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Abstract
Background: Coevolution has been used to identify and predict interactions and
functional relationships between proteins of many different organisms including
humans. Current efforts in annotating the human genome increasingly show that
non-coding DNA sequence has important functional and regulatory interactions.
Furthermore, regulatory elements do not necessarily reside in close proximity of the
coding region for their target genes.

Results: We characterize coevolution as it appears in locus-gene interactions in the
human genome, focusing on expression Quantitative Trait - Locus (eQTL) interactions.
Our results show that in these interactions the conservation status of the loci is
predictive of the conservation status of their target genes. Furthermore, comparing the
phylogenetic histories of intra-chromosomal pairs of loci and transcription start sites,
we find that pairs that appear coevolved are enriched for cis-eQTL interactions.
Exploring this property we found that coevolution might be useful in prioritizing
association tests in cis-eQTL detection.

Conclusions: The relationship between the conservation status of pairs of loci and
protein coding transcription start sites reveal correlations with regulatory interactions.
Pairs that appear coevolved are enriched for intra-chromosomal regulatory
interactions, thus our results suggest that measures of coevolution can be useful for
prediction and detection of new interactions. Measures of coevolution are
genome-wide and could potentially be used to prioritize the detection of distant or
inter-chromosomal interactions such as trans-eQTL interactions in the human genome.

Keywords: Coevolution, Co-conservation, Phylogenetic profile, Multiple hypothesis
testing, eQTL

Introduction
Advances in DNA sequencing have enabled the assembly of high quality and complete
genomes of many different organisms, as well as the reassembly and refinement of whole
genomes. As of particular interest, the human genome has been through many iterations
improving its quality and completeness. Even though the entire sequence representing
the population is known, the identification of functional units and regulatory elements,
and the interactions between these elements is largely incomplete.
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Comparative genomics is used to predict functional units, and it is one of the pri-
mary whole genome scale methods. High rates of conservation have been shown to
be indicative of functionality [1], and several tools have been developed to assess evo-
lutionary conservation and use this information to identify functional elements [2, 3].
Initiatives such as the ENCODE project [4] have made large strides into identifying the
functional units of the human genome. However, the information uncovered by projects
like ENCODE is largely limited to the identities and location of these functional elements
and do not capture the relationship between these elements and their target genes.
In the literature, pairwise rates of conservation have been used commonly to identify

protein-protein interactions (PPIs) and characterize protein function [5]. Protein coevo-
lution refers to the observed correlation in the conservation patterns of two or more
proteins across a wide range of organisms, and has been repeatedly shown to provide
valuable information on the interactions and functional association among those proteins
[6, 7]. Many methods have been developed to accurately characterize the coevolution of
two or more proteins and to effectively use this information to predict interactions among
proteins [8, 9].
In this paper, we stipulate that the functional interactions that can be captured by coevo-

lution may include locus-gene regulatory interactions. It has been increasingly shown
that non-coding DNA sequence has function, and like protein-coding sequences, highly
conserved non-coding sequences are likely to have functionality [10]. Motivated by this
observation, we characterize coevolution in the context of locus-gene interactions with
a focus on expression quantitative trait loci (eQTL) interactions. An eQTL interaction
is defined as the statistical association between a genomic locus, usually the allele status
of a single nucleotide polymorphism (SNP), and the level of expression of a gene. eQTL
interactions are considered indicators of potential regulatory interactions between the
corresponding genomic locus and gene. In the next subsections, we discuss the literature
on the use of protein coevolution in the characterization of protein function and elaborate
on eQTL interactions.

Protein coevolution

Coevolution refers to the observation that the evolutionary conservation of two or more
functionally associated cellular elements is correlated across a range of species. A plau-
sible explanation to such correlation is that there is a functional relationship driving the
selective pressure to conserve the pair of units together [11]. Coevolution has been well-
defined and well-studied in the context of the evolution of proteins and their domains. For
example, contact domains of proteins forming a complex need to be complementary in
order for the complex to form, so variations in only one of the domains could inhibit that
interaction. Furthermore, proteins commonly participate in pathways where the proteins
work either in conjunction or succession to complete some higher level function, where
the absence of one of the proteins could lead to loss of function.
In order to assess protein coevolution, the evolutionary histories of the proteins need to

