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Abstract—Next generation sequencing technologies enable efficient and cost-effective genome sequencing. However, sequencing

errors increase the complexity of the de novo assembly process, and reduce the quality of the assembled sequences. Many error

correction techniques utilizing substring frequencies have been developed to mitigate this effect. In this paper, we present a novel and

effective method called PLURIBUS, for correcting sequencing errors using a generalized suffix trie. PLURIBUS utilizes multiple

manifestations of an error in the trie to accurately identify errors and suggest corrections. We show that PLURIBUS produces the least

number of false positives across a diverse set of real sequencing datasets when compared to other methods. Furthermore, PLURIBUS

can be used in conjunction with other contemporary error correction methods to achieve higher levels of accuracy than either tool

alone. These increases in error correction accuracy are also realized in the quality of the contigs that are generated during assembly.

We explore, in-depth, the behavior of PLURIBUS, to explain the observed improvement in accuracy and assembly performance. PLURIBUS

is freely available at http://compbio.case.edu/pluribus/.

Index Terms—Biology and genetics, trees
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1 INTRODUCTION AND BACKGROUND

NEXT Generation Sequencing (NGS) technologies have
replaced Sanger sequencing as the de facto standard.

This shift can be attributed to the orders of magnitude
increase in throughput and reduction in per-base sequenc-
ing cost of NGS. These desirable characteristics, however,
come at the cost of shorter reads and increased error rates.
In Sanger sequencing, error rates could be as low as one
miscalled base in 100,000 bases sequenced. NGS technolo-
gies, on the other hand, are prone to miscalling bases at a
rate that is orders of magnitude greater—as high as 1 in 100.
With error rates this high and average read lengths exceed-
ing 100 bp the expected number of miscalled bases in a read
exceeds one, implying that almost every read in a sequenc-
ing run will contain at least one error [1].

There are two main uses of the reads generated by NGS
technologies: (i) resequencing or mapping, where the reads
are aligned to a reference genome for further analysis, and (ii)
de novo assembly, where an unknown genome is constructed
entirely from the reads. In both of these cases, sequencing
errors significantly increase the complexity of operations.
When performing an alignment, sequencing errors can be
handled by accounting for mismatches and short gaps [2].

However, it is difficult to ascertain whether these are due to
sequencing errors or true variants in the underlying genome.
During de novo assembly, sequencing errors interfere with
the identification of overlaps between reads. In this case,
sequencing errors in reads that bridge two contigs may cause
the contigs to stay disjoint; alernately, theymay induce spuri-
ous overlaps [3]. For these reasons, it is important to discard
or correct sequencing errors prior to assembly.

1.1 Error Correction

In order to identify and correct errors in sequencing data, it is
necessary to differentiate true genomic variants from
sequencing errors. For de novo assembly, there is no ground
truth to compare the data against. However, if there is suffi-
cient coverage, i.e., if the expected number of reads that
cover any given location on the genome is sufficiently large,
spectral alignment can be used. Spectral alignment works by
approximating the set of substrings that would exist in the
reference genome as the set of substrings in the read set that
appear in at least a certain number of reads. Subsequently,
the reads are aligned to this set of substrings to identify
sequencing errors [4]. The problem of error identification then
translates to the computational problem of identifying sub-
strings with low frequency, since these are indicative of
sequencing errors. The error correction problem, on the other
hand, is one of determining the modifications that will trans-
form erroneous substrings to high frequency substrings,
which, in principle, correspond to true genomic sequences.

1.2 Review of Existing Methods

Building on the spectral alignment approach to error correc-
tion, several algorithms and tools have been proposed.
Types of errors that are commonly encountered in next gen-
eration sequencing are illustrated in Fig. 1. Based on this
categorization, the tools can be classified into two groups:
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tools that can correct only substitution type errors and tools
that can correct both substitution and indel type errors. Since
the most popular sequencing platform today, Illumina, has
higher rates of substitution errors and lower rates of indel
errors, many of the recent algorithms focus exclusively on
substitution errors. Such tools include QUAKE [5], SHREC [6],
HITEC [7], MUSKET [8], RACER [9], and REPTILE [10]. Tools that
target indels are also available; for example, HYBRID-
SHREC [11] provides an extension of SHREC that can correct
errors in reads that could have come from a mixture of
hardware platforms, so it has the ability to correct both sub-
stitution and indel type errors.

Differences between spectral alignment based error correc-
tion tools arise from the underlying data structures used to
store and analyze substring frequency. Three data structures
are commonly used for this purpose: (i)K-mer based lookup
tables, (ii) suffix tries, and (iii) suffix arrays. K-mer based
lookup tables usually count the frequencies of all substrings
of lengthK (K-mers) for a fixedK, and identify as errors, sets
of overlappingK-mers with low frequency [5], [10]. For these
tools, K is a user-defined parameter and has a significant
effect on the performance of error correction. A small value of
K tends to result in a set of all high frequency K-mers, and a
large value of K tends to result in a set of all low frequency
K-mers. Tools typically provide default parameters, or a sim-
ple estimator, to determine K [5]. Suffix trie based methods,
on the other hand, remove the dependency on a fixedparame-
ter (K) by organizing all suffixes of all reads into a trie struc-
ture, and identify as errors, low-frequency nodes with high-
frequency siblings [6], [11]. A third data structure, suffix
array, is used as a compromise betweenK-mer based lookup
tables and suffix tries. In a suffix array, all the suffixes of the
reads are still considered but they are organized into a flat
data structure and lexicographically sorted [7].

