1052 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.15, NO.4, JULY/AUGUST 2018

Querying of Disparate Association and
Interaction Data in Biomedical Applications

Shi Qiao®, Mehmet Koyutiirk, and Meral Z. Ozsoyoglu

Abstract—In biomedical applications, network models are commonly used to represent interactions and higher-level associations
among biological entities. Integrated analyses of these interaction and association data has proven useful in extracting knowledge,
and generating novel hypotheses for biomedical research. However, since most datasets provide their own schema and query
interface, opportunities for exploratory and integrative querying of disparate data are currently limited. In this study, we utilize
RDF-based representations of biomedical interaction and association data to develop a querying framework that enables flexible
specification and efficient processing of graph template matching queries. The proposed framework enables integrative querying
of biomedical databases to discover complex patterns of associations among a diverse range of biological entities, including
biomolecules, biological processes, organisms, and phenotypes. Our experimental results on the UniProt dataset show that the
proposed framework can be used to efficiently process complex queries, and identify biologically relevant patterns of associations
that cannot be readily obtained by querying each dataset independently.

Index Terms—UniProt, RDF, graph template matching, query optimization

<+

1 INTRODUCTION

NETWORK models are commonly encountered in sys-
tems biology. Interactions among biomolecules are
naturally represented as networks, in which an edge
between two nodes models a physical, regulatory, func-
tional, or statistical interaction between two or more mole-
cules. Such molecular interaction networks include protein-
protein interaction (PPI) networks [1], gene co-expression
networks [2], transcriptional regulatory networks [3], meta-
bolic pathways [4], genetic interaction networks [5], and
signaling pathways [6]. Network models are also used to
represent high-level associations among various biomole-
cules, as well as other biological entities such as ligands, cel-
lular functions, functional modules, biological processes,
tissues, organisms, and phenotypes. Higher level associa-
tions represented by networks include gene-disease associa-
tions [7], clinical similarity or co-morbidity of diseases [7],
disease-drug associations [8], molecular response to drugs
[9], functional annotation of genes and proteins, and evolu-
tionary relationships among molecules and organisms [10].

Many algorithms have been developed for integrated
analyses of disparate interaction and association data. These
algorithms represent multiple types of associations using
heterogeneous network models and use these integrated
networks to extract previously uncharacterized relation-
ships among biomolecules, their function, biological
processes, diseases, and drugs. The applications of such

e S. Qiao is with Microsoft Corporation, One Microsoft Way, Building 17,
Redmond, WA 98052. E-mail: shqiao@microsoft.com.

o M. Koyutiirk and M.Z. Ozsoyoglu are with the Department of Electrical Engi-
neering & Computer Science, Case Western Reserve University, 10900 Euclid
Ave., Olin 512, Cleveland, OH 44106. E-mail: {mxk331, mxo2 j@case.edu.

Manuscript received 31 Mar. 2016, revised 18 Oct. 2016; accepted 29 Nov.
2016. Date of publication 8 Dec. 2016; date of current version 6 Aug. 2018.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TCBB.2016.2637344

integrative models include functional characterization of
genomic variants associated with complex diseases [11],
disease gene prioritization [12], drug repositioning [13],
characterization of pathogen-host relationships [10], and
functional annotation of proteins [14]. However, most of
the databases that provide interaction and association data
focus on a specific data type and tools for integrated query-
ing of different types of interactions and associations are
highly limited. For these reasons, studies on integrative
analysis of network data are conducted by downloading
different datasets in bulk and incorporating dedicated algo-
rithms to integrate these datasets for specific analysis and
mining tasks. In other words, it is not straightforward for a
researcher to identify or infer indirect associations among
biological entities by incorporating data in multiple forms.
In this study, with a view to facilitate exploratory query-
ing of integrated biological networks, we develop an RDF
(Resource Description Framework)-based querying frame-
work. Here, the term “integrated biological network” refers
to the collection of physical, regulatory, functional, and sta-
tistical interactions, as well as associations among biological
entities. RDF is the first W3C standard for enriching infor-
mation resources on the web with detailed descriptions
(i.e., Metadata) [15]. It is the commonly used data model for
linked data, and knowledge bases that are shared and
exchanged on the web. An RDF dataset consists of a set of
triples, in the form (s, p, 0), where s represents a subject, p
represents a property, and o represents an object. The triplet
(s, p, o) states that subject s has the property p whose value
is the object 0. In RDF models, unique identifiers (URI's) are
used for subjects, properties or objects to uniquely refer to
entities, relationships or concepts. Literals can also be used
for objects [15]. Due to its simplicity and generalizability,
RDF enables seamless interoperability and integration
of the data on the web. For this reason, it is commonly
used to represent a wide range of data and information

1545-5963 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3698-2857
https://orcid.org/0000-0002-3698-2857
https://orcid.org/0000-0002-3698-2857
https://orcid.org/0000-0002-3698-2857
https://orcid.org/0000-0002-3698-2857
mailto:
mailto:

QIAO ET AL.: QUERYING OF DISPARATE ASSOCIATION AND INTERACTION DATA IN BIOMEDICAL APPLICATIONS

from structured, semi-structured, or unstructured sources.
RDF data can be abstracted and visualized using graph mod-
els. In such a model, nodes represent subjects and objects,
and edges represent properties (predicates). Since each edge
in this model corresponds to a binary predicate, this model
can be used for reasoning and inference based applications.

Existing resources for biological interaction and association
data (e.g., UniProt [16], IntAct [17], Reactome [18], OMIM
[19]) enable querying of these data by using a relational data-
base. However, creating a knowledgebase using a relational
database requires parsers for each dataset, designing a
schema, and tuning the system. Due to rapid acquisiation of
knowledge, the file formats and schema in these knowledge
bases need to be updated frequently. These changes require
costly updates for the parsers, the schema, and the queries to
keep the system up-to-date and functional. In comparison,
using an integrated RDF dataset offers several advantages.
First, using RDF, queries do not depend on the schema as
in relational databases. Second, RDF enables seamless data
integration in which all interactions and associations are
represented as triplets. The generalizability of RDF can be
exploited to integrate data coming from various sources and
the resulting datasets can be queried directly for interactions
and associations between disparate biological entities.

Here, we propose a graph template-based query frame-
work for querying biological associations and “interactions”
from an RDF knowledge base (Based on the datasets we used
and for simplicity, we don’t distinguish protein/gene interac-
tion from co-expression relations, functional relations, or sta-
tistical relations). In this framework, queries are expressed as
a graph template, in which the nodes represent biological enti-
ties involved in the query, and edges represent interactions
and/or associations between these entities. The main contri-
bution of this study is the development of a tool that provides
a “shortcut” to data integration in the bioinformatics pipeline.
By providing a powerful mechanism for seamlessly querying
an RDF dataset integrating various types of biological interac-
tions and associations, this framework enables simple query-
ing and efficient processing for highly sophisticated queries
that can provide novel biological insights. We comprehen-
sively test the proposed framework on data obtained from
UniProtKB, using a large set of grap template-based queries
representing a variety of biological research questions. Our
results show that the proposed framework can process highly
sophisticated queries efficiently, with real-time performance
in most cases, and the results of these queries can be used to
generate novel biological hypotheses.

The rest of the paper is organized as follows. In Section 2,
we provide examples of using graph template queries for
extracting associations and interactions among biological
entities that are studied by biomedical scientists. Section 3
provides an overview of RDF data model and Querying
RDF using graph templates. In Section 4, we describe the
UniProt knowledge base and its components that are uti-
lized in this paper. In Section 5, we present the experimental
analysis, queries, and query results. We discuss the related
work in Section 6, and conclude in Section 7.

2 QUERY EXAMPLES AND MOTIVATION

In biomedical research, researchers could use public data-
bases for various purposes, including interpretation of find-
ings, and exploratory data analysis for the identification of

1053

novel relationships. Existing databases provide query inter-
faces for “first order” queries, such as listing interacting
partners of a query protein, identifying protein families
that contain amino acid sequences homologous to a query
sequence, listing genes that are associated with a query dis-
ease, and so on. Clearly, systems-level analyses require
more sophisticated and advanced queries. A commonly
encountered query in this regard involves functional anno-
tation of a set of genes/proteins that are identified to be
of interest in an experiment (e.g., a set of differentially
expressed genes between two different phenotypes [20] or a
set of differentially expressed proteins in a specific stage of
cancer [21]). While there are many algorithms developed
for this purpose (namely, enrichment analysis), many other
types of queries are also of interest for domain scientists.

In most cases, existing databases do not provide query
interfaces for making indirect inferences across different
types of associations. However, the current state-of-the-art
in integrated mining of biological data shows that such indi-
rect inferences can help extract novel information that can-
not be obtained by separated querying of each database
[12], [13], [14]. Building on the success of these integrative
data mining efforts, we propose queries that integrate mul-
tiple types of association and integration data which enable
scientists to effectively explore indirect relationships among
biological entities. Such queries include the following:

e Identification of orthologous phenotypes: “Phenologs” are
defined as phenotypes related by the orthology of the
associated genes in two organisms [22]. Phenologs are
the phenotype-level equivalent of gene orthologs.
Such orthologous phenotypes can be identified
through integrated analysis of gene-phenotype associ-
ations and sequence homology between genes that
belong to different species. Phenologs enlight insights
into unforeseen relationships among different pheno-
types [23]. Therefore, enabling the biomedical
researchers to search for “phenologs” of a set of genes
can be useful for exploratory analysis that exploits evo-
lutionary relationships. Fig. 1f shows one query tem-
plate that addresses this question. The user specifies
two organisms and a query phenotype (QP) in one of
the organisms and tries to identify phenotypes (TP) in
the second organism associated with proteins that
belong to the same protein family as the proteins asso-
ciated with the query phenotype in the first organism.

e Overlap in the molecular bases of diseases: Shared molec-
ular bases of diseases provide hints on potentially
uncharacterized relationship between different dis-
eases. The overlap in the identity of genes that are
associated with each disease is commonly utilized to
identify shared molecular bases [7]. Inspired by this
observation, integration of disease association data
across different diseases provide useful exploratory
queries. Namely, the user can specify a disease and
search for all diseases that share at least a (statistically
significant) number of gene associations with a dis-
ease of interest. Such a question can be addressed by
a graph template matching query shown in Fig. 1a.
In this query, the user specifies a disease (QD) and
queries for all diseases (TD) such that a protein associ-
ated with QD is also associated with TD.

