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Phosphoproteomics Profiling of Nonsmall Cell Lung Cancer
Cells Treated with a Novel Phosphatase Activator
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Activation of protein phosphatase 2A (PP2A) is a promising anticancer
therapeutic strategy, as this tumor suppressor has the ability to coordinately
downregulate multiple pathways involved in the regulation of cellular growth
and proliferation. In order to understand the systems-level perturbations
mediated by PP2A activation, we carried out mass spectrometry-based
phosphoproteomic analysis of two KRAS mutated non-small cell lung cancer
(NSCLC) cell lines (A549 and H358) treated with a novel small molecule
activator of PP2A (SMAP). Overall, this permitted quantification of differential
signaling across over 1600 phosphoproteins and 3000 phosphosites. Kinase
activity assessment and pathway enrichment implicate collective
downregulation of RAS and cell cycle kinases in the case of both cell lines
upon PP2A activation. However, the effects on RAS-related signaling are
attenuated for A549 compared to H358, while the effects on cell cycle-related
kinases are noticeably more prominent in A549. Network-based analyses and
validation experiments confirm these detailed differences in signaling. These
studies reveal the power of phosphoproteomics studies, coupled to
computational systems biology, to elucidate global patterns of phosphatase
activation and understand the variations in response to PP2A activation
across genetically similar NSCLC cell lines.
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1. Introduction

As a serine/threonine phosphatase
that antagonizes the effects of multiple
kinases, protein phosphatase 2A (PP2A)
is a promising anticancer target whose
activation may disrupt many cancer-
promoting pathways simultaneously.
PP2A is a well-known tumor suppressor
that in many cancer models dephospho-
rylates prominent downstream effectors
of KRAS, such as AKT, MEK, ERK, and
MYC, among others.[1–3] Furthermore,
PP2A inactivation is a common feature
of cancer development, as it is frequently
disabled in multiple cancer types.[4–7]

Overall, activated PP2A has the poten-
tial to reverse the general responses
mediated by oncogenic kinases often
required for cancer development and
maintenance.[1,8–10]

PP2A activation has been shown to
be a promising anticancer strategy in
numerous models including chronic
myeloid leukemia cell lines[7] and
T-cell acute lymphoblastic leukemia.[11]

More recently, the pro-apoptotic and antitumor properties of a
class of antipsychotic drugs have been described,[12] and their
anticancer activity has been attributed to their ability to activate
PP2A.[11] Reverse engineering of these drugs resulted in a first-
in-class series of small molecule activators of PP2A (SMAPs)
that activates this family of phosphatases but lacks the main
dose-limiting toxicities associated with the parent molecules.[13]

Follow-up assays in nonsmall cell lung cancer (NSCLC) models
have confirmed that these molecules bind to the PP2A trimer,
and they demonstrated proapoptotic, antiproliferative properties
that are blunted upon PP2A inhibition.[14]

A thorough understanding of these compounds’ biological ef-
fects and clinical utility requires comprehensive identification
of their net signaling effects. Notably, the detailed character-
ization of SMAPs’ cellular effects at the protein level, where
phosphorylation-mediated signaling is directly regulated, will en-
able us to identify key pathways and targets of SMAP regu-
lation. Due to the ever-expanding catalog of known PP2A tar-
gets, SMAPmolecules may induce a complex signaling response
that would be difficult to fully characterize through targeted
approaches. High throughput, MS-based phosphoproteomics
can identify and quantitate thousands of peptides that may be
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Significance of the study

PP2A is a documentedphosphatase and tumor suppressor
that downregulates numerousoncogenic targets. Its activation
thusprovides apromising anticancer therapeutic strategy that
canpotentiallymirror the signaling effects of kinase inhibitor
combinations. This study features high-throughput phospho-
proteomic characterizationofKRASmutatedNSCLCcell lines
treatedwith anovel class of smallmolecules previously shown
tobind toPP2Aandpotentiate its activity. The resultswould
(1) provide oneof the earliest glimpsesof the differential phos-
phorylation changesuponphosphatase activationonaglobal
scale; (2) resolve the compounds’mechanismof action at the
signaling level; and (3) demonstrate howsimilar cell linesmay
exhibit unique response signatures that ultimately converge
andmanifest as cell death.

differentially phosphorylated in the context of disease and/or
drug treatment,[15] and these data, in turn, help identify cellular
signaling patterns that reflect the protein-level pathway and net-
work response phenotype.
Ultimately, the experimental and computational pipelines pre-
sented here intend to accomplish the following: (1) gener-
ate phosphoproteomic datasets of two KRAS mutant NSCLC
cell lines treated with our PP2A activator; and (2) character-
ize the major systems-level signaling perturbations induced
by SMAP treatment. Furthermore, the bioinformatic findings
would reveal unique response signatures between these cell
lines, which share mutations in a major oncogene. Ultimately,
these findings can contribute to a better understanding of
SMAP’s mechanism of action and reflect the potential vari-
ations in patient-specific responses to drug at the protein
level.