be constructed. A common and simple way of representing evolutionary histories is to use
phylogenetic profiles, which represent the level of conservation of the protein in a set of
organisms. Typically, phylogenetic profiles comprise alignment scores between a protein
of interest and its homologs. These alignment scores are obtained using either already
known sets of protein families or a search tool like the protein specific version of BLAST
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[12], by comparing each protein’s sequence against a library of “reference" genomes. Once
the profiles are constructed, the coevolution of all pairs of proteins is assessed based on
the correlation between these phylogenetic profiles. Information theoretic measures are
commonly used to asses the correlations (or statistical dependency) among phylogenetic
profiles.
An important distinction between different methods for coevolution detection is based

on the resolution at which the profiles are generated and or comparisons are performed.
The resolutions break down to three general levels: 1) whole protein [5], 2) domain [13],
and 3) residue level [14]. Earlier methods work at the resolution of whole proteins; the
presence or absence of a sufficiently similar matching protein in each of the reference
genomes would act as the phylogenetic profile for that protein. These profiles are visu-
alized and stored as simple discrete-valued vectors, so the coevolution search consists of
finding similar pairs of vectors. Since domains may evolve independently from the rest
of the protein, methods that utilize phylogenetic profiles at the resolution of domains
improve upon these methods by capturing the evolution of coding sequences at a higher
resolution [13, 15]. However, since the domains of many proteins are not characterized,
some methods assess coevolution at the level of residues, thereby enabling the iden-
tification of domains based on their conservation [14, 16]. Using alignment scores or
transformed BLAST E-values can also be used in place of a simple boolean for hit or miss
in a genome [17].
Once the phylogenetic profiles are generated, the process of identifying coevolution

becomes the process of identifying similar patterns. One common way of defining simi-
larity for this process is that a pair of profiles with high mutual information [18] is likely
to be coevolved. When assessing coevolution at residue level resolution, it is possible to
capture intra-protein coevolution as well. It has been shown that residues that are in con-
tact with eachother in the folded structure of a protein could be predicted by examining
the mutual information of those bases within a multiple sequence alignment [19].
In order to better represent a protein-specific phylogeny, phylogenetic tree based

methods were also developed [16, 20]. For example, a family of methods referred to
as mirrortree use multiple sequence alignment to build a phylogenetic tree for each
protein. These methods then measure the correlation of the phylogenetic trees rather
than vectors to quantify and detect coevolution. In practice, rather than actually con-
structing the phylogenetic tree for the protein, the methods generate a distance matrix
that stores all pairwise alignments between protein sequences that are incident on
the multiple sequence alignment. In the more recent methods, tree generation soft-
ware is applied to the multiple sequence alignment and distance matrices are extracted
from these generated trees. These distance matrices that are generated could be used
by any tree generation method to construct a tree, but mirrortree methods instead
directly compare the distance matrices of pairs of proteins rather than pairs of trees
that would have been generated from those matrices. MATRIXMATCHMAKER is another
method that was developed to detect coevolution between pairs of proteins that also
utilizes distance matrices, but is more computationally intensive [9]. The MATRIX-
MATCHMAKER method was improved upon to help address the increased computational
complexity [21].
The principle of coevolution has been further studied beyond interactions between

pairs of proteins or genes. It has been shown that physical interactions between proteins
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and DNA sequence exhibit coevolution, such as those between transcription factors and
their binding sites [22]. There have also been explorations into the coevolution patterns
between proteins and non-coding RNA sequences, such as miRNA [23]. These studies
have explored the coevolution patterns present in these interactions, but did not use
coevolution metrics in a predictive manner.
Recently, direct coupling analysis (DCA) based approaches have been used to predict

protein residue contact sites [24, 25] and epistatic pairs of SNPs in bacterial genomes
[26, 27]. These DCA methods utilize the principle of maximum entropy as the metric to
score pairs of loci.
An important consideration for coevolutionary analyses is the selection of organisms

from which to generate the phylogenetic profiles or distance matrices. Typically, as
the number of genomes used in the analysis increases, predictive power also increases
[28]. Besides the number of genomes that are used in the analysis, the evolution-
ary relationships among the genomes used can also have an effect on the predictive
performance [29].