1054

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.15, NO.4, JULY/AUGUST 2018

Protein | Proteinl ‘

Binary

Protein2

‘ Proteini Protein2

\ [Transi:fiption 1 Transcribtion

Functionl Function2

Disease(QD) ?Disease(TD) Disease(QD) Interaction ?Disease(TD)

_interaction e
@ Protein1] ®) ©
3 Protein1 ‘ Protein2 ‘

- | Binary —F 4 :
Disease(QD) | Interaction ?Drug(TU) f \

M Disease(QD) Pathway ?Disease(TD)
Protein2 ‘ L I
(d (©)

Phenotype(QP) |Protein Family| |?Phenotype(TP)
VA b3 [3
. Vi ",

Proteinl Protein2

Organism Organism
(Speciesl) (Species2)

®

Function =
| Annotation comment* Function(QF)

?Proteinl ?Protein2

Binary
| Interaction

(€]

Fig. 1. Query examples and motivation (blue nodes represent user specified entities, e.g., “QD” and “QF”; red nodes with “?” represent query output

entities, e.g., “?TD” and “?TU”; double line edges represent path connections).

Shared molecular interactions between diseases: The over-
lap between the molecular etiologies of related dis-
eases is necessarily limited to the identity of gene
associations. These relationships may also be uncov-
ered through molecular interactions among the genes
associated with different diseases [24]. Therefore, iden-
tification of shared interactions between genes that are
implicated in different diseases provides systems level
insights into the shared molecular mechanisms of
these diseases [25]. Such relationships can be discov-
ered using a query like the one shown in Fig. 1b. In this
query, the user specifies a disease (QD) and queries for
all diseases (TD) such that a protein associated with
QD interacts with a protein associated with TD.

Shared molecular interactions between diseases and drugs:
Since repurposing drugs dramatically reduces the
costs in drug development, pharmaceutical companies
are very interested in exploiting the growing wealth of
omic data for drug repositioning [26]. In this applica-
tion, multiple types of omic data are integrated with
data on drug response to investigate functional rela-
tionships between biomolecules targeted by drugs.
These relationships are then used to match disease
and drugs based on shared molecular connections.
Therefore, queries seeking to identify drugs that share
a number of molecular interactions with a given dis-
ease (i.e., molecular interactions between the targets of
the drug and the genes associated with the disease)
can produce an excellent starting point for identifying
candidate drugs for repositioning [8]. A graph tem-
plate matching query that can be used for this purpose
is shown in Fig. 1d. In this query, the user specifies a
disease (QD) and queries for all drugs (TU) such that a
protein associated with QD interacts with a protein
associated with TU.

Network schemas: Integrated mining of molecular
interaction networks and functional annotations led
to the identification of network schemas, i.e., small

subgraphs of functional terms that recur frequently in
molecular interaction networks [27]. These network
schemas provide insights into conserved functional
modules and the design principles of cellular networks
[28]. A graph template matching query such as the one
in Fig. 1g can be used to search for network schemas
involving specific biological processes or molecular
functions. In this query, the user specifies a specific
molecular function (QF) and queries for all proteins
associated with QF interacting with each other.

Shared pathways between diseases: Organization of sys-
tems biology knowledge in the form of pathways pro-
vides well-established, reliable, and tractable access to
state-of-the-art knowledge on biological processes. For
this reason, incorporation of pathway data in analyz-
ing the relationship among phenotypes provides infor-
mation that is complementary to high-throughput
interaction data that is organized into networks [29].
For example, identification of shared pathways among
different diseases is useful in understanding similari-
ties in disease development and progression [28]. A
sample graph template query that can be used for this
purpose is shown in Fig. le. In this query, the user
specifies a disease (QD) and queries for all diseases
(TD) such that a pathway contains a protein associated
with QD also contains a protein associated with TD.
Common down-stream effects of perturbations on signaling.
Experimental approaches to characterizing the func-
tional consequences of molecular perturbations are
usually based on interfering with the target molecule
(e.g., via gene knock-outs or RNA interference) and
then measuring the changes in a specific phenotypic
trait or the abundance/activity of other molecules [30],
[31]. In the interpretation of the results of such experi-
ments, an important question is the characterization of
common down-stream effects of perturbations with
correlated phenotypic outcome. For example, for sig-
naling proteins, strong positive or negative correlation

QIAO ET AL.: QUERYING OF DISPARATE ASSOCIATION AND INTERACTION DATA IN BIOMEDICAL APPLICATIONS

between two proteins’ influence on the phenotype
may be indicative of common downstream effects [32].
With a graph template query on an integrated data-
base of protein-protein interactions and transcriptional
regulatory interactions, scientists can quickly discover
potential candidates for these common effects by que-
rying for paths that go through these proteins and con-
verge into the same node in the integrated network. A
sample query that can be used for this purpose is
shown in Fig. 1c. The user specifies two proteins of
interest and aims to identify the common gene regu-
lated by both proteins through transcriptional regula-
tory interactions.

As demonstrated by these examples, the ability to seam-
lessly query interactions and associations among biological
entities enables biomedical scientists to run exploratory
queries spanning a broad range of knowledge bases. These
queries enable scientists to explore a broad range of sophisti-
cated questions on the relationships between these entities.
Today, the most common way of interpreting observed exper-
imental associations among a group of proteins is to identify
subnetworks that connect the proteins of interest, e.g., using
Steiner tree based algorithms [33]. Biomedical researchers
often use commercial software (e.g., Ingenuity Pathway Anal-
ysis, Pathway Studio) that do not provide algorithmic trans-
parency or clearly defined criteria for the identified
subnetworks. Cytoscape provides a free and accessible tool
for visualizing and analyzing various biological networks;
however, it is not built on a database system and requires the
user to download the data sets and integrate these data
through plug-ins for in-memory analysis tasks [34]. To this
end, semantically meaningful queries that i) are connected to
a database server, ii) integrate multiple data types, and iii) can
be specified using graph templates, and, can generate signifi-
cant mechanistic insights into the relationships among pro-
teins of interest and provide the researchers with new ways of
thinking about their research questions.

While all of the sample queries listed above can be cur-
rently processed by downloading bulk datasets from multiple
databases and subsequent processing and joining of these
datasets, this is often time-consuming and challenging for
many biomedical scientists. Therefore, the main contribution
of this study is the development of a querying framework that
provides a “shortcut” to data integration in the bioinformatics
pipeline. This is useful for two types of applications: 1)
“targeted” queries, that is when the researcher is interested in
identifying new associations for one or more specific entities
(e.g., a group of genes, a particular disease, a particular drug).
2) “high-throughput” queries for mining tasks that is when
the researcher is interested in identifying all associations that
exhibit a specific pattern (e.g., all disease-drug pairs that share
areasonably large number of interactions).

3 RDF QUERY FRAMEWORK

In this section, we first provide basic definitions. We then
describe the indexes we use to facilitate graph-template
based querying on an RDF database. Finally, we describe
the proposed RDF query framework.

A preliminary version of the RDF query framework is
described in [35]. Here, with a view to improving the pro-
posed framework, we redesign the indexes and propose
new algorithms for neighborhood check and connecitivity

1055

<http://purl.uniprot. "RAF1 HUMAN".

org/diseases/1359>
— AJ :
#prefLabel) #mnemonic
- = #disease > 4
Colorectal <http://purl.uniprot.

cancer"” ;
¢} niprot/P04049>
<http://purl.uniprot. rg/uniprot/

. |org/SHA-384/FD23...

"Lung cancer" ‘ <namespace #lnteracnon
M v #_50313..
annotation
#prefLabel ‘#“a;gg%%ace

\ #unteractlon l \
| <http://purl.uniprot. #partlc:pant

#parhopant‘t

partlcnpa nt
[< http //purl. unl l
iprot.org/intact

| /EBI-365980> | <http://purl.un|

A o iprot. orgﬂntacti
BRAF_HUMAN /EBI-365980> |

<http://purl.uniprot.
org/diseases/2205> | | org/uniprot/P15056>

"
#disease #annotation 4 nemonic

<http://purl.uniprot.
org/SHA-384/FD23...

Fig. 2. UniProtkKB RDF graph example.

check processes. The new query framework is designed to
achieve two critical improvements compared to the frame-
work described in [35]: 1. faster connectivity check; 2. lower
index space requirements. We explain these modifications
in detail in this section.

3.1 Definitions

An RDF Graph is a directed graph G = {V, E, [, f} where V
is a set of vertices representing either subjects, objects or
both. ECV xV is a set of directed edges representing
predicates pointing from subjects to objects. [is a label set
for subjects, objects and predicates. f: V/E — 1 denotes
the mapping function between vertices/edges and labels.

A sample UniProt RDF dataset represented as a graph is
shown in Fig. 2. This graph represents the relationships
between two proteins (BRAF and RAF1) and two diseases
(Lung cancer and Colorectal cancer). In general, proteins are
associated with diseases through disease annotation nodes,
which are derived from the OMIM database. Protein-Protein
interactions are obtained from the IntAct database. Note that,
for a binary protein—protein interaction to be included in the
Uniprot dataset, two IntAct EBI resources need to be identi-
fied. This is due to the quality requirements of UniProtKB that
only binary interactions which are experimentally supported
by multiple observations are imported from the IntAct data-
set. By using this integrated database, we demonstrate RDF
representations of the association and interaction among dif-
ferent biological entitles from various datasets.