Instead of using the spectral alignment, it is also possible
to perform multiple sequence alignment (MSA) for error
correction. CORAL [12] is an error correction tool that uses
MSA to identify and correct sequencing errors. CORAL still
usesK-mers, but they are used to index reads rather than to
identify the errors themselves. Once K-mers are indexed,
CORAL generates consensus sequences from overlapping
reads using MSA, and identifies the gaps and mismatches
to be translated into corrections in aligned reads. When
compared to spectral alignment based methods, MSA-based
methods offer the benefit of allowing inexact matches dur-
ing alignment at the cost of increased running time.

1.3 Contribution of Our Work

Owing to the space requirements of the suffix trie data struc-
ture, many suffix trie based algorithms attempt to identify
errors using partially constructed tries. This entails identifi-
cation of errors in a trie-drivenmanner, i.e., each error is iden-
tified based on a single node of the trie. The decision on how

to correct this error is based only on the siblings of that node.
However, a single erroneous base in a read is incident on a
number of suffixes equal to its index in the read, or a number
of suffixes equal to the length of the read when taking into
account both forward and reverse complement directions.
Each of these suffixes that are incident on the error canmani-
fest themselves in the trie as a low frequency node, and these
correlated manifestations can be used together to accurately
identify how to correct that error.

We propose PLURIBUS, a read-driven algorithm that consid-
ers all manifestations of an error in guiding the correction
process. Since PLURIBUS uses multiple manifestations of a
read to identify errors and suggest corrections, it is expected
to be more precise in detecting errors and more accurate in
suggesting corrections. We compare the performance of
PLURIBUS and other methods in detecting and correcting
sequencing errors across a diverse set of genomes and as a
function of coverage. We also assess the impact of error cor-
rection on the performance of de novo assembly by compar-
ing the performance of a state-of-the-art assembler, Velvet
using uncorrected reads as well as the corrected reads.
Finally, we explore in-depth the behavior of PLURIBUS to
explain our accuracy and assembly results. Our results
show that utilizing multiple suffixes to correct errors results
in a precise method for correcting sequencing errors. We
show that PLURIBUS can be used in conjunction with other
tools to improve the accuracy of error correction, which
results in a significant improvement in the quality of the
contigs generated in assembly.

In the next section, we formalize notation and describe,
in depth, the process of error correction via a suffix trie. We
then explore the correction performance of several tools
including an analysis of the behavior of suffix trie methods.
Finally, a comprehensive analysis of suffix trie based error
correction is presented.

2 METHODS

We first introduce our notation and formally define the
error correction problem. We then explain how a suffix trie
based data structure can be used to detect and correct
sequencing errors, as is done by existing methods. We then
discuss shortcomings of these methods, and present our
method, PLURIBUS, for suffix trie based error correction utiliz-
ing multiple suffixes simultaneously.

2.1 Notation and Problem Formulation

The input to the sequencing error correction problem is a set
R of n ¼ jRj short reads from a genome G of length m (the
genome length is not necessarily known). The reads are not
of identical length, but we can safely assume that the aver-
age read length, ‘, is known. For such a set of reads, the cov-
erage c is defined as the average number of reads that
contain a given base, i.e., c ¼ n‘=m. The coverage of a
sequencing run depends on multiple factors including the
sequencing platform, the resources available, and the length
of the genome being sequenced. Coverage levels in sequenc-
ing runs intended for de novo assembly typically range from
16� to more than 200� [13].

Because of the technological limitations of sequencing
platforms, reads in a sequencing run contain errors, i.e., one

Fig. 1. Illustration of the types of errors that can be encountered in
sequencing.
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or more bases in a read may not be identical to those at their
corresponding position in G. The objective of sequencing
error correction is to identify and correct such errors in reads.
Various types of errors encountered in sequencing are illus-
trated in Fig. 1. The first illustrated error type is the substitu-
tion error. In this type of error, a nucleotide in a read is
substituted with another nucleotide. Errors can occur in
the form of insertions and deletions as well, where one or
more nucleotides are inserted within a read, or one or more
nucleotides are deleted from within a read. These types of
sequencing errors are commonly referred to as indels.

The output of error correction is a set of suggested
corrections, where for each read D

ðaÞ
i denotes a suggested

correction. The type of correction that is to be applied is
noted as a and the position in the read to apply that cor-
rection is i. The possible values for a are considered to
be “Insert” followed by a base, “Substitute” followed by
a base, and “Delete”.

2.2 Suffix Trie-Based Error Correction

Correction of sequencing errors typically relies on spectral
alignment, i.e., the frequencies of the substrings of the reads.
This is based on the premise that with sufficient level of cov-
erage, substrings that come from an actual genomic
sequence will have relatively high frequencies, whereas
substrings that contain an error will have relatively low fre-
quencies. Therefore, one can identify sequencing errors by
computing the frequencies of all substrings of the reads in
R and identifying substrings that have frequency lower
than t, a threshold between high and low frequency that is
either user-specified or determined analytically.

Suffix tries provide a useful data structure for spectral
alignment, since they can be used to track the frequencies
of substrings of any length by indexing all suffixes of all
reads in R. The trie is constructed in such a way that the
paths in the trie represent the substrings of the reads in R,
and the individual nodes represent the frequency of the
substring defined by the path from the root of the trie to
that node. Since the sequencing machinery cannot distin-
guish between the two strands of a DNA sequence, the
reverse complement of all suffixes are also indexed. Once
all suffixes are indexed, errors manifest themselves as low-

frequency subtrees with roots that have high-frequency
siblings in the trie.