eQTL interactions

An eQTL interaction between a genomic locus and a gene represents the statistical asso-
ciation between the genotype of the SNP at that locus and the mRNA-level expression
of the gene. There are two sub-classes of eQTL interactions, cis-eQTL and trans-eQTL
interactions. The definition of these sub-classes relies entirely on the genetic distance
between the SNP and the target gene. A cis-eQTL interaction is between a SNP and a
gene that is on the same chromosome and is nearby. On the other hand, a trans-eQTL is
between a SNP and either a gene on the same chromosome that is distant or a gene that is
on a different chromosome. For example, the GTEx project, which is the primary reposi-
tory of detected eQTL interactions in the human genome, considers SNPs that are within
1 Mbp of the target gene to be a cis-eQTL [30].
Two contemporary tools that are used to perform large numbers of association tests are

Matrix eQTL [31] and FastQTL [32]. FastQTL is a more recent tool that was designed to
only test potential cis-eQTLs, and Matrix eQTL can test for either cis- or trans-eQTLs.
One issue that arises with eQTL detection is the large number of association tests that
are performed. Particularly, during trans-eQTL detection the number of tests can exceed
1012, comparing nearly all SNPs against all genes. This large number of performed asso-
ciation tests necessitates the use of multiple hypothesis testing (MHT) correction. One
of the methods used for MHT correction is the Benjamini-Hochberg procedure which
is a Bonferroni-like correction process which is not as conservative as a Bonferroni cor-
rection. The method can be implemented in an iterative manner. Initially a strict p-value
threshold of significance is calculated from a specified false discovery rate and the num-
ber of tests performed. Hypotheses with nominal p-values that exceed this threshold
are rejected, and the significance threshold is relaxed slightly for each of these rejected
hypotheses. In turn, more tests can pass this relaxed threshold. The process of rejecting
hypotheses and adjusting the threshold continues until no more tests exceed the adjusted
threshold.
In this work we explore the evolutionary relationship between SNPs and genes involved

in cis-eQTL interactions. We examine the co-conservation patterns between them, and
we use amirrortree-based method to characterize the coevolution patterns of those same
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pairs. Further we show that we can leverage these coevolution patterns to aid in the
prioritization of eQTL detection.

Results and discussion
In this section we present our results which are broken down into three subsections.
The first subsection focuses on the relationship between the conservation status of SNP
and gene pairs that form eQTL interactions. The second subsection characterizes the
coevolutionary relationship of the interacting SNP-gene pairs, as assessed using their phy-
logenetic histories. Then we explore using this coevolutionary relationship to prioritize
eQTL detection in the third subsection.

Conservation of SNPs and genes involved in eQTL interactions

We profiled the genomic conservation of the flanking sequence for SNP loci
and transcription start sites that take part in eQTL interactions. Below, in the
“Materials and methods” section we describe in detail how these profiles are constructed.
We also constructed profiles for all SNPs in the human genome that are reported in ver-
sion 146 of the dbSNP database [33]. Figure 1 displays a normalized pileup of the PhyloP
[34] scores of the bases surrounding SNP loci associated with eQTL interactions, all SNP
loci, and the transcription start sites of eQTL target genes. The PhyloP scores represent
deviation from a neutral rate of evolution. Bases with positive scores are bases that exhibit
conservation, a lower than expected rate of mutation. Bases with negative scores are those
that exhibit accelerated evolution, a higher than expected rate of mutation. The magni-
tude of the scores is proportional to the difference between expected and exhibited rate
of mutation.
We found that there is typically a conserved region surrounding the locus that har-

bors the SNP and that the locus that harbors the SNP is undergoing accelerated evolution
(negative PhyloP conservation score). SNPs are less conserved than transcription start
sites