A GBE (Graph by Example) Query Template is a directed
graph G, = {V,E}. G, specifies a query describing the sub-
graphs sought in G, in terms of structural and label con-
tsraints. The vertices (objects or subjects) of G, are labeled
by partial keywords (that are substrings of labels in the label
set [of RDF graph G. There are two types of edges in G, : (i)
simple edges which represent predicates and directly map
to edges in the database graph G, (ii) connection edges
representing paths between nodes. More specifically, a con-

. E
nection edge (<) represents a path w;; between two nodes
n; and n;. Expression E describes the distance constraints of
w; j (distance is defined as the length of the shortest path
between n; and n; in G). For example, in Fig. 8c, the edge
between node “<http:// purl.uniprot.org/uniprot™ and
node “Lung Cancer” is a connection edge representing a
path of length 4 or less.

1056

Node | ID
<http://purl.uniprot.org/diseases/426> | 0x04ED7700
<http://purl.uniprot.org/diseases/4270> 0x04ED7800

0x04F03600
0x04F03700

<http://purl.uniprot.org/evoc/0100049>
<http://purl.uniprot.org/evoc/0100050>

<http:)’)’puri.uniprqt.orgikeywards/389>j 0x05002100

<http://purl.uniprot.org/keywords/38> 0x050D21C0
<http://purl.uniprot.org/keywords/390> 0x050D2200

32 Bit ID Represented in Hex

Given RDF graph G = {V,E,l, f} and query template
G, ={V, E}, the objective of Template Matching is to find
all subgraphs of G that satisfy both structural and label con-
straints in G/, based on graph isomorphism.

An example GBE query template is shown in Fig. 8c. This
query finds any cancer associated with a protein that is also
associated with “Lung Cancer” (this query is motivated by
Fig. 1a and corresponds to Q3 in Section 5). Evaluating this
query over the RDF dataset shown in Fig. 2 will return
“Colorectal Cancer” as the answer since the protein BRAF is
the protein associated with both diseases.

Fig. 3. ByteMap index.

3.2 Indexes

To achieve high in-memory querying performance, we
employ the ByteMap and Neighborhood Byte (NB) indexes
inspired by the BitWeaving [36] technique.

The ByteMap Index is illustrated in Fig. 3. This index
maps RDF labels into byte IDs in lexicographic order. In
other words, if label I; comes before the label [, in lexico-
graphic order, the ID of /; should be smaller than the ID of
l.. Each label ID contains 4 bytes (representing a 32-bit
integer). The first three bytes in the ByteMap are used to
store regular IDs, allowing indexing of RDF graphs with up
to 16 million nodes. The last byte is reserved for handling
updates. However, if the RDF graph has more than tens of
millions of nodes, the last byte can also be utilized to handle
extremely large graphs.

The last byte in the Bytpe Map is used to handle updates as
follows. Its first bit is utilized as the flag bit to indicate the utili-
zation of the last byte. When a new node is inserted into the
ByteMap, we locate the node label with the largest ID coming
before it in lexicographic order. Then, we set the flag bit in the
last byte as 1 and use the last byte to assign an ID. If multiple
nodes need to be inserted in the same interval, we sort them
in lexicographic order and assign the last byte to them in equal
intervals (i.e., new assigned consective IDs are equally distrib-
uted). This strategy reduces the likelihood of data reshuffling
triggered by conflicting IDs.

The NB (Neighborhood byte) index is similar to the NI
index in [35]. For each node in the graph, the NB index materi-
alizes the results of a breadth-first search (BFS) up to a speci-
fied number of hops. Thus the term neighbor is used in a
general sense here, i.e., it the neighbors of a node that are
indexed may also include nodes that are more than one hop
away from the source node. In the NB index, the number of
hops between a node and its neighbors is stored in the Dis-
tance field. The index is also organized according to the dis-
tance field. The maximum indexed distance is represented by
a parameter denoted d,,,,. The NB index s illustrated in Fig. 4.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.15, NO.4, JULY/AUGUST 2018

[[8] Distance | Sigbyte | Flag |Count| IDs
0x00 0 | 3 | 0x5352B823D345

Neighbor IDs
contain ID with

0x02 | 0 | 1 0x37AE I
1 0x03 | 0 2 0x30BA96D5S flag bit on. All
0x04 0 1 OxDF9A IDs in this entry
0x05 | 1 | 3 |0x0D21C010500016A400 ” NCEkiables
DDIEnZZ ox01 | 0 | 2 0x27F73088
Ox02 | 0 1 0xBS28
2 0x03 0 1 | 0xA377
ox04 | 0 | 1 0xDF99
0x05 0o | 2 0XOFSEQF92

Use first 3 bytes for IDs Shared first byte for all Neighbor 1Ds
if no 1D has flag bit on Neighbor IDs in this entry without first byte
Fig. 4. Neighborhood byte index.

The NI index groups the neighbors of a node into ID
intervals using a binning factor m [35]. In contrast, the NB
index groups the IDs of neighbors by their most significant
byte as Sigbyte. Each index entry for node n; € G contains
six columns: ID of n; (if the flag bit is 0, the first three bytes
of the byte ID is utilized), Distance, number of indexed
neighbor nodes, the most significant bytes of the IDs of
neighbor nodes, flag bit, and the remaining bytes of neigh-
bor node IDs (without Sigbyte). The field Distance contains
the length of the shortest path from n; to the indexed neigh-
bor node. The neighbor nodes sharing the same distance
and significant byte (first byte of the byte ID) are grouped in
one index entry, ordered by their IDs. The flag of an index
entry is set to 1 if any ID of the neighbors utilize the last
byte of the byte ID. Otherwise, the flag of an index entry is
set to 0 and all neighbor IDs utilize the first three bytes of
the byte ID.

Compared to the NI index [35] which uses 4-byte inte-
gers to index each node, the NB index is more space effi-
cient for three reasons: 1. most node IDs indexed in NB
index only use the first three bytes of the four-byte ID;
2. the significant byte is shared by all neighbor nodes in
the same entry and is therefore indexed once; 3. the IDs of
NB index are of fixed length, therefore they do not require
any delimiters to distinguish the IDs of the neighbors
listed in the IDs column.

3.3 Query Framework
RDF query framework consists of the following steps:

1. Decomposition of query template into connection
edges and components without connection edges.

2. Candidate generation and pruning. Namely, we use
the ByteMap index to generate matching candidates
for each query node and selectively use the NB index
for neighborhood check to prune the candidates.

3. Decomposition of each component into a set of
smaller basic querying units. For this purpose, we
use one level directed trees, named D-trees.

4. Candidate generation for each component. All
matching candidates for each D-tree of a component
are generated, and joined to find matching results
for a component.

5. Connectivity check: Connection edges between com-
ponents are processed using NB index to generate
the final matches for the query template.

Neighborhood Containment Check (step 2), Component

Matching (steps 3 and 4), and Connectivity Check (step 5)
are discussed in detail below.

QIAO ET AL.: QUERYING OF DISPARATE ASSOCIATION AND INTERACTION DATA IN BIOMEDICAL APPLICATIONS

Matched Label IDs: Matched Label 1Ds:
0x04DFAB00~0x04F01A00 0x01308800

<http://purl.uniprot "Ectodermal
.org/diseases/* dysplasia"

g 7

<http://purl.uniprot
.org/keywords/*

Matched Label IDs:
Ox050AF400~0x050F9800

Fig. 5. Example uniprot query.

Algorithm 1. Neighborhood Check (n;, ¢;)

Input: n; € V(G), ¢; € V(G,), ID Intervals Z*, {Distance, Count}

¥;, Nl Index NI; for node n;

Output: If n; pass neighborhood check of g;, return true;

Otherwise, return false

1 FORall k where |k| < dpax

2 FOR any partial keyword P,

3 FOREACH value pair {d, c} in y*

4 Exact all entries from NI; where ID interval intersect
with Z;, and Distance < d

5 Count all IDs in Z;, as ¢

6 IF ¢ < ¢, RETURN false

7 RETURN true

3.3.1 Neighborhood Containment Check

The neighborhood containment check process for NB index
utilizes the hierarchy of byte IDs to achieve better perfor-
mance inspired by the Vertical Bit-Parallel layout of Bit-
Weaving technique (here, we assume partial keywords are
specified as prefixes of node labels).

'The Byte Interval, Z;, of a partial keyword P, for any query
node g; € V(G,), is defined as the set of byte IDs of node set
NjwhereVn; € Nj, thelabel [; of n; is a valid match for P;..

'The K-Neighbor of a node n; € V(G), denoted as
Neighbori(n;), is the set of nodes that are forward or back-
ward neighbors of n; via paths of length k or less. That is, if
k is positive, V n; € Neighbori(n;), there is a directed path
from n; to n; with no more than |k| hops (n; is a forward
neighbor of n,); if k is negative, V n; € Neighbori(n;), there
is a directed path from n; to n; with no more than |k| hops
(n; is a forward neighbor of n;).

Now we define the Neighborhood Check: Given a node
n; € V(G), and a query node ¢; € V(G,), n; passes the Neigh-
borhood Check of q; if V q. € Neighbori(q;), 1D Interval Zi
uniquely contains ID of any n, € Neighbory(n;), for all
|k| < dyngp- The implementation of the neighborhood check
process utilizing the ByteMap index is shown in Algorithm 1.
First a byte interval is formed for each partial keyword in the
query template. Since query templates can contain query
nodes with the same partial keyword, value pairs as {Dis-
tance, Count (total appearance within Distance)} for each par-
tial keyword are maintained for each query node. The
neighborhood check is then performed based on partial key-
words one by one, and the count of occurrences of this partial
keyword is taken into consideration. The term “uniquely con-
tains” in the Neighborhood Check definition means that the
node n, cannot be used to match more than one ID interval. If
one partial keyword contains another partial keyword, count

1057

Node 1D Distance 1, Sigbyte:
0x04ED77 | | 00 02 03 04

H UAF40() <D < OF9800

Keyword: 0x050AF400 +
~0x050F9800
Distance: 1, Count: 1

E
[z =]

Keyword: 0x01308800 |
Distance: 2, Count: 1

F7 | |88 88
il -

[Pass |

Distance 2, Sigbyte:
01 02 03 04 05

Fig. 6. Neighborhood check.

in value pairs is updated. In Algorithm 1, {Distance, Count}
pairs associated with query node ¢; and partial keyword P,
are denoted as /.