Formally, the trie is composed of a set of Node objects,
where each Node has a single parent node, Node:Parent,
and has a set of children nodes, Node:Children. Each Node
also contains the two values Node:Character and
Node:Frequency, which respectively store the character rep-
resented by this node and the frequency of the substring
that ends at this node. Potential errors in this trie are repre-
sented by pairs of nodes, ðNodex;NodeyÞ such that

Nodex:Parent ¼ Nodey:Parent ^
Nodex:Frequency � t ^ Nodey:Frequency > t:

(1)

Besides revealing potential errors, these Node pairs sug-
gest possible corrections that could be applied to the read(s)
that contain the substring represented by Nodex. We explain
the correction process below in the paragraph titled
“Verification Levels”. Existing algorithms that use suffix
tries for error correction include SHREC [6] and HYBRID-
SHREC [11]. HITEC [7] also uses suffixes in a similar manner,
to correct sequencing errors, however, the suffixes are
stored in a suffix array as opposed to a trie.

An example illustrating suffix trie based error correction
is shown in Fig. 2. This examples shows the trie constructed
from a simple hypothetical read set. In this read set, there are
three suffixes with low frequency (1 in this example), for
which there are other suffixes in the read set that differ by a
single base and have high frequency (2 or more in this exam-
ple). These three suffixes are highlighted in bold in the figure.
Specifically, the node that is highlighted in bold is the first
character for which the substring becomes low frequency. If
the trie is traversed in lexicographical order, the leftmost
highlighted node will be identified first. If the first character
of this node is changed to a ‘T’ the remaining characters of
the highlighted nodewill match the characters below the sib-
ling node. This pair of nodes suggests the correction D

ðSubT Þ
3 ,

i.e., the third base of the second read should be a ‘T’ not a ‘C’.
This action will accurately correct the single error in the read
set. The suggested correction is represented in Fig. 2 by a
node with a dashed outline and a dashed arrow pointing at
the node that suggested that correction.

Fig. 2. Use of suffix tries for the detection and correction of sequencing errors: A simple hypothetical genome and a set of five reads from this
genome are shown on the left. The second read contains a substitution error, where a T is substituted with a C. The suffix trie that indexes all suffixes
of these reads is shown on the right. Each node in the trie represents the string that is obtained by reading along the path from the root to that node.
The number at each node corresponds to the frequency of the respective string as a substring of the reads in the read set. The nodes highlighted in
bold are those that are low frequency, which also have siblings that are high frequency (assuming a threshold of 1). If the trie is traversed in lexico-
graphical order, the correction highlighted by dashed lines will be the first correction first suggested.
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Construction Levels (J to K). The generalized suffix trie
tracks the frequency of substrings of all lengths, however
not all lengths of substrings actually provide utility for
error correction. As noted in the discussion of K-mer based
algorithms, when counting the frequency of substrings the
chosen length will have a significant impact on the perfor-
mance of the algorithm. When the chosen length is too
small, the total number of possible substrings becomes sat-
urated and all substrings tend to have high frequency. If
the chosen length is too large, all the substrings will tend
to have low frequency because of errors. In both of these
cases, the substrings are unable to distinguish between
true sequences and errors.

This observation also applies to suffix trie based error
correction. Namely, there is a range of suffix lengths that
are large enough such that not all suffixes are high fre-
quency and small enough such that not all of the suffixes
are low frequency. Therefore, it is possible to only construct
a specific band or range of suffixes to reduce the time and
space requirements of trie construction without compromis-
ing the accuracy of error detection and correction. We
denote the upper and lower bounds of this range as J
(length of the shortest possible suffix in the trie) and K
(length of the longest possible suffix in the trie). For existing
suffix trie-based algorithms, J and K are user-defined
parameters. In the following discussion, we use the terms
“level” (i.e., depth of a node in the suffix trie) and “length”
(of a substring) interchangeably since each node of the suf-
fix trie represents a specific substring and its depth in the
trie is equal to the length of the substring.

Not all levels that are constructed are utilized for the
same purpose. Instead, some of them can be used used to
detect possible sequencing errors, while others can be used
to verify a suggested correction.

Detection Levels (D). Recall that the constructed suffix trie
contains K � J þ 1 levels, where J and K respectively
denote the length of the shortest and longest substrings
used in the construction of the trie. While it is possible to
use all these levels to detect errors and identify suggested
corrections, the quality of the corrections suggested by each
level is not identical. The expected frequency of nodes
decreases for each successive level of the trie, so the fraction
of invalid suggestions may increase. Furthermore, as sug-
gestions are made from successively lower levels of the tree,
there are fewer available characters to verify them. For this
reason, existing suffix trie based correction algorithms
detect errors using a restricted set of levels in the suffix trie.
We refer to these levels of the trie as detection levels and
denote the number of detection levels asD. The implemena-
tion of SHREC [http://sourceforge.net/projects/shrec-ec/]
and by extension HYBRID-SHREC use only a single detection
level (D ¼ 1). The frequencies of substrings shorter than the
length of the substrings in the detection level are not consid-
ered. For this reason, we assume that level J is always the
first detection level utilized by the algorithm.

Verification Levels (V ). When the number of constructed
trie levels is larger than the number of levels used for detec-
tion, the remaining levels of the trie can be used as verifica-
tion levels to further filter suggested corrections. We denote
the number of verification levels by V . Since both SHREC and
HYBRID-SHREC use only a single level of the trie as a detection

level, they use the remaining constructed levels as verifica-
tion levels (i.e., V ¼ K � J for these algorithms) (the default

setting for SHREC is V ¼ 4). In order for a correction D
ðaÞ
i to

be verified, the ðK � JÞ characters that follow position i in
the read must match all high frequency nodes in the subtree
rooted at the high frequency neighbor node that corre-
sponds to a.