(
p <2.534 × 10−9) and furthermore SNPs involved in eQTLs are less conserved

than SNPs in general
(
p <2.2 × 10−16). Both of these p-values were calculated using the

one-sided Kolmogorov-Smirnov (KS) test.
In order to identify patterns of conservation exhibited by SNPs and genes that are

involved in eQTL interactions, we clustered the conservation profiles of SNPs and genes
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Fig. 1 Patterns of conservation. a Average rates of conservation of the 1000 bases upstream and downstream
of protein-coding transcription start sites (PC-TSSs), SNP loci, and SNP loci involved in at least one eQTL
interaction. bAveragerates of conservation of the 100 bases upstream and downstream of the same sets of loci
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using the K-means algorithm. We created vectors that contain the PhyloP scores of con-
servation of the upstream and downstream bases of the loci to serve as the conservation
profiles. These profiles are described in further detail in the “Materials and methods”
section. From this clustering analysis, we found that for both SNPs and genes the best
clustering occured when using only two centroids, as determined by considering cluster
membership sizes, sums of distances, and recurring centroid patterns (Figure S2 and S3 in
the Additional file 1). Figure 2a shows the centroids of the two clusters identified by clus-
tering the SNP profiles. We found that one centroid tended to stay around PhyloP scores
of 0, indicating little to no conservation and little to no acceleration compared against a
neutral rate of evolution. The other dominant centroid pattern that consistently appeared
during clustering, was a centroid that exhibited conservation in the flanking sequence of
the SNP locus. Based on these distinct conservation patterns, we refer to these centroids
respectively as the low conservation centroid and the high conservation centroid. Both
centroids suggest that the SNP locus has a lower rate of conservation than its immediate
flanking sequence.
Clustering the gene profiles also produced two clusters: one with a centroid exhibiting

a neutral rate of evolution and one with a centroid that displays higher rates of conserva-
tion. Figure 2b shows these two centroids. However, in contrast to the high conservation
SNP centroid, the high conservation gene centroid does not exhibit a symmetric pattern
of conservation surrounding the transcription start site, it rather shows increasing con-
servation leading up to and past the transcription site. As expected, exon sequence of the
genes exhibit higher rates of conservation than upstream sequence.
To examine the evolutionary interplay between the SNPs and their target genes in eQTL

interactions, we compared their levels of conservation as classified based on the patterns
identified using cluster analysis. Table 1 is a contingency table of eQTL interactions based
on the cluster assignment of the SNP and the cluster assignment of the target gene that
is involved in that interaction. We performed a chi-squared test on this contingency table
to test whether highly conserved SNPs are more likely to have eQTL interactions with
highly conserved genes. We found that χ2 = 23.651

(
p <1.155 × 10−6). This result sug-

gests that for eQTL interactions the conservation status of a SNP is correlated with the
conservation status of its target gene, with high conservation SNPs interacting with high
conservation genes.
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Fig. 2 Clustering centroids. Centroids of clusters identified by clustering conservation profiles of (a) SNPs and
(b) transcription start sites of genes involved in at least one eQTL interaction. Clustering was performed with
K-means clustering, using K = 2
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Table 1 Conservation contingency table

HC SNP LC SNP Marginal totals

HC target gene 428 7544 7972

LC target gene 1775 40975 42750

Marginal totals 2203 48519 50722

HC and LC refer to high conservation and low conservation respectively, and SNPs and genes are assigned to these groups based
on their cluster identity as determined by the clustering analysis

Coevolution of SNPs and genes involved in eQTL interactions

To further characterize the evolutionary relationship between SNPs and their target genes
in eQTL interactions, we also examined and compared their phylogenetic histories. For
this purpose, we used a mirrortree based method to calculate a measure of coevolution
for each SNP-gene pair. While DCA based methods have been used recently to quantify
coevolution in locus-locus interactions, they have been used on relatively small sequences
compared to that of the human genome. The primary data source for phylogenetic infor-
mation is a library whole genomemultiple sequence alignment of 100 vertebrate genomes
provided publicly by the UCSC Genome Browser [35]. Subsequences of the multiple
sequence alignment were used to assess the phylogenetic history of the SNPs and genes
that participate in eQTL interactions. Another reason we usemirrortree over DCA is that
we are quantifying the coevolution between between pairs of sequences rather than pairs
of loci alone. This process is described in detail in the “Materials and methods” section.
To examine the relationship between our conservation metrics described above and the

coevolution metrics we describe here, we calculated the coevolution scores for all eQTL
pairs that we classifed using the clustering approach. Figure 3 shows the distributions
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of coevolution scores for each class of eQTL interaction. We found that the interactions
with high conservation SNPs interacting with high conservation genes, had the highest
levels of coevolution score, while poorly conserved SNPs interacting with poorly con-
served genes had the lowest relative coevolution scores. Table 2 provides the p-values for
all pairwise comparisons of these distributions.
We quantified the coevolution of the SNPs and genes involved in eQTL interactions,