We also demonstrate the neighborhood check process
with an example in Fig. 6. In this example, the neighbor-
hood check is performed for the candidate node 0x04ED77
(<http://purl.uniprot.org/diseases/*>) for the query tem-
plate in Fig. 5. The candidate node 0x04ED77 should have
one neighbor which matches partial keyword <... /key-
words/"> within 1 hop, and have one neighbor which
matches keyword “Ectodermal dysplasia” within 2 hops in
order to pass the neighborhood check process. To consider
the partial keywords, we first check the significant byte of
all neighbors of node 0x04ED77 and identify the significant
byte intersecting with the byte intervals of the partial key-
words. As shown in Fig. 6, similar to the BitWeaving tech-
nique, the neighborhood check process based on NB index
can achieve early termination (e.g., as it identifies one match
in the first byte scan of the neighbor IDs for partial keyword

. /keywords/*>).

3.3.2 Component Matching

Matching candidates for each component are found by first
decomposing the components into D-trees, then joining the
candidates that a matching these D-trees. The runtime of
component matching is proportional to [\, |C;.| where K
is the number of all decomposed one level D-trees and |Cy,]|
is the number of matching candidates for each D-tree. Find-
ing D-tree decomposition with minimum number of D-trees
is likely to improve the runtime of this process; however,
it is equivalent to the vertex cover problem [37]. We use a
2-approximation algorithm, similar to the vertex cover
approximation, to generate D-tree decomposition. Basically,
an edge (q;, q;) is picked recursively from the query compo-
nent, and D-trees rooted at ¢; and q; are added to the result.

We define selectivity value function S(q;) = deg(q;)/[Cq,l,

which takes both query node’s degree and its correspond-
ing candidate set size into the consideration as a good mea-
surement of the priority to be selected as root nodes for two
reasons: (i) choosing higher degree nodes first is likely to
yield better results since D-trees rooted at these nodes can
cover more edges in the query component which leads to a
smaller K value; (ii) choosing nodes with small candidate

http://purl.uniprot.org/diseases/*>

1058
NodeID | [Sigbytei00 | +s:f [Sigbytei05] | NodeID
 0x04ED77 : 5 0x050b00
Sigbyte: 04 |+ Sighyte: 09
Distance:1 Sigbyte: 05 ~— o
o |10 |16
Distan
\‘|000F0F 10/16] [lor]]
Distance:2 / [21]se o250 aa| [l2]]
co 00/ 00 (00 0| [[o0]]
se| [s2 (% % v |

Fig. 7. Merge check.

sets first is likely to yield a lower number of matching candi-
dates for a D-tree. In the second step, NB indexes for all pos-
sible root nodes of a decomposed D-tree are checked to
generate all D-tree candidate matches. The last step is to
join all D-tree candidates together to form component
matches. We define the join process as join(C;, C;), where C;
and Cj are candidate sets for two subgraphs of G, (it can
either be a decomposed D-tree or joined D-trees).
Join(C;, Cj) combines each pair of matches from two candi-
date sets by evaluating the predicate: all shared query nodes
of two candidate matches need to have equal matching IDs
to join. In order to improve the join performance, a new join
order Jy for the decomposed D-trees is used as follows: 1.
begin with D-tree t; with smallest candidate set and add t;
to Jp; 2. add D-tree t; with smallest candidate set to Jr
which connects to any already selected D-trees in Jt. Com-
ponent matching used here is similar to the one used in
STWIG [37] with the following differences: 1) D-trees are
used as basic join units; 2) a new selectivity function is
defined based on the size of candidate sets; 3) the NB index
is used to generate all D-tree candidates; 4) tree join order is
determined by the sizes of tree candidate sets.

3.3.3 Connectivity Check

Connectivity check verifies the paths in the data graph
between the nodes that are connected by connection edges
in the query graph. If the connection edge is between nodes
of the same component, then the connectivity check is used
to prune the candidates of that component. Otherwise, the
connectivity check is used to determine whether the two
component candidates can join or not. For component con-
nection edges that are within a component, the number of
connectivity checks is equal to the size of the component
candidate set. For a connection edge between components,
the number of connectivity checks depends on the product
of the sizes of components’ candidate sets. In the worst
case, if we have a sequence of N components to be joined by
connection edges, the number of connectivity checks that
need to be performed can be as large as H;V: 1 1Cq..]- In
order to improve query performance, two rules are utilized
to determine the order tprocessing connection edges: 1) con-
nection edges inside components are processed before

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.15, NO.4, JULY/AUGUST 2018

connection edges between components; 2) connection edges
between components are processed in the order of those
with the smallest product of candidate sets first. NB index is
utilized in processing connection edges.

Algorithm 2. MergeCheck (C¢,, i, j, d., NB)

Input: Candidate Set of G.: C¢. , Connection edge between
¢; and g;, Distance Constraint d., NB Index NB
Output: Candidate Set C¢,’ pass Connectivity Check
1 Foreach candidate match cin C¢,
2 If Merge(cli, cljl, d., NB))
3 Add cto CG(:/
4 ReturnCg,’
bool Merge (n;, nj, d., NB)
5 Index Entries of n;, nj as NB; and NB;
(order by Entry.Sig, Entry.Dis)
6 e;= NDBj.count , ej= NBj.count ,l =0, m =0,
dy = Ceil(%), dy = Ceil(%) — d,.
7 While(l < ¢; & m <e;)
8 While(l < e; & NB;[l].Dis > dy & NB;[l].Dis < 0)
9 I++
10 While(m < e; & NB;[m].Dis > 0 & NBj[m].Dis < d»)
11 m-+-+
12 If (NB;[l].Sig < NB;[m].Sig)

13 I++
14 Else If (NB;[l].Sig > NB;[m].Sig)
15 m++
16 Else If (NB,[l].Sig = = NB;[m].Sig)
17 Add NB;[l]. IDs to L;, Add NB,l]. IDs to L;
18 While(VB;[l].Sig = = NB;[l + 1].Sig

& NB;[l + 1].Dis < dy)
19 Add NB;[l +1]. IDs to L;
20 I++
21 While(NB;[m].Sig = = NB;[m + 1].Sig

& NB;[m].Dis < 0)

22 Add NBjm +1].IDs to L;
23 m++
24 Equal Scan L; with L; as v;,, (using VBP)
25 If (1/11,771,! = ¢)
26 Return true
27 Else I4++, m++

28 Return false

The Connectivity check of connection edge between n;
and n; is performed by retrieving neighbor IDs of n; and n;
from NB indexes, and then checking whether the neighbors
of n; intersect with the neighbors of n;. We propose the
Merge Check algorithm (Algorithm 2) to provide an efficient
index scan process to check whether the neighbors of nodes
n; and n; are intersecting based on the distance constraint
(see Fig. 7 as an example). The index entries of nodes n;, n;
are ordered by the significant byte and distance in the neigh-
borhood byte index. The neighbor IDs in each index entry
are also sorted. By this design, the neighbor ID equality check
between two lists of index entries can be performed through
a hierarchical merge process (lines 7-20). For each index
entry, we first check whether the entry is in the distance con-
straint (lines 8-11). Then, we check whether the most signifi-
cant bytes of the two entries are equal. If not, we skip the
entry with smaller most significant byte (lines 12-15). If the
two entries are equal on the most significant byte, we then
check all bytes of neighbor IDs in order of significance. If all

QIAO ET AL.: QUERYING OF DISPARATE ASSOCIATION AND INTERACTION DATA IN BIOMEDICAL APPLICATIONS

bytes of two neighbors are equal, we return true. If there are
no more index entries in either list, we return false to indicate
no intersecteing neighbor is found.

The merge check algorithm exploits the benefits of uti-
lizingthe four byte IDs in NB index. By grouping the neigh-
bor IDs according to their most significant bytes, the
equality check can skip all neighbors in an entry if the most
significant bytes of two index entries are not equal. As the
neighbor IDs of the index entries are stored using the Verti-
cal Bit-Parallel layout, equality scans for neighbor IDs are
processed similarly as the BitWeaving technique, which
achieves early termination.

4 DATASETS

The UniProt Knowledgebase (UniProtKB) [16] is a central hub
of comprehensive, high-quality, and freely accessible data-
base of protein sequence and functional information. This
database provides an integrated view of associations and
interactions of proteins with a broad range of other biological
entities. One important virtue of UniProtKB is that it allows
users to query the related but dispersed information across
disparate protein related datasets. Each protein entry
recorded in UniProtKB provides a variety of information
related to the respective protein, including protein and gene
names (mnemonic name, structured name, and alternate
names), protein sequences, protein function, catalytic activity,
co-factors, subcellular localization, and patterns of expres-
sion, protein—protein interactions, and disease association.
Besides the rich information provided for each protein, fre-
quent updates and availability in different formats are other
advantages of UniProtKB. UniProtKB data is released every
4 weeks to provide the most up to date protein information in
multiple formats, including plain text, XML, RDF and GFF.

We utilize UniProtKB in our experiments to take advan-
tage of its high quality and accuracy of data integration.
RDF format has no pre-defined schema and RDF is
designed to integrate data with ease by combining the tri-
ples from different sources directly if unified resource iden-
tifiers are utilized. In UniProtKB, each entry undergoes both
automated and manual checks to ensure a high level of
accuracy and consistency, as well as minimal level of redun-
dancy. The automated check is performed through a quality
control software that ensures the correctness of syntax and
verification of different biological rules for the entry.
Besides this, UniProtKB contains high-quality computation-
ally analyzed records, which are enriched with automatic
annotation. The manual review process provides an extra
layer of quality control by ensuring that all relevant litera-
ture, annotation and analysis results are included. Since we
are interested in data integration and the correctness of our
queries across multiple datasets is determined by the lowest
quality data integrated, the high quality standards provided
by UniProtKB are essential to provide high confidence of
querying results in the experiments.

