattern query as each decomposed 
component is small and all components are connected through 
connection edges. Compared with Q6, Q5 requires less effort as one 
of the cancers is specified as “Breast cancer” which significantly 
reduce the intermediate matches. Except for Q6, all queries can be 
evaluated in less than thirty seconds or so which is good enough to 
support real time biomedical applications. 

Table 1. Query Running Times for all Queries 

Query ID Q1 Q2 Q3 Q4 Q5 
# of Results 72 13 10 48 25 
Run Time 3.86 s 10.26 s 1.42 s 1.06 s 23.31 s 
Query ID Q6 Q7 Q8 Q9 Q10 

# of Results 67 20 32 158 8 
Run Time 156.4 s 15.71 s 15.79 s 22.09 s 31.74 s 

6. RELATED WORK 
RDF systems including Sesame [31], Virtuoso [32], 3Store [33] 
and Jena [34], use SPARQL [30] as default query language. 
SPARQL uses graph patterns as basic query units and is evaluated 
by triple joins. Currently, SPARQL extends its functionalities to 
support paths defined with regular expressions (property paths). 
However, most of these systems have difficulties in answering the 
GBE templates similar to the examples shown in Figure 3(c) and 
4(c): 1). connection edges are complex to answer without specific 
indexes; 2). partially entered labels are not properly addressed; 3). 
query templates may generate too many intermediate candidates if 
no pruning techniques are utilized. 

Signature based indexes are commonly utilized in literature to 
accelerate graph isomorphism matching [35-40]. TALE [35] and 
SAPPER [36] use similar techniques where the labels of neighbors 
for each node are indexed by hashing into bit arrays and these bit 
arrays are utilized as signatures to check the neighborhood 
containment. GraphQL [37] and SPath [38], on the other hand, use 
neighborhood indexes directly index node labels. In GraphQL, the 
neighbors of each node are indexed as a sequence of node labels in 
lexicographic order. gStore [39, 40] extends the utilization of 
signature-based pruning to RDF datasets. The neighborhood 
signature is proposed as a bit string according to the adjacent edge 
labels and node labels. All vertex neighborhood signatures are then 
indexed using a special index schema, VS tree, to provide efficient 
query evaluation.  

Storing biology data in RDF is a current move. In addition to the 
UniProt dataset utilized in our experiments, many other biology 
datasets are available in RDF format from the Bio2RDF project 
[41], including chEMBL, ClinicalTrials, DrugBank, iProClass, 
KEGG, MeSH, Pharmacogenomics Knowledge Base.  

7. CONCLUSIONS 
In this paper we have demonstrated that, using simple graph 
templates to query an integrated RDF knowledge base, graph 
template matching based querying is a promising tool to express 
sophisticated questions, and discover hidden connections among 
biological or biomedical entities from diverse datasets. For data to 
be published or exchanged in the web, RDF is increasingly being 
adopted, and vast amounts of RDF data are already available. The 
availability of ever increasing amounts of RDF data in various 
fields of biomedical applications from public and private sources, 
adds even more to the potential of querying integrated RDF data 
sets for new insights and discovering knowledge about hidden 
associations among biological and medical entities.  

Future work includes building a web-based graphical user interface 
to enable biomedical researchers to use this framework for 
exploratory querying. Using more diverse and much larger 
collections of RDF data, including data on publications, sequences, 
and drugs as data sets, will enable us to query even more 
sophisticated queries by directly using graph template querying.  
Finally, we are currently working on the distributed version of our 
querying framework and combining our work with compressive 
genomics data. 
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