and compared the distribution of these scores against a background distribution. The
background distribution was generated by first identifying all SNPs and all genes that
take part in at least one eQTL interaction. We scored all possible pairs of these identi-
fied SNPs and genes, namely about 511 million SNP-gene pairs, to form the background
distribution. Figure 4a shows a comparison of the normalized histograms of eQTL inter-
actions against the background. We found that eQTL interactions exhibit higher levels of
coevolution than arbitrary pairs of SNPs and genes (p < 1 × 10−300, two-sided KS-test).
The higher levels of correlated phylogenetic history suggests that eQTL interactions may
impart evolutionary pressure towards co-conservation.
Motivated by this result, we also explored the coevolutionary relationship of eQTLs

with regard to known regulatory elements of the target genes. For this analysis, rather
than comparing the SNP phylogenetic history with that of the gene, we compared them
against the phylogenetic history of promoters associated with the target gene. The pro-
moters are those that were discovered as part of the ENCODE project, and we acquired
them through the Ensembl project [36]. A challenge here is that often there are multiple
promoters that map to the same gene, so there is a one-to-many mapping when iden-
tifying promoters for a single gene. To provide a well-defined measure of coevolution
between a gene’s promoters and a SNP, we hypothesized that the eQTL interaction occurs
through a single promoter of its target gene. Based on this hypothesis, for each eQTL
interaction, we computed the coevolution score between the SNP and each of the gene’s
promoters. Subsequently, we reported the score of the promoter with highest coevolution
score as the coevolution score of the SNP and the gene’s promoters. Again, we compared
the distribution of these coevolution scores against a background distribution. In order to

Table 2 Co-conservation class comparison table. P-values for comparisons of the distributions of
coevolution scores for each possible pairing of co-conservation classes of eQTL interactions
(calculated using the two-sided KS-test)

Class 1 Class 2 p-value

High conservation SNP High conservation SNP

High conservation target Low conservation target p < 1.045 × 10−6

High conservation SNP Low conservation SNP

High conservation target High conservation target p < 1.11 × 10−15

High conservation SNP Low conservation SNP

High conservation target Low conservation target p < 2.2 × 10−16

High conservation SNP Low conservation SNP

Low conservation target High conservation target p < 8.946 × 10−9

High conservation SNP Low conservation SNP

Low conservation target Low conservation target p < 2.2 × 10−16

Low conservation SNP Low conservation SNP

High conservation target Low conservation target p < 2.2 × 10−16



Savel and Koyutürk BioDataMining            (2019) 12:8 Page 9 of 15

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n

Correlation

eQTL Targets
All Pairs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n

Correlation

Best Target Promoter
All Pairs Best Promoters

a b

Fig. 4 Coevolution score distributions. a Distribution of coevolution scores of SNP-TSS pairs involved in eQTL
interactions compared against a background distribution. b Coevolution score distribution of eQTL
interactions when pairing SNPs with promoters compared against a background distribution

accurately assess the significance of this distribution, we constructed a background dis-
tribution from the coevolution scores between each SNP and the promoters of each gene,
by taking the maximum coevolution score between the SNP and each of the promoters.
In this case, the number of pairs that form the background distribution are consistent
with those used to generate the background distribution for SNP-gene pairs. Figure 4b,
shows the comparison between the normalized histograms of eQTL interactions and
the background. Again, SNP-promoter pairs that are associated with eQTL interactions
exhibit higher levels of coevolution score as compared to the background distribution
(p <1×10−300, two-sided KS-test). Notably, the SNP-promoter background distribution
is shifted towards higher rates of correlation than the SNP-gene background distribution,
which is consistent with how each recorded score was chosen as the highest correlation
of a set of pairs.
We examined the relationship between minor allele frequency and coevolution score,

to see if there was a correlation between high variation within the human population
and coevolution scores. We found that there was no discernable difference between the
distributions of minor allele frequencies for different ranges of coevolution scores.