2. Experimental Section

2.1. Cell Culture

All cell lines were acquired from the American Type Culture
Collection and maintained in media (RPMI-1640, 10% FBS,
0.5% Pen/Strep) at 37°C and 5% CO2. The TRC-794 com-
pound was dissolved in DMSO solvent and stored at room
temperature.

2.2. Cell Viability Assay

Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) kit (Sigma–Aldrich). All
measurements were performed 24 h after treatment with the in-
creasing concentrations of TRC-794. Values in the plot are rela-
tive to the DMSO control samples.

2.3. Annexin V

Cells were treated with DMSO, TRC-794 (20 μM), Z-VAD
(100 μM), and a combination of TRC-794 + Z-VAD for 24 h.
Annexin V staining was performed using Annexin V conjugate
Alexa Fluor 488 from Invitrogen (Life Technologies), Annexin
binding buffer (No. V13246) from Invitrogen (Life Technolo-
gies), and Z-VAD (OMe)-FMK (No. sc-311561A) from Santa Cruz
Biotechnology according to themanufacturer’s protocol. Flow cy-
tometric analysis was performed on the FACSCalibur.

2.4. Cell Cycle Analysis

Cells were treated with either TRC-794 or DMSO for 24 h and
subsequently fixed in 100% ethanol at –20°C overnight. Cells
were then resuspended in propidium iodide (PI, Sigma–Aldrich)
and RNAseA (Roche) and allowed to stain for 20min prior to flow
cytometry analysis, performed on the FACSCalibur.

2.5. Phosphoproteomics Experimental Design

Two cell lines, A549 and H358, were tested, with each one hav-
ing three independent replicates of DMSO (control) treatment
and three independent replicates of SMAP treatment, all incu-
bated for 12 h. After protein lysis, each sample was further di-
vided into two technical replicates to assess the consistency of
the LC-MS/MS runs. In total, there were 6 controls + 6 treat-
ments = 12 runs per cell line. Note that one technical replicate
in the treated A549 group was ultimately excluded due to poor
detection of phosphoenriched peptides. Based on optimization
studies (unpublished), a 12 h time-point allowed for reproducible
dephosphorylation of ERK1/2, a target previously shown to be dif-
ferentially phosphorylated with SMAP,[13,14] without induction of
apoptosis. This strategy was intended to limit the secondary sig-
naling that may accumulate from cell death. Additionally, a pri-
ori power analysis required n = 3 per group in order to achieve a
power= 0.8 and alpha= 0.05 based on the effect size of phospho-
ERK2.
Peptide/protein data from the featured phosphoproteomics

experiment are compiled in Supporting Information, Table 1.
The MS proteomics data have been deposited to the Pro-
teomeXchange Consortium via the PRIDE partner repository
(https://www.ebi.ac.uk/pride/archive/) with the dataset identi-
fier PXD005698 (https://doi.org/10.6019/PXD005698). Support-
ing Information, Table 3 matches the uploaded file names to the
specific treatment conditions.