A substring in the tree is represented by a path, so the
verification process can be formally described in terms of
these paths. Let Pread be the path of nodes that represents

the substring of length K that D
ðaÞ
i is suggesting to modify.

Let Ptest be the path of nodes that represents what the sub-

string will become if D
ðaÞ
i was applied. Verification of a sub-

string means that a correction is only applied if the
following equation evaluates to true:

8iðJ < i � K ^ Ptest½i�:Frequency > t

^ Ptest½i�:Character ¼ Pread½i�:CharacterÞ:
(2)

Since the nodes that suggest D
ðaÞ
i are siblings, the J � 1

nodes of Pread are already known to overlap and have high
frequency. Furthermore, since a high frequency node is
used to identify the correction, we know that the first non-
overlapping node of Pread also has high frequency. There-
fore, to verify a suggestion, only the last ðK � JÞ nodes
need to be checked. The remaining nodes can then be
checked by traversing through the subtree that is rooted at
the high frequency sibling, Ptest½J �. Equation (2) specifically
refers to checking substitution corrections. For insertion
type corrections Ptest½i� is compared against Pread½i� 1�,
while for deletion type corrections Ptest½i� is compared
against Pread½iþ 1�.

2.3 Using Multiple Suffixes for Correction

The general approach to using a suffix trie for error cor-
rection, as implemented by SHREC and HYBRID-SHREC is to
detect errors on the trie, and use references back to R to
correct the detected error. In this approach, the correction
process only has a single substring in its scope at any
given time. Therefore, while working from the trie, error
correction decisions are made using the information from
a single substring, and other manifestations of an error
are not taken into account. This “trie-driven” approach
offers an important advantage: Since correction is being
performed based on the information from a single sub-
string, only a fraction of the suffix trie needs to be in
memory at any given time.

The trie-driven approach also has an important draw-
back: Not all suggested corrections are valid. They may be
ambiguous, since a single manifestation may suggest multi-
ple corrections, especially if a small number of verification
characters are used. In fact, some may potentially be spuri-
ous, and not related to an actual sequencing error. These
caveats are exacerbated when the error profile contains
indels as well as substitution type errors, since there is a
larger number of possible corrections that could be applied
to a substring when indels are also considered. This larger
number of possibilities increases the likelihood of finding a
possible modification to a read that exists just by chance
rather than an actual sequencing error.
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The example illustrated in Fig. 3 shows the trie for a read
set that contains a single deletion error. In this example, there
are two nodes such thatNode:Frequency � twhich also have
sibling nodes whereNode:Frequency > t. These two instan-
ces are highlighted in bold. The leftmost highlighted node
has a single high frequency sibling. This pair of nodes actu-

ally suggests two corrections, D
ðSubCÞ
3 and D

ðInsCÞ
3 , and these

are represented by the two leftmost highlighted items in
Fig. 3. One suggestion is valid, while the other is a spurious
suggestion caused by the use of a single verification charac-
ter. The second highlighted node has two high frequency sib-

lings which also suggests two corrections D
ðInsCÞ
3 and D

ðInsAÞ
3 ,

and this pair of suggestions is represented by the two right-
most highlighted items in Fig. 3. Again only one suggestion
is valid, and the other is actually an artifact of a short repeat.
A trie-driven method will only discover one of these nodes
at a time, and using the information at hand the method only
has a 50 percent chance of picking the right correction.

Algorithm 1. Pluribus

Input:"R : Set of reads to be corrected
Output:"R0 : Set of corrected reads
1. T  generalized suffix trie constructed fromR
2. R0  ;
3. for each read r 2 R do
4. C  ;
5. for each suffix s 2 r do
6. Query T for s
7. if s is incident on a low-frequency node then
8. for each possible correction do
9. if correction allows s to match all high-frequency

nodes then
10. Add correction to C
11. end if
12. end for
13. end if
14. end for
15. MostFrequentCorrection most frequent item in C
16. Apply MostFrequentCorrection to r
17. R0  R0 [ r
18. end for

2.4 Correcting Errors with PLURIBUS

In order to address the shortcomings of trie-driven error
correction, we propose, PLURIBUS, a read-driven algorithm
for error correction. PLURIBUS considers each read one by
one, and refers to the trie to find all low frequency sub-
strings incident on the read. This “read-driven” approach
used by PLURIBUS examines all suffixes of each individual
read and identifies all the corrections that could be applied
to the read. These suggested corrections are not always con-
cordant. Therefore, in order to handle discrepancies
between suggested corrections, PLURIBUS utilizes a voting
scheme. This voting scheme considers all suggested correc-
tions for each read, and realizes the most frequently sug-
gested correction for that read. This approach is described
in detail in Algorithm 1.

To be more precise, we denote the set of suggested cor-
rections as C. As shown in Algorithm 1, C is defined for
each read and all possible suggestions are added into it as
the read is queried against the constructed trie. Defining

CountðC;DðaÞi Þ as the number of times a specific correction is
suggested during this phase, PLURIBUS chooses the correction
to be applied as

argmax
D
ðaÞ
i

CountðC;DðaÞi Þ: (3)

In this manner, PLURIBUS guarantees that the modification
performed on a read is consistent for any arbitrary traversal
of the underlying data structure, and for any arbitrary order
of the reads inR.

Referring back to the deletion example in Fig. 3, PLURIBUS

would identify both of the highlighted nodes and would
identify all of the suggested corrections. The set of suggested
corrections would be fDðSubCÞ3 ;D

ðInsCÞ
3 ;D

ðInsAÞ
3 ;D

ðInsCÞ
3 g. Insert-

ing a ‘C’ after the second base is suggested multiple times; it
is the most frequently suggested item and the only item sug-
gested more than once. This most frequent correction is the
one that PLURIBUS chooses to apply to the read, and it is the
only valid correction in the set.