Using coevolution to prioritize eQTL detection

As shown above, eQTL interactions are more likely to exhibit correlated phylogenetic
histories as compared to random pairs of sequences. Motivated by this observation, in
order to explore the utility of genomic coevolution in detecting regulatory interactions,
we applied coevolution to the prioritization of eQTL interactions. We used data made
available by the GTEX project [30], V6, as they provide the nominal p-values of all cis-
eQTL tests performed and not just those that are deemed significant. Raw data for the
analysis as well as genotype data was provided via dbGaP, phs000424.v6.p1. With this
data we are able to apply the multiple hypothesis testing (MHT) correction process on
the original dataset. For each cis-eQTL SNP-Gene pair tested in the GTEX project, we
calculated the genomic coevolution between the SNP and the target gene. We prioritized
eQTL detection by focusing on SNP-Gene pairs that exhibit high levels of coevolution. By
thresholding on the coevolution score we identified sets of the SNP-Gene pairs for differ-
ent levels of coevolution. For each of these sets, we applied the MHT correction process
to them and reported the p-value threshold of significance. A property of this MHT cor-
rection process is that the ratio of the significance threshold relaxed by prioritizing with
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coevolution score and the non-prioritized significance threshold is directly proportional
to the level of enrichment that SNP-gene pairs with that coevolution score have for sig-
nificant eQTL interactions. We expand on this property in the “Materials and methods”
section.
Figure 5a shows how prioritizing the eQTL tests by coevolution affects the p-value sig-

nificance threshold.We also tested whether random downsampling to reduce the number
of tests performed affected the p-value threshold of significance and confirmed that it
does not affect the significance threshold due to how the Benjamini-Hochberg method of
MHT correction works. The significance threshold was 5.61×10−4 for the full dataset and
when reducing the number of tests by a factor of 10 using the random downsampling, the
significance threshold was nearly unchanged at 5.59 × 10−4. We found that when priori-
tizing the eQTL tests with coevolution the significance threshold is relaxed, and we found
that the stricter the coevolution thresholds that are used themore relaxed the significance
threshold becomes. This effect became apparent for SNP-gene pairs with coevolution
scores >0.75, indicating strongly correlated phylogenetic histories. At the highest level of
coevolution threshold, the significance threshold was relaxed to 2.11 × 10−3. This shows
that SNP-gene pairs that have very high levels of correlated phylogenetic histories are
enriched for eQTL interactions by over 7 times, SNP-gene pairs with coevolution score
of 0.95 or greater are more than 7 times as likely to be a significant eQTL interaction as
compared to an arbitrary SNP-gene pair.
A side effect of prioritizing eQTL tests by genomic coevolution is that due to a corre-

lation between genomic distance and observed rate of coevolution there is a reduction
in the average distance of the tested pairs of SNPs and genes. Prioritizing eQTL tests by
genomic distance is effective, as it has been shown that the regions closer to the transcrip-
tion start sites are enriched for SNPs that participate in eQTL interactions [37]. Taking
this observation into account, we explored howmuch of the relaxation in the significance
threshold is due to this side effect as opposed to evolutionary pressures. For different
coevolution score thresholds, we calculated the average distance of the tested SNP-gene
pairs, and performed a distance based prioritization such that the average distance of the
tested pairs was the same as prioritizing for a given coevolution score threshold. Figure 5b
shows the comparison of these two prioritization methods. We found that even though
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Fig. 5 eQTL detection prioritization. a Prioritizing eQTL detection with coevolution scores relaxes the
significance threshold. Results are shown for using different size sequences to calculate coevolution score.
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reduction of the average distance of tested pairs
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reducing the average distance of tested SNP-gene pairs relaxed the significance thresh-
old the threshold was relaxed to a greater degree when using a comparable coevolution
score based prioritization. So we found that there was some interplay between coevolu-
tion score prioritization reducing the average distance of tested pairs and this reduced
average distance contributing to the relaxation of the significance threshold. However, the
relaxation of significance threshold cannot be entirely explained by this reduction in test
distance, and the interplay is quite minimal until very high levels of coevolution threshold
are used, coevolution scores ≥ 0.95.