4.1 Integrated Datasets

In this section, we describe the three integrated datasets in
UniProtKB which are extracted and queried in our experi-
ments: IntAct (protein-protein interaction), Reactome (path-
way), and OMIM (disease and phenotype).

1059

4.1.1 IntAct

IntAct [17] provides open-source molecular interaction data
populated by interactions curated from the research litera-
ture, as well as from direct data depositions. The informa-
tion within the IntAct database primarily consists of
protein—protein interaction (PPI) data. An important virtue
of the IntAct dataset is that each entry in IntAct is peer
reviewed by a senior curator, and not released until it is
accepted by that curator. UniProtKB database is readily
integrated with the IntAct database to provide protein—pro-
tein interaction data. In order to meet the required quality
standard of UniProtKB, only a subset of high quality inter-
actions are imported from IntAct based on a statistical scor-
ing system. A score threshold is chosen by UniProtKB to
exclude binary interactions supported by only one experi-
mental observation. In addition to the score-based filter, a
set of defined rules are utilized to exclude certain types of
data, such as interactions observed in larger complexes, or
interactions that have not been experimentally validated. By
using these strict criteria, only experimentally validated
binary interactions supported by multiple observations are
qualified to import into UniProtKB.

4.1.2 Reactome

Reactome [18] is a manually curated open-source biomolec-
ular pathway and reaction dataset. In order to provide a
unified identifier, Reactome merges pathway identifier
mapping, as well as enrichment and expression analysis
tools into a single portal. Reactome uses UniProtKB protein
identifiers to provide a list of pathways for each protein.
The cross-referenced Reactome pathways provide more
complete information for each protein than the pathway
annotation provided by UniProtKB directly.

4.1.3 OMIM

Online Mendelian Inheritance in Man (OMIM) database [19]
is utilized in UniProtKB to provide disease/phenotype infor-
mation for disease annotations associated with proteins.
OMIM is a comprehensive, authoritative and timely knowl-
edgebase of human genes and genetic disorders. Each
OMIM entry has a full-text summary of a genetically deter-
mined phenotype. UniProtKB carefully links the OMIM
entry with the protein entry and describes the natural vari-
ant(s) of the protein sequence potentially associated with dis-
ease according to the research literature.

4.2 Data Extraction

The data utilized in our experiments is a subset of triples
from the UniProtKB RDF dataset. We focus on only human
proteins that currently have active entries. The UniProtKB
raw data, downloaded from the UniProt website on 4-10-
2015, contains about 150 million triples from 971,583 (both
reviewed and unreviewed) protein entries. Note that differ-
ent protein isoforms are represented as different protein
entries in UniProtKB. In order to provide a more concise
RDF graph to support efficient signature-based indexes,
only protein entries associated with at least one of the follow-
ing statements are extracted: disease annotation, function
annotation, PTM annotation, cofactor annotation, subunit
annotation and protein interaction. For each protein entry,

1060
<http:ﬂpurl.uniprai;
SELECT .org/uniprot/* |
?Cancer I 2
WHERE

#annotation
¥

?Protein #type <http://purl.uniprot.org/core/Protein> [<http://purl.uniprot.

*
#annotation disease_annotationl cr?‘(
#annotation disease_annotation2 #disease
disease_annotationl #disease ?diseasel]

disease_annotation2 #disease ?disease2 <http://purl.uniprot|

?diseasel #preflLabel "Lung Cancer" org/*
?disease2 #prefLabel ?Cancer [
FILTER regex(?Cancer, ".*Cancer.*") ”Dfe;Labe’

"Lung Cancer"

(a) SPARQL
Fig. 8. Query specifications of Q3.

the following properties are extracted: protein names (mne-
monic name, recommended name and alternate name), pro-
tein organisms (including the taxonomy information),
protein keywords, protein tissues, protein gene information
(including different gene labels), and protein pathway infor-
mation (Reactome pathway associated with the protein). The
extracted RDF graph contains 89,915 proteins (including dif-
ferent protein isoforms), 4,211 diseases, 1,278 pathways,
18,243 interactions and 35,063 annotations. The size of the
extracted RDF graph is about 11.6 million triples including
9 million triples from the taxonomy data. Data extraction can
be systematically done from any version of the UniProtKB
RDF graph, and more types of annotations can be extracted
by changing the specification of the data extraction process.

5 EXPERIMENTAL RESULTS

The proposed framework is implemented with Visual C#2010
and SQL Server 2008. All experiments were performed on a
2.93 GHZ Intel(R) Xeon machine with 48 GB RAM running
Windows Server 2008 R2. The estimated space needed for the
NB index is O(N(4/2)*™* /m), where N is the number of verti-
ces in G, u is the average node degree, d, .« is the maximum
number of hops used to define the neighbors to be indexed,
and m is the binning factor. NB index with a larger d,., value
results in higher pruning power and ability to handle connec-
tion edges with large distance constraints at the cost of requir-
ing more storage space. By using the ByteMap index to hash
the RDF labels into IDs, the 2 hop NI index achieves a similar
size as the original RDF graph while 3 hop NI index is 8 times
larger. As we explain in Section 3.2, a 2-hop NI index can effi-
ciently evaluate connection edges with distance constraints
up to 4 hops. Here, we use 2-hop a NI index since all the
queries we test involve less than four hops.

In this section, we investigate the ease of utilization of GBE
query templates to specify integrated queries. We also assess
the strength of these queries in discovering interesting pat-
terns across the integrated network. For this purpose, we
focus on 10 queries that require integrated querying across
multiple interaction and/or association datasets. We catego-
rize these 10 queries into two groups: 1) single protein pat-
terns: querying the relationships among one protein and
other types of resources; 2) multiple protein patterns: query-
ing protein-protein joining based on protein-protein interac-
tions, shared pathways, shared diseases, or shared function.
Rather than displaying the results in tabular form, we export
query results into Cytoscape [38] to produce meaningfully

(b) Complete Query Template

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.15, NO.4, JULY/AUGUST 2018

<http://purl.uniprot,
#type™ org/core/Protein>

#annotation

<http://purl.
#type® uniprot.org/core/
Protein>

?http:!}purl.uniprot, <http://purl.uniprot
org/* .org/uniprot/*

-.-disiease . Il \ .
[<4 <
v S~

"Lung Cancer” *Cancer*

|<http://purl.uniprot.
org/*

|
#prefLabel
L |

Cancer

(c) GBE Query Template

summarized graphs. For each query, the query results can
produce multiple summarized graphs by specifying different
relationships among various types of resources.

5.1 Single Protein Patterns

Single protein patterns focus on querying relationships
between one protein and other types of entities across dif-
ferent datasets. We explore four queries as single protein
patterns:

Q1. Finding pathways that contain at least one protein
associated with “Lung Cancer”.

Q2. Finding molecular functions that are associated with
at least one protein associated with “Lung Cancer”.

Q3. Finding cancers that are associated with at least one
protein that is also associated with “Lung Cancer”.
(Motivated by Fig. 1a)

Q4. Finding tissues that are associated with at least one

protein that is associated with “Lung Cancer”.

To evaluate these four queries, at least two types of biologi-
cal resources/entities need to be integrated: protein resource
(Uniprot) and disease resource (OMIM). UniProtKB has
already linked protein resource with disease information
which makes some of queries solvable through manual effort,
e.g., one can search all protein entries associated “Lung Can-
cer” on Uniprot website and manually check all these entries
to find any other cancers associated. As UniProtKB also pro-
vides a beta SPARQL endpoint which allows users to specify
SPARQL queries, some of these queries can also be specified
in SPARQL. However, both manual check and specification
of complete SPARQL queries require significantly more effort
compared to using GBE query templates.

In Fig. 8, we illustrate three possible ways to specify Q3.
One can easily observe that both alternatives of specifying
the complete query template (Fig. 8b) and the SPARQL
query (Fig. 8a) need a good understanding of databases and
querying, as well as a good understanding of the underlying
graph structure of the UniProt RDF graph. In comparison, by
using connection edges and partial keywords, GBE query
templates can be much simpler to formulate. As shown in
Fig. 8c, the GBE query template uses connection edges to
avoid specifying the intermediate annotation node and the
disease ID node in identifying the relationship between a
protein and a disease. Note that, using connection edges
may yield more results compared to specifying all edges in
the complete graph template. However, for all these four

QIAO ET AL.: QUERYING OF DISPARATE ASSOCIATION AND INTERACTION DATA IN BIOMEDICAL APPLICATIONS

SELECT
?Proteinl, ?Protein2

WHERE <http:/fpurl.unipr |

ot.org/*
£ -
?Proteinl #type <http://purl.uniprot.org/core/Protein> #annotation #annotation
#annotation function_annotation Vi
#interaction Interactionl
?Protein2 #type <http://purl.uniprot.org/core/Protein>
#annotation disease_annotation
#interaction Interaction2
function_annotation #comment ?Function
Interactionl #participart ?EBI1
#participart ?7EBI2
Interaction2 #participart ?EBI1
#participart ?7EBI2
FILTER regex(?Function,
" *Component of the Mediator complex*")

¥

-(h:l;‘n,.’ Jpurl.uniprot
.org/uniprot/*

Etype
r -
<http://purl.uniprot.
org/core/Protein>

#type

(a) SPARQL

Fig. 9. Query specifications of Q7.

queries, the simplified GBE query templates return the same
set of results as the complete graph template on the extracted
UniProtKB graph. The GBE framework also supports dis-
playing the results in graph templates. Thus, the researchers
can choose a subset of the results that are of interest, and dis-
play them as graph templates to perform exploratory search.
Due to space constraints, we here do not discuss the details
of using the GBE framework to display query results as tem-
plates to perform exploratory search.