Applying Correction in Multiple Rounds. Depending on the
error rate of the sequencer, it is possible that an error can
contain multiple errors. This is indeed the case for the

Fig. 3. Illustration of the shortcomings of trie-driven error detection: The generalized suffix trie for a set of five reads with a single deletion error
made from a simple hypothetical genome. The nodes highlighted in bold are those that are low frequency, which also have siblings that are high fre-
quency (assuming a threshold of 1). The items highlighted by dashed outlines are all of the corrections suggested by the trie with dashed lines denot-
ing the specific node that suggested those corrections. Note that both nodes each suggest two different corrections, so a trie-driven method would
only be able to guess which one to apply. However, looking at the set of suggestions as a whole reveals that there is a common suggestion between
the nodes, and a read-driven method would be able to identify the whole set of suggestions before applying a correction.
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Illumina platform. While simultaneous identification and
correction of multiple errors on a read is desirable, it is com-
putationally prohibitive since the space of possible correc-
tions grows exponentially with the number of errors on a
read. An approximation to simultaneous correction would
be to use a fully dynamic suffix trie, i.e., a trie is modified
everytime a read is modified to properly represent the cor-
rected read set. However, the construction and utilization of
such a tree is also not feasible for the current ranges of
genome length and coverage.

PLURIBUS takes a more modest, yet reliable approach to
this problem: The whole process is performed in rounds
where up to a single correction is applied to each read
before the trie is rebuilt using the modified reads. Note that
the corrections applied to the read set can improve or enable
the correction of additional errors in two different ways:
First, correcting errors in a read can make it easier to iden-
tify corrections for other errors in that read. Therefore, cor-
rection in multiple rounds provides a tractable method of
using information gained by correcting reads throughout
the read set to improve correction of other reads.

2.5 Complexity Analysis of PLURIBUS

The main component of the runtime and space require-
ments of the algorithm is the construction and querying of
the suffix trie. The algorithm essentially builds a general-
ized suffix trie, then walks through the trie again during its
search for suggested corrections. At a first glance, the algo-
rithm may imply a runtime and space complexity of Oðn‘2Þ.
However, as described above, only a small subset of the trie
is actually constructed. The parameters J and K dictate the
first and last levels of the trie to be constructed. By limiting
the length of the longest substring stored in the trie to be K,
the complexity of a naive trie construction becomes Oðn‘KÞ.
Furthermore, since the length of the shortest substrings
stored in the trie is J the complexity becomes Oðn‘ðK � JÞÞ
as long as nodes representing substrings of length J can be
accessed in constant time (e.g., using a hash table). Since the
value of K � J tends to be small (around 4 or 5), the com-
plexity of the algorithm can be considered as Oðn‘Þ for prac-
tical applications.

2.6 Reverse Complement Considerations

In sequencing, reads can come from both strands of DNA.
Therefore, both the read and its reverse complement need
to be considered in spectral alignment. In practice, when
storing substring frequencies, both the read and its reverse
complement are stored in the data structure that is being
used to count frequencies. Corrections can then be identi-
fied in either direction of a read. Taking the reverse comple-
ments of the reads into account does not significantly
impact the complexity of correction algorithms, since in the
worst case, the number of substrings stored is doubled.
PLURIBUS handles reverse complements by adding suggested
corrections from both directions into its set of suggestions
for a read, C. For practical convenience, when corrections
suggested by the reverse complement are added into C,
they need to be transformed to use the forward direction as
the frame of reference for the position of the correction and
the nucleotide to change into (if applicable).

3 RESULTS

In this section, we compare PLURIBUS against existing error
correction methods using real sequencing datasets. We first
examine the accuracy of correction of different methods
using the tools from a recent correction survey[14]. Then,
we use QUAST[15] to compare the assembly performance
of the datasets corrected by the suite of correction methods.
Finally, we present an in-depth analysis of the behavior of
PLURIBUS to explain our results.

3.1 Experimental Setup

We compare the performance of PLURIBUS against the state-
of-the-art error correction methods MUSKET[8] and RACER
[9]. These tools were chosen based on their overall perfor-
mance as presented in [14]. We have chosen four Illumina
MiSeq real sequencing datasets for our test data. One data-
set is for Escherichia Coli, two are for Salmonella Enterica,
and the last one is for Pseudomonas Syringae. Details on
the four datasets is presented in Table 1.

The read lengths of the datasets range up to 251 bp. In
our earlier experiments on other data sets [16], we found
that performing three rounds of correction with PLURIBUS

was sufficient to correct reads of around 100 bp in length.
For this reason, we perform six rounds of correction with
PLURIBUS on these four datasets.

3.2 Correction Accuracy

In the survey of error correction methods [14], several met-
rics that reflect the accuracy of correction were introduced.
We use the tools READSEARCH and KMERSEARCH from [14],
which respectively compute the performance criteria READ-

DEPTHGAIN and KMERDEPTHGAIN. These criteria are described
in detail by Molnar et al. [14]. Briefly, these criteria quantify
the trade-off between precision and recall specifically in the
context of error correction, i.e., it quantifies the gain
achieved by detecting and correcting errors at the cost of
making spurious corrections as well. We use these criteria
to assess the correction performance of PLURIBUS. The differ-
ence between READDEPTHGAIN and KMERDEPTHGAIN arise
from the unit of analysis that is considered, i.e., whether the
assessment is done at the level of reads or at the level of sub-
strings with fixed length.