Conclusion
We characterized the co-conservation and coevolution of locus-gene regulatory interac-
tions in the human genome. We discovered with high confidence that there is interplay
between the conservation status of SNPs and their target genes in eQTL interactions.
Furthermore, using subsequences of a whole genome multiple sequence alignment we
were able to asses the correlation between the phylogenetic histories of those same eQTL
interactions, and we discovered that pairs of SNPs and genes that appear coevolved are
enriched for eQTL interactions. We applied this property to the prioritization of eQTL
association tests and found that lower signficance eQTL interactions could be identified.
Coevolution can be used to create genome-wide metrics, and could potentially pro-

vide utility in identifying distant and inter-chromosomal interactions such as trans-eQTL
interactions in the human genome. Further work in this area includes assessing trans-
eQTL coevolution as we did for cis-eQTLs, and examining the interplay between coevo-
lution and the robustness of eQTL detection with regards to sample set size. Furthermore,
it may be beneficial to explore other metrics of coevolution such as mutual information or
direct coupling analysis in the context of locus-gene interactions in the human genome.

Materials andmethods
We compare the genomes of a large set of organisms to quantify the levels of conserva-
tion of human DNA sequence and the levels of coevolution between pairs of sequences.
In order to accurately map the evolutionary history of each DNA segment we use a
whole genome multiple sequence alignment. This process is computationally intensive,
so we use a publically available dataset provided by the UCSC Genome Browser [35].
The dataset is a pre-calculated whole genome multiple sequence alignment of 100 verte-
brates. The types of organisms range from primates andmammals to birds and fish; UCSC
genome browser also provides pre-calculated base-by-base conservation scores using two
different methods, PhyloP [34] and PhastCons [38]. Another available source of base-
by-base conservation scores is GERP++ [39]. We use both the whole genome multiple
sequence alignment and the base conservation score data are for both a co-conservation
analysis and for a coevolution analysis.

Genomic conservation profiles

We first performed a co-conservation analysis of the eQTL interaction data in a manner
similar to an analysis done for miRNA binding [23]. For this analysis we created profiles
for the associated SNPs and target genes using the pre-calculated PhyloP data. We use
PhyloP scores for our base conservation scores as it treats each base independently, and
since we are interested in specific loci such as SNPs we want the base score to represent
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that locus alone. Both PhastCons and GERP++ use a Markov process to calculate the
conservation score for each base, so base scores are influenced by nearby bases. Further-
more, PhastCons and GERP++ both quantify only conservation, while PhyloP quantifies
both conservation and acceleration which we see present at known sites of common
genomic variation. Each profile consists of the base conservation scores of the SNP locus,
for the eQTL profile, or of the transcription start site, for genes, as well as the conserva-
tion scores of the 1000 base pairs upstream and downstream. This generates profiles that
consist of 2001 base conservation scores. In order to reduce the effects of high dimen-
sionality on our analysis we perform dimensionality reduction by binning and averaging
scores together in a logarithmic manner. The bases that are closest to the loci of interest
are in smaller bins than those that are further way, giving more weight to the resulting
reduced dimension profile. For example, the conservation score of the locus of interest is
in a bin by itself, the scores for the two bases upstream of the locus are binned together,
and the four scores upstream from those are binned together. By binning the conservation
scores in this manner we reduce the dimensionality of the profiles from 2001 down to 19.
We performed our clustering analysis on these 19-dimension profiles using k-means
clustering.

Creating Phylogenetic matrices

As we discussed above, state-of-art methods for analyzing coevolution make use of dis-
tance matrices that are generated from multiple sequence alignments of homologous
proteins. We applied this principle to genomic sequence using multiple sequence align-
ments of homologous DNA sequence rather than protein sequence. One method of
acquiring the homologous DNA sequences is to use BLAST against a library of genomes,
but this process can produce a number of false positives. This can be exacerbated when
the library of genomes is large and when the query sequences are small. To remove the
effect of querying relatively small sequences we use whole genome multiple sequence
alignments to identify homologous sequences. In this manner the number of homologous
sequences for a DNA segment is stable when querying different size segments. In order to
create a distance matrix for a genomic segment, we extract a subsequence from the whole
genome multiple sequence alignment and further extract all the pairwise alignments in
order to calculate the distance matrix. The process of extracting the subsequences of the
whole genome multiple sequence alignment is performed serially, and requires just a sin-
gle pass through the alignment file. And each distance matrix is generated by comparing
all pairs of sequences that are contained in that subsequence of the multiple sequence
alignment which can subsequences from asmany as 100 genomes. In our generatedmatri-
ces, we store the alignment scores of all pairwise alignments that are induced by the
multiple sequence alignment, so it is more accurate to state that we are generating simi-
larity matrices as high nominal values indicate high sequence match rates. We evaluated
coevolution with these matrices using amirrortree based method.