2.6. Label-Free Phosphoproteomics Sample Preparation and
Phosphopeptide Enrichment

Cells were treated with fresh media containing either 0.025%
(v/v%) DMSO (control) or 20 μM of TRC-794 for 12 h. Samples
were harvested and triple-washed with ice-cold PBS prior to stor-
ing cell pellets in –80°C for subsequent phosphoproteomic anal-
ysis. Cell pellets from the previous step were pulse sonicated in
2% SDS, 50 mM Tris buffer, pH 8 over ice and in the presence of
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protease and phosphatase inhibitors (Sigma–Aldrich). The sam-
ples were centrifuged, and the supernatants were reduced
(25 mM DTT for 1 h at 37 °C), alkylated (25 mM iodoacetamide
for 30 min at room temperature in the dark), and cleared of
SDS using the previously-published FASP protocol.[16] The pro-
tein concentration in the cleaned supernatant was thenmeasured
using a protein assay kit (Bio-Rad). Eight hundredmicrograms of
protein per sample was then digested with Lys-C for 1 h at 37°C,
followed by trypsin overnight at 37 °C (1:20 enzyme (g) to pro-
tein (g) ratio for each enzyme; final mixture concentrations were
adjusted to 2 m urea and 50 mM Tris buffer, pH 8). Digested pep-
tides were desalted using C18 cartridges (Oasis 1ccHLB,Waters),
eluted in 0.1% formic acid and 70% acetonitrile, and lyophilized
for 1 h. Samples were reconstituted with buffer containing 0.3%
trifluoroacetic acid, 60% acetonitrile, and 13% lactic acid. Subse-
quent phosphopeptide enrichment was performed using a tita-
nium dioxide spin tips (Thermo Fisher, IL). Samples were eluted
using 1.5% ammonium hydroxide and concentrated before com-
bining with 0.1% formic acid in HPLC grade water.

2.7. LC-MS/MS

Four hundred nanograms of each phospho-enriched peptide
mixture was analyzed by LC-MS/MS using a LTQ-Orbitrap Ve-
los mass spectrometer (Thermo Scientific, CA) equipped with
a nanoAcquity ultra-high pressure liquid chromatography sys-
tem (Waters, MA). Separation and detection of peptides were per-
formed as previously described.[17,18] LC-MS/MS raw data were
acquired in a data-dependent mode using Xcalibur (Thermo Sci-
entific, 2.2 SP1). The injection order was randomized, and the
technician was blinded to the sample labels.

2.8. Data Processing

The LC-MS/MS raw files were imported into Rosetta Elucidator
(Rosetta, 3.3.0.1.SP.25) and processed as previously described.[18]

The aligned and normalized peaks were annotated at the feature
level by generating database search files (*.dta). The files were
searched byMascot (version 2.3.01) against the humanUniversal
Protein Resources (UniProt) (20 233 sequences) database using
the following parameters: trypsin enzyme specificity; mass accu-
racy window for precursor ion, 10 ppm; mass accuracy window
for fragment ions, 0.8 Da; carbamidomethylation of cysteines as
fixed modifications; oxidation of methionine, phosphorylation of
serine, threonine and tyrosine as variable modification; and one
missed cleavage. Comparison of the runs against decoy searches
yielded an average false discovery rate of 1.3 ± 0.3% across all
samples.
Relative quantitation was based on area under the curve. Sub-

sequently, each peptide ion intensity was normalized by the
median intensity within its replicate sample. The phosphopep-
tide intensity values for every technical replicate were then av-
eraged, and the resulting datasets were analyzed for differential
phosphorylation between DMSO versus TRC-794 using Welch’s
t-test, two-tailed (Supporting Information, Table 1). The resulting
p-values were adjusted for multiple-hypothesis testing us-
ing the Benjamini–Hochberg method and reported in the

Supporting Information table. However, since at this step
we were performing a discovery-based study, we refrained
from any filtering based on the corrected p-values in or-
der to maximize hypothesis generation. Unless noted, all
subsequent discussion of the t-test results involved the raw
p-values.

2.9. Kinase–Substrate Enrichment Analysis (KSEA)

KSEA was used to infer kinases’ relative activities upon
SMAP treatment using the global phosphoproteomics data. This
method relies on a fundamental assumption that a kinase’s differ-
ential activity is positively correlated with the collective phospho-
rylation changes of its substrates. Calculations were performed
using R version 3.3.0. Please refer to the original publication[19]

for details on KSEA and the statistical scoring. Our analysis
was based on the third formula variation described in their
Materials and Methods. We assigned kinase–substrate (K–S)
links based on the K–S dataset from PhosphoSitePlus (July 2016
release),[20] search restricted to human proteins. To maximize
the coverage of usable phosphosites from our experiment, this
K–S dataset was supplemented with predicted K–S links
using the NetworKIN method.[21] We pulled these addi-
tional relationships from precomputed data, downloaded
from the KinomeXplorer-DB website,[22] for all available
kinase predictors against ENSEMBL version 59. Only pre-
dictions with scores five and above were considered. Each
site’s fold change (FC) was derived by taking the ratio
of the mean peptide ion intensity of SMAP over that of
DMSO. Normalized scores (calculated from the weighted
z-scores, as described in original paper) were reported.
FC values were averaged for identical phosphosites detected
across multiple peptides.