Q1 returns 39 Reactome pathways potentially associated
with “Lung Cancer”. Q2 returns 8 functional annotations
associated with proteins that are associated with “Lung
Cancer”. Q3 returns 5 cancers that have overlapping molec-
ular bases with “Lung Cancer”. Q4 returns 19 tissues related
to proteins associated with “Lung Cancer”. As we explain in
Section 2, identification of diseases with overlapping molec-
ular bases may be useful in identifying unknown disease-
disease relationships. Here, we display the results of Q3 in
Fig. 10 using Cytoscape. In Fig. 10a, we display the connec-
tions among proteins and diseases identified in the query
results of Q3 by making the disease and the protein in each
query result as the source and target in Cytoscape. To fur-
ther provide more clear relationships between “Lung Can-
cer” and other cancers, another summarized graph is
produced in Fig. 10b by representing indirect relationships
through proteins as direct relationships. The width of the
edge between two diseases is determined by the number of
proteins shared by that disease pair. The size of the cancer
node is based on the number of shared proteins. The more
proteins shared between one disease and “Lung Cancer”,
the larger the disease node is (same for edge width, the
more shared proteins, the wider the edge is). Such networks
are utilized in previous studies [7], but such studies require
bulk data downloads and significant processing to integrate
different datasets. In contrast, this network is constructed
via a single query by our GBE-based framework.

Colorectal cancer

Colorectal canger -ES_OPhagEaI cancer

L]
: RG3 1l Esophageal cancer Ovarian cancer
BRAF : DLEC1
o= “Lung cancer Lung cancar
1
'
_ | ERBB2

- - Gastric cancer
Ovarian cancer T Tastric cancer
1 " " x
. = d Hereditary diffuse gastric cancer
Hereditary diffuse gasfric cancer

(a) Disease-Protein (b) Disease-Disease

Fig. 10. Query result visualization of Q3.

<http:/ /purl.uniprot
-org/uniprot/*
=

#interaction
Tl

Interaction® <3 <3
£ —% % %
s — —

#participart n‘_partlmpartq_h #participart ﬁ ‘21 ﬁ 21
K o T
<http://purl.unipra
t.org/intact/EBI*

(b) Complete Query Template

1061

"*Component of the
- £
#comment: Mediator complex*

<http:/fpurl.uniprot.
org/core/Protein>
£

ftype #type

<http:/ /purl.uniprot [<http://purl.uniprot
= .or_g,.funipruil‘ <org/uniprot/*
#interaction

on 7

Interaction®

<3 <3

"*Component of the
Mediator complex*"

<http://purl.unipra
t.org/intact/EBI*

<http://purl.uniprot

<http://purl.unipro .org/fintact/EBI

t.org/intact/EBI*

(c) GBE Query Template

5.2 Multiple Protein Patterns

Compared to single protein patterns, multiple protein patte-
rns are more complex for query specification and evaluation.
We consider three types of protein-protein joining conditions:
protein-protein interactions, shared functions, and shared
pathways. Some of the multiple protein pattern queries also
require joining proteins based on multiple criteria.

5.2.1 Protein-Protein Interaction

Protein-protein interactions (PPIs) reveal functional rela-
tionships between genes. Although a large number of pro-
tein—protein interaction databases are available, there is no
direct way to query patterns of protein-protein interactions
related with other types of biological entities, e.g., certain
phenotypes. Here, we demonstrate the potential power of
seamlessly querying PPI data along with other sources of
data. For this purpose, we consider two queries:

Q5. Finding cancers associated with at least one protein
that interacts with another protein associated with
“Breast Cancer”. (Motivated by Fig. 1b)

Q6. Finding all pairs of cancers associated with pairs of
proteins that interact with each other. (Motivated by
Fig. 1b)

As illustrated in Section 2, Fig. 1b, the motivation for these
two queries is to find shared molecular interactions between
diseases. Q6 is a more general form of Q5 as Q6 tries to iden-
tify all pairs of cancers with shared molecular interactions
while Q5 specifies one disease as “Breast Cancer”. Complete
visualization of query results for Q5 is shown in Fig. 12. The
width of the edge between two proteins (represents the binary
interaction between two proteins) is proportional to the num-
ber of disease pairs that share this interaction. Four protein-
protein interaction patterns are identified that connect differ-
ent cancers to “Breast cancer”. Compared to Fig. 10a, one can
observe that there is no edge between BRCA1 protein and
“Breast Cancer” in Fig. 12. This is a result of graph isomor-
phism matching of the query template as each query node
should match a unique node in the RDF graph. Since there is
no protein associated with other cancers which interacts with
BRCA1 protein, no query results contain an edge between
BRCAL1 protein and “Breast Cancer” for Q5. The summarized
disease-disease relationships identified by Q5 is shown in
Fig. 11. Similar to Fig. 10b, the edge width represents the num-
ber of protein-protein interactions shared by the respective
disease pair. For Q6, the complete disease-disease relation-
ships among all pairs of cancers is shown in Fig. 13.

1062

Mismatch repair cancer syndrome

Endometrial cancer Childhood cancer retinoblastoma

\ #
. /
\

/"
Pancreatic cancer

Breast-ovatian cancer, familial .

Breast cancer

) 1
/ mn ¢cancer
4 N,

Colorectal céiiéé-r_-- P

Bladder €ancer
7

Lung cancer Esophageal cancer

Hereditary non-polyposis colorectal
cancer

Fig. 11. Disease-disease relationships for Q5.

5.2.2 Shared Functions

Identifying network schemas requires protein-protein join-
ing through both shared functions and protein-protein
interactions as shown. The general form of these types of
queries is shown in Section 2, Fig. 1c. Here, we consider one
query to evaluate shared functions:

Q7. Finding pairs of proteins that have function descrip-
tion as “Component of the Mediator complex” and
interact with each other. (Motivated by Fig. 1c)

Specifying queries of multiple protein patterns is more
difficult compared to queries involving single protein pat-
terns. Similar to Fig. 8 of Q3, all three possible ways
(SPARQL, complete graph template and simplified GBE
template) to specify Q5 are shown in Fig. 9. Note that the
interaction between each pair of proteins are identified by
at least two observations (IntAct EBI nodes), as required by
UniprotKB. The query results are displayed in Fig. 14. Three
groups of proteins are identified where proteins in the same
group densely interact with each other.

5.2.3 Shared Pathways

Having a better understanding of the roles that proteins
play at higher order interconnected pathways is critical to
understanding molecular reactions at cellular level. Some
conceptualizations of protein-protein interactions also con-
sider pro-teins in the same pathway interact with each other
directly or indirectly. Identifying protein-protein patterns
with shared pathways provides complementary informa-
tion to binary protein-protein interactions. To illustrate the
power of GBE-based querying in integrating PPI and path-
way associations, we consider the following three queries:

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,

VOL. 15, NO.4, JULY/AUGUST 2018

cancer

ic cancer

Breast-ovanan cancer, famdial

Childhood canges rehnohlashk /

Breast cancer

Lung cancer

Breast cancer, lobular

Prostjte gancer
Colarectal cancer

Bladder dancer | Gastric cancer

Endometrial cancer

\
Ovarian cascer
Heredilary nod-polypdSis colorectal \

Eancer Hereditary diffuse gastric cancer

Mésmach répair canger syndrome

Fig. 13. Disease-disease relationships for Q6.

Q8. Finding any pair of proteins that are involved in the
same pathway and are both associated with “Breast
Cancer”.

Finding cancers associated with a protein that is
involved in the same pathway with a protein associ-
ated with “Breast Cancer”. (Motivated by Fig. le)
Finding two proteins that are involved in the same
pathway and interact with each other such that one
protein is associated with “Breast Cancer” and the
other is associated with another cancer.

The query results of Q8 are visualized in Fig. 15. We find
that there are two groups of proteins where the proteins in
each group are closely related with each other through shared
pathways. Four proteins associated with three cancers that
interact with each other and share three common pathways
are identified in Q10 as shown in Fig. 16. Note that “Breast
Cancer”, “Pancreatic Cancer”, and “Breast-Ovarian Cancer”
are also noticed to share molecular interactions in Figs. 11 and
13. Q9 returns 24 distinct proteins, 31 pathways and 15 cancers
(not including “Breast Cancer”).

Qo.

Q10.

5.3 Index Space Comparison

As explained in Section 3.1, neighborhood byte (NB) index
is more space efficient as compared to neighborhood integer
(NI) index proposed in [35]. The significant byte, which is
utilized to group the neighbor IDs into one index entry
saves considerable space if the indexed node has many
neighbors sharing the same significant byte. Indicated by
the flag bit, all neighbor IDs indexed are represented as the
byte arrays with fixed length (two bytes if the flag bit is 0
and three bytes if the flag bit is 1). The fixed length byte IDs

Bladder cancer Esophageal cancer Lung cancer
RB ——CHK2 Pancreatic cancer e

Childhood cancer BRCAZ2

retinoblastoma \ﬁ\J‘

SMA| D51
Dk“""-AKﬂ
Colorectal cancer Breast cancer
7 PALB2
Endometrial cancer
)) ANC. 175A
Mismatch repair cancer XRCC3

syndrome MLH RCA RAS1C

Hereditary non-polyposis

colorectal cancer Ovarian cancer

Fig. 12. Full visualization of query results for Q5.