BipartiteMirrorTree and sparse correlation

In order to evaluate the coevolution of pairs of sequences that belong to two distinct
classes we developed a modification to mirrortree, that we refer to as BIPARTITEMIR-
RORTREE. BIPARTITEMIRRORTREE uses the sparse correlation of similarity matrices in
order to measure the rate of coevolution between the pairs of sequences those matrices
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described; BIPARTITEMIRRORTREE can characterize the coevolution between all pairs
that can be formed from two distinct sets, such as SNPs and genes. Since we charac-
terized eQTL interactions, which are associations between SNPs and genes, we used
BIPARTITEMIRRORTREE to characterize the coevolution of all previously identified eQTL
interactions as well as all possible pairs of SNPs and genes. The general runtime complex-
ity of BIPARTITEMIRRORTREE is O(sgl2), where s is the number of SNPs, g is the number
of genes, and l is the number of genomes in the multiple sequence alignment used to
create the similarity matrices. However, for cis-eQTL detection all SNPs are not paired
with all genes; genes are only paired with SNPs that are within 1mbp. In this instance
the number of SNP-gene pairs is much less than all possible pairs, sg, but it is still much
greater than the size of the similarity matrices, l2 . For these cis-eQTL analyses, the prac-
tical runtime complexity of BIPARTITEMIRRORTREE is O(n), with n being the number of
SNP-gene pairs examined.
As we stated above we use sparse correlation as our measure of coevolution. Previous

implementations of mirrortree use full correlation as the measure of coevolution. One
characteristic of using full correlation, is that when there are large amounts of missing
alignments (due to either poorly conserved sequence or poor mapping) in both matrices,
the correlation of the two matrices will be inflated. For example, as we are using similar-
ity matrices a missing alignment or a poor alignment would lead to a pairwise similarity
score of 0, and a large number of them in a pair of matrices can lead to many spurious
matches between the two matrices. These spurious matches will in turn inflate the corre-
lation between the pair of matrices, and they will appear to be coevolved when they might
not be. Therefore, BIPARTITEMIRRORTREE uses sparse correlation which better captures
the idea of coevolution and does not become inflated with missing data. One of the rea-
sons we used similarity matrices as opposed to distance matrices, is that they lead to an
elegant definition and implemenation of sparse correlation: while calculating the correla-
tion between a pair of similarity matrices ignore instances when the corresponding values
in both matrices are 0.

Relationship between significance threshold and enrichment

The way the Benjamini-Hochberg procedure performs multiple hypothesis testing cor-
rection gives insight into the enrichment exhibited by prioritization. The unprioritized
procedure works as follows:

1 Let α be the desired false discovery rate (usually 0.05)
2 Let H0...Hn be the set of hypotheses (e.x. locus-gene pairs to be tested for eQTL

interactions)
3 Let P0...Pn be the set of corresponding nominal p-values (e.x. the p-value of

association between the genotype of the locus and the expression of the gene)
4 Sort the hypotheses (e.x. locus-gene pairs) in ascending order of p-values
5 Find the largest K such that PK < Kα

n
6 Reject hypotheses H0...HK (e.x. identify locus-gene pairs H0...HK as significant

eQTL interactions)

In this case, the p-value significance threshold becomes, P = Kα
n , for the full set of

hypotheses. However, prioritizing with a threshold (e.x. coevolution score) effects the set
of hypotheses. For a given threshold, let β be the fraction of all significant interactions
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that exceed that threshold (e.x. eQTL interactions with high coevolution scores), and let
γ be the fraction of all hypotheses that exceed that threshold (e.x. locus-gene pairs with
high coevolution scores). During prioritization we can then express the p-value signifi-
cance threshold as a modified version of the significance threshold for non-prioritized
hypotheses, P′ = βKα

γn . With this formulation, as long as β > γ then P′ > P, thus the sig-
nificance threshold is relaxed. Furthermore, in this case P′

P = β
γ
, thus the ratio of P′ and P

provides a measure of the enrichment a given prioritization threshold has.
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