Table 2 shows READDEPTHGAIN and KMERDEPTHGAIN for
the correction of the test datasets listed in Table 1. A partial
breakdown of the components used to calculate KMERDEPTH-

GAIN is also presented in Table 2 to provide a more in-depth
comparison of accuracy. The partial breakdown is com-
prised of the metrics “Specificity”, “Sensitivity”, “True Pos-
itives”, and “False Positives”, which are all reported along
with KMERDEPTHGAIN by KMERSEARCH. The best performance
for each metric on each dataset highlighted in bold.

TABLE 1
Test Datasets

Accession Organism Coverage Genome Length

SRR519926 E. Coli 43� 4.64 Mbp
SRR1203044 S. Enterica 89� 4.89 Mbp
SRR1206093 S. Enterica 97� 4.89 Mbp
SRR1119292 P. Synringae 105� 6.09 Mbp
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As shown in the table, across the four datasets PLURIBUS

has lower READDEPTHGAIN and KMERDEPTHGAIN compared
against MUSKET and RACER. However, careful investigation
of the partial breakdown of KMERDEPTHGAIN leads to more
interesting observations. Namely, across the four datasets,
PLURIBUS consistently achieves the highest level of precision.
To be more precise, PLURIBUS has the highest level of
reported “Specificity” as well as the lowest number of
“False Positives”. The breakdown also shows why PLURIBUS

has relatively low READDEPTHGAIN and KMERDEPTHGAIN.
Since it is designed as a conservative method that aims to
identify accurate corrections, PLURIBUS has the lowest
reported levels of “Sensitivity” and “True Positives”.

This observation suggests that PLURIBUS can be utilized
to improve the precision of other methods in error correc-
tion. As discussed in the previous section, one of the
design decisions in PLURIBUS is that error correction is
applied in over a series of rounds. MUSKET also performs
correction in a series of stages. However, rather than
using the same method to correct at each stage as in PLURI-

BUS, MUSKET uses increasingly aggresive methods to cor-
rect the reads. Inspired by this approach, we use PLURIBUS

as a conservative starting point for a compatible error cor-
rection tool, RACER. Overall, RACER has the best stand-
alone performance and PLURIBUS has the highest rate of
precision. This observation suggests that the extremely
low rate of false positives of PLURIBUS can be used to per-
form the most reliable corrections at the beginning,
thereby minimizing potential negative effects that com-
pounding mistakes in correction. For this purpose, we
run systematic experiments to compare the performance
of RACER against two combinations of the two algo-
rithms: PRCor and RPCor. PRCor represents correcting
data with PLURIBUS first then correcting the data with
RACER. RPCor represents correcting data in the opppo-
site order, using RACER first and PLURIBUS second. The
results of this analysis are also shown in Table 2.

As seen in Table 2, across all four datasets PRCor and
RPCor both provide improved READDEPTHGAIN and KMER-

DEPTHGAIN, as compared to RACER _Furthermore. PRCor
outperforms RPCor in most of the instances. Namely, as
expected, prior application of the more conservative cor-
rection method leads to improved overall correction
performance.

The reads in the datasets SRR1203044 and SRR1206093
are both from S. enterica. Interestingly there is a large per-
formance difference between the two datasets. According to
Table 1, the coverage of the better performing dataset is
slightly higher. To assess whether the differences in perfor-
mance are due to the increased coverage, we perform a
series of downsampling experiments. For this purpose, we
artificially reduce the coverage of the datasets by randomly
dropping reads from the datasets and assess the perfor-
mance of three methods on these downsampled (lower cov-
erage) data: RACER only, PRCor (PLURIBUS first, then
RACER), and RPCor (RACER first, then PLURIBUS). Fig. 4
shows how coverage effects KMERDEPTHGAIN for these three
methods. Each point shows the average across five random-
ized runs, except the rightmost points which represent the
full datasets. Error bars were left off the figure since
the standard deviations were negligibly small. As seen in
the figure, KMERDEPTHGAIN is quite stable with decreasing
coverage, until the coverage gets lower than 10�. For all lev-
els of coverage, consistently PRCor outperforms RPCor, and
RPCor outperforms RACER, suggesting that a combination
of a conservative and an aggressive tool outperforms the
application of the aggressive tool alone.

3.3 Runtime Performance

An important consideration for error correction method is
its scalability, specifically, the amount of time required to
perform correction. Table 3 shows the timing results for the
different correction methods when run on a desktop com-
puter with an Intel Xeon 3.4 Ghz Quad-Core Processor and

TABLE 2
Error Correction Accuracy

Dataset Tool READDEPTHGAIN KMERDEPTHGAIN Specificity Sensitivity True Positives False Positives

MUSKET 23.09 30.04 99.994 30.05 27,593,420 5,041
RACER 26.36 37.75 99.942 37.81 34,718,685 54,226

SRR519926 PLURIBUS 9.72 19.50 99.997 19.50 17,909,063 2,427
PRCor 29.48 40.95 99.949 41.00 37,646,364 47,797
RPCor 28.65 39.30 99.944 39.36 36,140,285 52,035

MUSKET 6.23 16.66 93.468 34.13 37,080,221 18,982,092
RACER 13.54 19.73 99.965 19.83 21,539,795 105,587

SRR1203044 PLURIBUS 9.41 13.32 99.986 13.36 14,515,335 40,096
PRCor 13.35 20.32 99.964 20.41 22,178,344 105,878
RPCor 13.55 20.12 99.965 20.22 21,962,719 100,526