Breast-ovarian cancer, familial

QIAO ET AL.: QUERYING OF DISPARATE ASSOCIATION AND INTERACTION DATA IN BIOMEDICAL APPLICATIONS

MED17

= > MED27
\B(]
~

MEDS

il

MED21 MED4

MED26
MEDE
/ MED18 /
P MED29
/ \ MEDIR \MEDZCI
MED10 MED?
MED16
MED14 il MED24
Fig. 14. Protein-protein relationships for Q7.
FanconiAnemid pathway PIP3 actidles AKT-signaling
PALB2
K CD28 depantient PIIKIAKI
ATM mediated Phasphoarylation i Sigraling
of repaic_proleins BRCA1
A X PKICA
& - . l'
LY
BRCA2)+ GPVI-mgdiated-activation
" Breast cancer Eascade
Meioti Fecombination e ",' 5
NBN 2 s Constitutive RIFKAKT
e Signaling - Cancer
K
RADS1

Presynaptic phase of
homologods DNA fairing and
slrand exchange

G betagamma signalling
through-PI3Kgamma

Fig. 15. Protein-protein relationships for Q8.

allow the query framework to separate each neighbor ID
from a long byte array without using any delimiter. The
index space comparison results are shown in Fig. 17 (for
Uniprot dataset). One can notice that the IDMap index and
the ByteMap index are equivalent in space since the IDs in
the IDMap index are 32-bit integers while the IDs in the
ByteMap index are 4 byte bit arrays. Three versions of the
neighborhood indexes are compared: 3-hop neighborhood
index, 2-hop neighborhood index and vertex cover neigh-
borhood index (the vertex cover neighborhood index uses
2-hop neighbors for nodes in the vertex cover set, and 1 hop
neighbors for all other nodes). As seen in Fig. 17, the neigh-
borhood byte index achieves higher compression rate if
more neighbors are indexed, since more neighbors share
their most significant bytes. Overall, the neighborhood byte
index uses less than half of the index space compared to the
neighborhood integer index for both datasets in all versions.

5.4 Query Evaluation Efficiency
Neighborhood signature index is considered as a strong
candidate to evaluate GBE templates as it can: 1) reduce the
unnecessary candidates in subgraph isomorphism match-
ing, and 2) handle connection edges. We re-evaluate the ten
queries on the Uniprot dataset to assess the efficiency of uti-
lizing neighborhood byte index in RDF-h. All these queries
are proposed as small components connected by connection
edges and the query performance highly depends on the
efficiency of the connectivity check algorithm. Query run-
time results are shown in Table 1.

We find that single protein pattern queries are more effi-
cient to evaluate than multiple protein pattern queries.
Among single protein queries, Q2 requires the longest

1063

Presynaplic phase of homelogous
DMNA, pairing and strand exchange

Fanconi Anemia pathway Meiolic recombination

[BRCAZ | | RASIC
= s

e T RADS1 T
PALB2Z

Pancreatic cancer Breast cancer Breast-ovarian cancer, familial

Fig. 16. Protein-protein relationships for Q10.

Indexes Space Comparison (Uniprot)
S00%
W MNeighborhood Integer Index

 Neighborhood Byte Index
0%

G00%
S00%
400%%
300%

200%

Index Space in Percentage of RDF

100%

. .

2 haps

0%

IDMap/ByteMap 3hops 1 hop Vertex Cover

Fig. 17. Index space comparison (Uniprot).

running time as the component of matching any protein
associated with functional annotations results in a large
number of matching candidates, which leads to a large num-
ber of connection checks. Q6 is the most time consuming
multiple protein pattern query, as each decomposed compo-
nent is small and all components are connected through con-
nection edges. Compared to Q6, Q5 requires less effort as
one of the cancers is specified as “Breast cancer”. Specifica-
tion of the label of one of the nodes significantly reduces the
number of intermediate matches. Except for Q6, all queries
can be evaluated in less than twenty seconds, can be consid-
ered real-time.

Comparison of the query performance using NB index
and Merge Check with the query performance using NI
index and Interval Check is shown in Fig. 18. We find that
Merge Check algorithm is much more efficient to handle
connection edges since it enables early skip by checking the
significant byte in neighborhood byte index, which saves
more than 50 percent of the runtime for most of the queries.

6 RELATED WORK

Many of the existing RDF systems, including Sesame [39],
Virtuoso [40], gStore [41] and Jena [42], use SPARQL [43] as
the default query language. SPARQL is a query language
that uses graph patterns as basic query units and evaluates
queries via triple joins. Currently, SPARQL supports path
queries defined with regular expressions (property paths).
However, most of these systems have difficulties in process-
ing the graph-by-example (GBE) templates similar to the

1064
TABLE 1

Query Running Times for All Queries
Query ID Q1 Q2 Q3 Q4 Q5
of Results 72 13 10 48 25
Run Time (ms) 719 7,618 561 784 16,448
Query ID Q6 Q7 Q8 Q9 Q10
of Results 67 20 32 158 8
Run Time (ms) 39,987 3422 8421 8,085 9,495

examples shown in Figs. 8c and 9c for the following reasons:
1) it is difficult to identify and join connection edges without
using specific indexes; 2) there is no well-defined mechanism
to address partial labels; 3) due to the exponential space of
subgraphs, query templates may generate too many interme-
diate candidates if no pruning techniques are utilized.

To tackle the challenges associated with the subgraph
isomorphism problem, signature based indexes are com-
monly utilized [44], [45], [46], [47], [48], [49]. TALE [44] and
SAPPER [45] index the neighbors of each node by hashing
into bit arrays and utilizing these bit arrays as signatures to
check neighborhood containment. In contrast, graphQL [46]
and SPath [47] use neighborhood indexes directly to index
node labels. In GraphQL, the neighbors of each node are
indexed as a sequence of node labels in lexicographic order.
gStore [48], [49] extends the utilization of signature-based
pruning to RDF datasets. The neighborhood signature is
proposed as a bit string according to the adjacent edge
labels and node labels. All vertex neighborhood signatures
are then indexed using a special index schema, VS tree, to
provide efficient query evaluation.

Storing biolmedical data in RDF is a current trend. In
addition to the UniProt dataset utilized in our experiments,
many other biolomedical datasets are available in RDF for-
mat from the Bio2RDF project [50]. The databases that pro-
vide data in RDF format include chEMBL, ClinicalTrials,
DrugBank, iProClass, KEGG, MeSH.

7 CONCLUSION

This paper has demonstrated that graph template matching
based querying, which applies simple graph templates to
query an integrated RDF knowledge base, is a promising
tool to express sophisticated questions, and discover hidden
connections among biological or biomedical entities from
diverse datasets. RDF is being adopted increasingly to pub-
lish or exchange data in the web, and vast amounts of RDF
data are already available. The availability of ever increas-
ing amounts of RDF data in various fields of biomedical
applications from public and private sources, adds even
more to the potential of querying integrated RDF data sets
for new insights and discovering knowledge about hidden
associations among biological and medical entities.

Future work includes building a web-based graphical user
interface to enable biomedical researchers to use this frame-
work for exploratory querying. Using more diverse and much
larger collections of RDF data, including data on publications,
sequences, and drugs as data sets, will enable us to query
even more sophisticated queries by directly using graph tem-
plate querying. Finally, we are currently working on the

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.15, NO.4, JULY/AUGUST 2018

Query Performance Comparison (Uniprot)

120%
W integerCheck @ HybridCheck

100%%
&
“-‘ll\lilli\l
0%
20%
%6
Q1 Q2 Q3 04 Qs Q6 Q7 08 Q9 Q10

Fig. 18. Query peformance comparison.

3

Percentage of IntegerCheck Run
£
E

Time

-
3

e

distributed version of our querying framework and combin-
ing our work with comprehensive genomics data.

REFERENCES

[1]1 R.Mosca, T. Pons, A. Céol, A. Valencia, and P. Aloy, “Towards a
detailed atlas of protein—protein interactions,” Current Opinion
Structural Biol., vol. 31, no. 6, pp. 929-940, 2013.

[2] S. L. Carter, C. M. Brechbiihler, M. Griffin, and A. T. Bond, “Gene
co-expression network topology provides a framework for molec-
ular characterization of cellular state,” Bioinf., vol. 20, pp. 2242—
2250, 2004.

[3] Z. Hu, P.]. Killion, and V. R. Iyer, “Genetic reconstruction of a
functional transcriptional regulatory network,” Nature Genetics,
vol. 39, no. 5, pp. 683-687, 2007.

[4] A.R.Pah, R. Guimera, A. M. Mustoe, and L. A. N. Amaral, “Use
of a global metabolic network to curate organismal metabolic
networks,” Scientific Rep., vol. 3, 2013, Art. no. 1695.

[5] A.H.Y.Tong, et al., “Global mapping of the yeast genetic interac-
tion network,” Science, vol. 303, no. 5659, pp. 808-813, 2004.

[6] A. Ritz, A. N. Tegge, H. Kim, C. L. Poire, T. M. Muraliemail
“Signaling hypergraphs,” Trends Biotechnology, vol. 32, no. 7,
pp- 356-362, 2014.

[71 K. I. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and
A. L. Barabasi, “The human disease network,” Proc. Nat. Academy
Sci. United States America, vol. 104, no. 21, pp. 8685-8690, 2007.

[8] J. Von Eichborn, M. S. Murgueitio, M. Dunkel, S. Koerner, P. E.
Bourne, and R. Preissner, “PROMISCUOUS: A database for net-
work-based drug-repositioning,” Nucleic Acids Res., vol. 39,
no. suppl 1, pp. D1060-D1066, 2011.

[9] I Vogt and J. Mestres, “Drug-target networks,” Molecular Infor-

mat., vol. 29, no. 1/2, pp. 10-14, 2010.

A. Lisewski, J. P. Quiros, C. Ng, A. Adikesavan, and K. Miura,

“Supergenomic network compression and the discovery of EXP1

as a glutathione transferase inhibited by artesunate,” Cell,

vol. 158, pp. 916-928, 2014.

M. Tasan, G. Musso, T. Hao, M. Vidal, C. MacRae, and F. Roth,

“Selecting causal genes from genome-wide association studies via

functionally coherent subnetworks,” Nature Methods, vol. 12,

pp- 154-159, 2015.

Y. Li and J. C. Patra, “Genome-wide inferring gene-phenotype

relationship by walking on the heterogeneous network,” Bioinf.,

vol. 26, no. 9, pp. 1219-1224, 2010.

F. Cheng, et al., “Prediction of drug-target interactions and drug

repositioning via network-based inference,” PLoS Comput. Biol.,

vol. 8, no. 5,2012, Art. no. e1002503.