2.10. Reactome Pathway Enrichment Analysis

We performed Fisher’s exact test to identify the processes that
are enriched in proteins differentially phosphorylated between
the two cell lines. Analysis was performed at the protein level, in
which the p-value and phosphorylation FC values for each pro-
tein were selected from the peptide with the lowest p-value from
Welch’s t-test. The Reactome database[23] (version 60) served as
the reference pathway annotation. The “background” for which
enrichment is calculated against was not the list of all universally
known proteins; rather, it was restricted to all the proteins that
were quantified from the phosphoproteomics experiment. Per
pathway, a 2 × 2 contingency table was constructed to assess
counts of proteins included/excluded from the pathway and
meeting/lacking the specified inclusion criteria, described as
follows: For enrichment of dephosphorylated proteins, the
criteria were p < 0.05 from Welch’s t-test and log2FC < 0
(FC = fold change determined from the peptide ion intensity
ratio of (mean TRC-794)/(mean DMSO)). For enrichment of
hyperphosphorylated proteins, the criteria were p < 0.05
from Welch’s t-test and log2FC > 0. The raw one-tailed
p-value from Fisher’s exact test on each contingency ta-
ble was reported. All calculations were performed in
R version 3.3.0.
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2.11. MoBaS Analysis

Using the STRING database of protein interactions,[24] we first
built a protein–protein interaction (PPI) network, one per cell
line, with all identified proteins from the unfiltered dataset. We
scored the nodes of the networks by taking the minimum of the
p-values from Welch’s t-test across identified peptides for each
protein and taking –log of this p-value. We assigned a null score
to proteins for which phosphorylation data were not available.
From that, we then applied the Steiner Tree algorithm to recruit
additional nodes that would optimize the connectivity amongst
the experimentally identified nodes. Subsequently, we applied
MoBaS[25] to identify subnetworks that are enriched with pro-
teins that are tightly interconnected and differentially phospho-
rylated (having significant p-value scores). Additional details on
this method are available in Supporting Information (Materials
and Methods).

2.12. Additional Materials and Methods

Procedures exclusively featured in the Supporting Information
figures are described in Supporting Information (Materials and
Methods).

3. Results and Discussion

3.1. SMAP Reduces Cell Viability and Induces Apoptosis

Previous work from our group and collaborators have (1) de-
scribed the derivatization and structures of our series of small
molecules,[13] (2) studied its mechanism of action as a PP2A
activator,[14] and (3) demonstrated its antitumor properties in
murine models.[14] We have selected TRC-794 (aliases RT-30,
DT-794, and SMAP3 in other publications) as the featured
molecule for our global phosphoproteomics studies; Supporting
Information, Figure 1 illustrates its chemical structure. In line
with other members of the SMAP family of compounds, TRC-
794 exhibits consistent dose-dependent inhibition of cell viability
between two KRAS mutated NSCLC cell lines, A549 and H358
(Figure 1A). Increased Annexin V staining in treated cells in-
dicates induction of cell death, which is partly reversed with
cotreatment of Z-VAD, a pan-caspase inhibitor (Figure 1B).

This suggests that TRC-794 promotes cell death that is partially
caspase-dependent.

3.2. Phosphoproteomics Enabled System-Wide Characterization
of Differential Phosphorylation Changes

Label-free shotgun phosphoproteomics was used to inter-
rogate the differential phosphorylation changes with drug
treatment in the A549 and H358 cell lines. TRC-794 and
DMSO-treated samples were treated for 12 h and processed
in parallel as illustrated in the workflow (Figure 2A). Prin-
ciple component analysis and Spearman correlation assess-
ment of the two datasets yielded good separation between
DMSO and TRC-794-treated samples and consistency among the
technical and independent replicates (Supporting Information,
Figure 2).
We identified 3396 unique phosphosites mapping to 2999

unique phosphopeptides mapping to 1605 unique phosphopro-
teins in the A549 cells. Of this total, 400 phosphosites (map-
ping to 363 phosphopeptides and 308 phosphoproteins) passed a
p< 0.05 threshold of being differentially phosphorylated between
DMSO and TRC-794 treatment. As for H358, we identified 3135
unique phosphosites mapping to 2895 unique phosphopeptides
mapping to 1617 unique proteins; 372 of these phosphosites (337
peptides and 283 proteins)met a p< 0.05 criteria for significance.
Additional summary statistics are outlined in Supporting Infor-
mation, Figure 3.
Although PP2A activation is expected to lead to reduced