MUSKET 26.72 45.16 95.506 70.22 46,410,317 16,557,834
RACER 76.29 60.05 99.991 60.10 39,727,320 33,734

SRR1206093 PLURIBUS 50.85 39.01 99.997 39.03 25,796,452 12,143
PRCor 77.88 62.70 99.988 62.76 41,484,750 43,758
RPCor 77.86 61.51 99.991 61.56 40,687,947 33,539

MUSKET 10.03 20.29 89.152 42.80 82,244,121 43,254,869
RACER 16.95 21.87 99.951 21.97 42,215,514 196,754

SRR1119292 PLURIBUS 5.54 13.28 99.975 13.34 25,625,061 99,448
PRCor 17.24 22.73 99.945 22.85 43,906,650 219,401
RPCor 17.20 22.38 99.951 22.48 43,202,401 195,539
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16 GB of RAM. The table shows both the wall-time and the
CPU-time, which takes into account the use of multi-thread-
ing. Consistently, RACER has the fastest wall-time of the
methods across all datasets. However, when observing
CPU-time, PLURIBUS requires the least amount of total CPU
usage. RACER and MUSKET both take advantage of multi-
threading and this is apparent by examining the differences
between their wall-times and CPU-times.

3.4 Assembly Performance

The primary goal of performing error correction is to
improve the process of de novo assembly. We use the VEL-

VET assembler [3] to assemble the raw datasets as well as
the datasets corrected by the suite of correction methods.
Then, we use the tool QUAST[15] to assess the quality of
the contigs generated by VELVET. We present the metrics
NGA50, number of misassemblies, and the fraction of the
reference genome that is assembled in Table 4. The best
QUAST results for each metric and each dataset are bolded
in the table.

For almost all metrics across all four datasets, the combi-
nations of PLURIBUS and RACER have the best performance.
Between PRCor and RPCor, PRCor is typically better than
RPCor in assembly performance, with the E. Coli dataset
being the exception. In general, the combination of the two

tools increases the length of quality contigs that are gener-
ated, decreases the number of misassemblies in the contigs,
and increases the fraction of the reference genome that is
covered by at least one quality contig.

As mentioned above, the SRR1203044 and SRR1206093
datasets are both from the organism S. enterica. We per-
form the same downsampling analysis with regards to
assembly performance. Fig. 5 shows how coverage effects
NGA50 in the two datasets. Again, each point in the figure
represents the average NGA50 across 5 runs, and the right-
most points represent the full datasets. For SRR1203044,
the performance of PRCor and RPCor actually outperforms
RACER on the downsampled datasets, even though they
had lower NGA50 scores on the full dataset. Overall, the
same trends that occured in the KMERDEPTHGAIN downsam-
pling analysis are reflected in the assembly performance
results. NGA50 stays relatively stable until coverage drops
to less than 10� at which point NGA50 drops dramatically
for all methods.

Fig. 4. Comparison of KMERDEPTHGAIN of correction for RACER and the combination of RACER and PLURIBUS as coverage changes for two Salmo-
nella datasets.

TABLE 3
Runtimes in Seconds to Correct Each Dataset

Dataset Tool Wall-Time CPU-Time

MUSKET 740.5 5820.0
SRR519926 RACER 75.5 415.4

PLURIBUS 239.3 252.8

MUSKET 241.1 1907.5
SRR1203044 RACER 123.6 897.8

PLURIBUS 276.8 274.6

MUSKET 365.6 2891.7
SRR1206093 RACER 168.3 1235.3

PLURIBUS 357.9 372.5

MUSKET 471.7 3726.0
SRR1119292 RACER 230.7 1735.4

PLURIBUS 496.4 506.6

TABLE 4
Assembly Performance via QUAST

Dataset Tool NGA50 Misassemblies Fraction

Raw - 11 39.43
MUSKET 3,849 511 63.81

SRR519926 RACER 18,519 239 73.03
PRCor 11,131 410 70.50
RPCor 29,847 147 83.30

Raw 8,379 178 66.07
MUSKET 32,770 156 82.97

SRR1203044 RACER 72,928 65 90.89
PRCor 70,987 64 91.44
RPCor 69,548 63 90.90

Raw 826 123 53.28
MUSKET 31,123 193 83.74

SRR1206093 RACER 118,646 42 93.94
PRCor 140,535 33 94.92
RPCor 90,857 45 93.99

Raw - 113 44.43
MUSKET 15,853 217 71.85

SRR1119292 RACER 31,608 165 85.30
PRCor 46,819 101 86.88
RPCor 35,627 152 85.29
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3.5 Detailed Analysis of PLURIBUS

As shown in the results above, PLURIBUS has excellent
precision, but this comes at the cost of lower recall.
Here, we present an in-depth analysis into the behavior
of PLURIBUS in order to explain this behavior of PLURIBUS.
This analysis also provides insights into the limits of suf-
fix-tree based error correction.

3.5.1 Correctability Analysis

To identify the strengths and shortcomings of our multi-
suffix approach to error correction, we classify sequenc-
ing errors in different read sets based on the ability of
the method to identify valid corrections for those errors.
We use simulated data since we will have the true set of
corrections which serve as the basis for the classification.
Besides the true corrections the classification scheme also
needs the set of candidate corrections, C. We developed
a modified version of PLURIBUS which rather than correct
the sequencing errors that are detected it merely reports
C for each read. These two sets of corrections are then
used to classify each error according to the scheme
described below.

We define five classes of errors: Undetectable, Indistin-
guishable, Single Suffix Correctable, Multi-Suffix Correct-
able, and Uncorrected and two classes for false positives
Single Suffix False Positive and Multi-Suffix False Positive.
All these classes are mutually exclusive (i.e., an error
belongs to exactly one of these classes), except for Uncor-
rected and Multi-Suffix False Positive, as explained below.
Each of these classes are defined as follows.