M. Cao, C. M. Pietras, X. Feng, and K.]. Doroschak, “New direc-

tions for diffusion-based network prediction of protein function:

Incorporating pathways with confidence,” Bioinf., vol. 30, no. 12, ,

pp. i219-i227, 2014.

R. Cyganiak, D. Wood, and M. Lanthaler. “RDF 1.1 concepts and

abstract syntax,” W3C Recommendation, vol. 25, pp. 1-8, 2014.

UniProt Consortium, “UniProt: A hub for protein information,”

Nucleic Acids Res., vol. 43, no. D204-D212, 2015.

B. Aranda, et al., “The IntAct molecular interaction database in

2010,” Nucleic Acids Res., vol. 38, pp. D525-D531, 2010.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

QIAO ET AL.: QUERYING OF DISPARATE ASSOCIATION AND INTERACTION DATA IN BIOMEDICAL APPLICATIONS

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

D. Croft, et al., “The Reactome pathway knowledgebase,” Nucleic
Acids Res., vol. 42, pp. D472-D477, 2014.

A. Hamosh, A. F. Scott, J. S. Amberger, and C. A. Bocchini,
“Online Mendelian Inheritance in Man (OMIM), a knowledgebase
of human genes and genetic disorders,” Nucleic Acids Res., vol. 33,
pp. D514-D517, 2005.

A. Subramanian, et al., “Gene set enrichment analysis: A knowl-
edge-based approach for interpreting genome-wide expression
profiles,” Proc. Nat. Academy Sci. United States America, vol. 102,
no. 43, pp. 15545-15550, 2005.

R. K. Nibbe, M. Koyuttirk, and M. R. Chance, “An integrative-
omics approach to identify functional sub-networks in human
colorectal cancer,” PLoS Comput. Biol., vol. 6, no. 1, 2010, Art.
no. €1000639.

K.L.McGary, T.]. Park, J. O. Woods, H.J. Cha, J. B. Wallingford, and
E. M. Marcotte, “Systematic discovery of nonobvious human disease
models through orthologous phenotypes,” Proc. Nat. Academy Sci.
United States America, vol. 107, no. 14, pp. 6544-6549, 2010.

J. O. Woods, U. M. Singh-Blom, J. M. Laurent, K. L. McGary, and E.
M. Marcotte, “Prediction of gene-phenotype associations in
humans, mice, and plants using phenologs,” BMC Bioinf., vol. 14,
no. 11,2013, Art. no. 203.

Y. Liu, M. Koyutiirk, S. Maxwell, Z. Zhao, and M. R. Chance,
“Integrative analysis of common neurodegenerative diseases using
gene association, interaction networks and mRNA expression data,”
in Proc. AMIA Summits Translational Sci. Proc., 2012, Art. no. 62.

J. Menche, et al, “Uncovering disease-disease relationships
through the incomplete interactome,” Science, vol. 347, no. 6224,
pp- 1257601-1-1257601-8, 2015.

J. Li, S. Zheng, B. Chen, A J. Butte, S. J. Swamidass, and Z. Lu, “A
survey of current trends in computational drug repositioning,”
Briefings Bioinf., vol. 17, pp. 2-12, 2015.

E. Banks, E. Nabieva, R. Peterson, and M. Singh, “NetGrep: Fast
network schema searches in interactomes,” Genome Biol., vol. 9,
no. 9,2008, Art. no. R138.

J. Pandey, M. Koyuttirk, Y. Kim, W. Szpankowski, S. Subramaniam,
and A. Grama, “Functional annotation of regulatory pathways,”
Bioinf., vol. 23,13, pp. i377-i386, 2007.

M. Koyuturk, “Using protein interaction networks to understand
complex diseases,” Computer, vol. 45, no. 3, pp. 31-38, 2012.

A. Baryshnikova, et al., “Synthetic genetic array (SGA) analysis in
Saccharomyces cerevisiae and Schizosaccharomyces pombe,”
Methods Enzymology, vol. 470, pp. 145-179, 2010.

A. Vinayagam, et al., “Integrating protein-protein interaction net-
works with phenotypes reveals signs of interactions,” Nature
Methods, vol. 11, no. 1, pp. 94-99, 2014.

J. Falck, J. H. Petrini, B. R. Williams,]J. Lukas, and J. Bartek, “The
DNA damage-dependent intra-S phase checkpoint is regulated by
parallel pathways,” Nature Genetics, vol. 30, no. 3, pp. 290-294, 2002.
M. Bailly-Bechet, et al., “Finding undetected protein associations
in cell signaling by belief propagation,” Proc. Nat. Academy Sci.
United States America, vol. 108, no. 2, pp. 882-887, 2011.

P. Shannon, et al., “Cytoscape: A software environment for inte-
grated models of biomolecular interaction networks,” Genome
Res., vol. 13, no. 11, pp. 2498-2504, 2003.

S. Qiao, M. Koyutiirk, and M. Ozsoyoglu, “Integrated querying of
disparate association and interaction data in biomedical
applications,” in Proc. 6th ACM Conf. BCB, 2015, pp. 146-155.

Y. Li and]. M. Patel, “BitWeaving: Fast scans for main memory
data processing,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2013, pp. 289-300.

Z.Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient subgraph
matching on billion node graphs,” Proc. VLDB Endowment, vol. 5,
no. 9, pp. 788-799, 2012.

C. T. Lopes, M. Franz, F. Kazi, S. L. Donaldson, Q. Morris, and
G. D. Bader, “Cytoscape Web: an interactive web-based network
browser,” Bioinformatics, vol. 26, no. 18, pp. 2347-2348, 2010.

J. Broekstra, A. Kampman, and F. Van Harmelen, “Sesame: A
generic architecture for storing and querying RDF and RDF
schema,” Semantic Web—ISWC, vol. 2342, p. 54-68, 2002.

O. Erling and 1. Mikhailov, “RDF support in the Virtuoso DBMS,”
in Networked Knowledge - Networked Media. Berlin, Germany:
Springer, 2007.

S. Harris and N. Gibbins, “3store: Efficient bulk RDF storage,” in
Proc. PSSS, 2003, pp. 1-15.

K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds, “Efficient
RDF storage and retrieval in Jena2,” in Proc. 1st Int. Conf. Semantic
Web Databases, 2003, pp. 131-150.

1065

[43]].Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of
SPARQL,” ACM Trans. Database Syst., vol. 34, no. 3,2009, Art. no. 16.
Y. Tian and J. M. Patel, “Tale: A tool for approximate large graph
matching,” in Proc. IEEE 24th Conf. ICDE, 2008, pp. 963-972.

S. Zhang, J. Yang, and W. Jin, “Sapper: Subgraph indexing and
approximate matching in large graphs,” Proc. VLDB Endowment,
vol. 3, no. 1/2, pp. 1185-1194, 2010.

H. He, and A. Singh, “Graphs-at-a-time: query language and
access methods for graph databases,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2008, pp. 405-418.

P. Zhao and J. Han, “On graph query optimization in large
networks,” Proc. VLDB Endowment, vol. 3,no. 1/2, pp. 340-351, 2010.
L. Zou, M. T. Ozsu, L. Chen, X. Shen, R. Huang, and D. Zhao,
“gStore: A graph-based SPARQL query engine,” VLDB |., vol. 23,
no. 4, pp. 565-590, 2014. .

L. Zou,]. Mo, L. Chen, M. T. Ozsu, and D. Zhao, “gStore: Answer-
ing SPARQL queries via subgraph matching,” Proc. VLDB Endow-
ment, vol. 4, no. 8, pp. 482—493, 2011.

F. Belleau, M. A. Nolin, N. Tourigny, P. Rigault, and J. Morissette,
“Bio2RDF: Towards a mashup to build bioinformatics knowledge
systems,” |. Biomed. Inform., vol. 41, no. 5, pp. 706-716, 2008.

[44]

[45]

[46]

[471

[48]

[49]

[50]

Shi Qiao received the BS degree from Nanjing
University and the PhD degree in computer
science from Case Western Reserve University.
He is currently a software development engineer
at Microsoft Corporation. His research has been
published in leading academic conferences
including SIGMOD, VLDB, BCB, etc., and he
received the Best Student Paper Award from
ACM-BCB’2015. His research interests include
query processing and optimization, RDF, and
bioinformatics.

Mehmet Koyuttlirk received the BS and MS
degrees from Bilkent University, respectively, in
electrical engineering and computer engineering
and the PhD degree in computer science from
Purdue University. He is currently T. & A.
Schroeder associate professor in the Department
of Electrical Engineering and Computer Science,
Case Western Reserve University. His research
focuses on the analysis of biological networks,
systems biology of complex diseases, and
computational genomics. He serves as an asso-
ciate editor for the IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB) and the EURASIP Journal on Bioinformatics
and Systems Biology.

Meral Z. Ozsoyoglu received the BSc and MSc
degrees are from Middle East Technical Uni-
versity in elecetrical engineering and computer
science, respectively, and the PhD degree in
computer science from the University of Alberta.
< She is currently Jennings professor of computer
- science in the Department of Electrical Engineer-
% \ | ing and Computer Science at Case Western
i 4 Reserve University. Her primary work and
~- ;, research interests include the areas of query lan-
guages and query processing, data models, and
index structures in databases, including scientific databases, bio-infor-
matics, and medical informatics. She has also served in a variety of lead-
ership roles in the computer science research community, including the
program chair of conferences VLDB 2012, IEEE ICDE 2004, ACM
PODS 1997 and SSDBM 1999, and the editor-in-chief of ACM TODS
2007-2014 and PVLDB, 2011-2012. She has been a trustee of the
VLDB Endowment, an associate editor of the ACM TODS, and the IEEE
TKDE and vice chair of ACM SIGMOD. She is an ACM fellow, recipient
of the IBM Faculty Award, NSF Faculty Award for Women, and a Distin-
guished Alumni Award from University of Alberta.

.
o

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