� Undetectable errors are sequencing errors for which
there is no item in C that could correct this error.

� Indistinguishable errors are instances where C will
contain both valid and invalid corrections for this
error and the voting method would not pick one
over the other.

� We consider an error to be Single Suffix Correctable if
the error is detectable and the set of candidate cor-
rections are either unanimous and valid or all candi-
date corrections are valid.

� We classify an error as Multi-Suffix Correctable if the
candidate corrections are not unanimous and the
voting scheme leads to a valid correction.

� The Uncorrected errors are all the errors that do not
match any of the above classes. Primarily these are
errors that are not corrected due to false positives.

The above set of classes are defined for an error that
exists in the set of reads. We also define two classes for cor-
rections that do not correspond to an error, i.e., false
positives.

� A Single Suffix False Positive is a correction suggested
by unanimous votes on a position where an error
does not exist or the correction is not accurate for the
corresponding error.

� A Multi-Suffix False Positive is a correction where the
candidate correction that is supported by most votes
for an error is not the accurate correction.

3.5.2 Simulation Setup

We use simulated data for our computational experiments,
so that the “ground truth” for each read is available. For
this purpose, we use an established read simulator,
ART [17], to generate test datasets, with properties match-
ing realistic NGS data. We simulate reads off of the
genomes of the rabies virus (12 Kbp)[18] and S. cerevisiae
(12 Mbp)[19] for our behavioral analysis of PLURIBUS. Experi-
ments are performed on varyling levels of coverage, ranging
from 10� to 30�.

3.5.3 Correctability Results

We perform our error classification analysis on the simu-
lated datasets as described in Section 2. As stated previ-
ously, the error correction process is performed in a series
of rounds. However, we limit the correctability analysis to
the behavior during the first round of correction. We impose
this limit since the corrections in earlier rounds influence
the correctability of other errors in later rounds. Therefore,
errors can be classified unambigiously only within the first
round of correction. Fig. 6 shows the relative rates of each of
the defined error classes in stacked bar plots for each
genome and level of coverage simulated. Note that the
range of fraction exceeds 1 on the two plots. The range from
0 to 1, shows the relative rates of the classes “Undetectable”,
“Indistinguishable”, “Single Suffix Correctable”, “Multi-
Suffix Correctable”, and “Uncorrected”. The summation of

Fig. 5. Assembly performance in terms of NGA50 as coverage changes for two Salmonella datasets.
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these classes is equal to the total number of true errors in the
read set and is treated as the base for comparison. The
bands stacked on top of that range are “Single Suffix False
Positive” and “Multi-Suffix False Positive” which represent
instances where a false positive correction will be applied to
the read set. We show how the false positive rate compares
to the total number of errors in the reads by stacking them
on top of all the true errors.

The “Single Suffix” and “Multi-Suffix” bands (third and
fourth bands from the bottom respectively) in the plots of
Fig. 6 show all of the errors that PLURIBUS is able to properly
correct in the first round of correction on the simulated
data. The “Single Suffix” band shows that around 39.6 per-
cent of sequencing errors in the S. cerevisiae datasets and
31.1 percent of them in the rabies datasets are able to be cor-
rected by choosing any arbitrary suggested correction in C.
The “Multi-Suffix” band shows how often the voting
scheme is able to identify the valid correction when C con-
tains both valid and invalid candidate corrections, 14.9 to
18.6 percent of all errors.

As shown in the experiments with real sequencing
data, PLURIBUS provides excellent precision, but it has a
lower rate of recall. The bottom band of each stacked bar
plot represents the fraction of errors that the algorithm
is unable to find valid corrections for. We find that suffix
trie based algorithms are unable to identify valid correc-
tions for around 40 percent of the errors in the rabies
datasets, and this rate increases slightly with increasing
coverage. The same trend is exhibited for the yeast data-
sets. The increase in the rate of the undetectable errors
due to coverage can be explained by the fact that for
these experiments t was held constant. PLURIBUS’s low
recall is a consequence of this relatively large fraction of
errors for which valid corrections cannot be found. Some
of these errors that are undetectable during this first
round may become correctable in later rounds, but as
seen in the real sequencing data experiments a large
number remain uncorrected.

4 CONCLUSION

In this paper, we propose a suffix trie basedmethod, PLURIBUS

(available at http://compbio.case.edu/pluribus),

for correcting sequencing errors in Next Generation
Sequencing data. The key innovation of the proposed
method is the voting scheme used to identify the best
correction to apply to a read. This approach is enabled
by performing correction in a read-driven manner to
identify multiple manifestations of the sequencing errors
of that read. We found that PLURIBUS is a conservative
correction method that has higher levels of precision
than other state-of-art correction tools but has lower lev-
els of recall in comparison. We explored combining PLU-

RIBUS and RACER together to correct data, and we found
that correcting the data with PLURIBUS either before of
after correcting the data with RACER improved correc-
tion performance. Overall, correcting the data with PLURI-

BUS before RACER worked better than the reverse order.
We attribute this behavior to PLURIBUS’s low rate of false
positive corrections, which minimizes any compounding
effects due to any false positives induced each time the
data is corrected. The trends in correction performance
were realized in the quality of the contigs generated in
assembly. Assembling data that was corrected by PLURI-

BUS and then corrected by RACER had the overall best
performance on the real sequencing datasets. These per-
formance trends were consistent across most datasets
and even as coverage was artificially reduced by random
downsampling.
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