phosphorylation for direct targets of PP2A, we expected a wide-
ranging response of both increases and decreases in phospho-
rylation. In fact, phosphosite-level volcano plots (Figure 2B)
illustrate significantly larger numbers of dephosphorylated phos-
phosites meeting p < 0.05 and –log2(FC) � –1 for the A549
cell lines compared to H358. In contrast, the H358 dataset in-
cluded a greater number of significantly hyper-phosphorylated
sites upon drug treatment. Although these cell lines have ap-
proximately 70% of their identified proteins in common (58%
of phosphopeptides and 39% of phosphosites), there are strik-
ing differences in their responses to the PP2A activator: out of
the phosphoproteins meeting the p < 0.05 criterion, no more
than 25% of these proteins (16% of phosphopeptides and 13%
of phosphosites) are shared between the two (Figure 2C; Sup-
porting Information, Figure 4). Thus, a detailed examination of

Figure 1. TRC-794 decreases cell viability and induces apoptosis. A) 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay
against increasing concentrations of the SMAP TRC-794 after 24 h incubation. All measurements are normalized to DMSO control. B) Annexin V
staining of cells treated with DMSO, 100 μM Z-VAD (caspase inhibitor), TRC-794, or a combination of Z-VAD + TRC-794 after 24 h. The means ± SD
across three independent replicates are reported.
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Figure 2. Phosphoproteomics identified numerous differentially phosphorylated peptides between the two treatment groups. A) The phosphoproteomics
workflow that was applied: two NSCLC cell lines were treated separately with DMSO control and the PP2A activator TRC-794 for 12 h. Three independent
replicates per condition were analyzed. B) Volcano plots of A549 and H358 at the phosphosite level. The horizontal dotted line represents Welch’s
t-test p = 0.05; vertical lines represent log2(fold change) ±1, corresponding to twofold change in magnitude. Blue dots = hits with p < 0.05 and
mean log2(FC) �–1 in the TRC-794 group. Red dots = hits with p < 0.05 and mean log2(FC) �1 in the TRC-794 group. C) Venn diagram depicting
phosphoprotein-level overlap between A549 and H358 between all proteins (left diagram) and significant proteins (right diagram).

the pathways and network differences was carried out to un-
derstand the molecular basis for the sharply differing cellular
responses.

3.3. Kinase–Substrate Enrichment Analysis Implicated
Downregulation of MAPK and Cell Cycle Signaling

Since phosphorylation-based signaling is heavily dependent on
the actions of kinases, we first sought to characterize changes in
treatment-induced signaling by estimating the relative activities

of kinases. Consequently, we employed KSEA[19] to compute
scores that reflect the directional shifts in each kinase’s signaling
output. Ultimately, a negative score corresponds to a kinase with
substrates that are generally dephosphorylated with TRC-794,
thereby suggesting that the overall kinase activity is decreased
with treatment relative to DMSO control. Inversely, a positive
score implies upregulated activity with treatment.
Altogether, 149 unique kinases were scored in both cell lines

using data from 632 and 535 phosphosites with known K–S re-
lationships in A549 and H358, respectively (Supporting Infor-
mation, Table 2). Both cell lines exhibited robust SMAP-induced
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downregulation of RAF1, MAP2K1/MAP2K2, and RPS6KA1—
all of which annotate to the canonical MAPK pathway down-
stream of (K)RAS (Figure 3). This pattern is consistent with
early published observations of diminished MAPK signaling
with SMAP treatment.[13,14] Interestingly, though, H358-specific
downregulation of AKT1, RPS6KB1, and MAPK3 (all down-
stream of RAS) suggests stronger suppression of the RAS fam-
ily cascade in this cell line. Additionally, while some cell cy-
cle kinases (PLK1 and AURKA) experienced negative scores in
both cells, many other related kinases (CDK1, CDK2, CDK4, AU-
RKB, and TTK) showed downregulation unique to A549. Tar-
geted Western blots and quantitative PCR validation confirmed
downregulation of select MAPK and cell cycle pathway members
(Supporting Information, Figure 5). These KSEA findings alto-
gether suggest that SMAP treatment induced a stronger suppres-
sion of cell cycle members in A549 and more robust inhibition
of RAS effectors in H358.

3.4. Reactome Pathway Enrichment Identified
Dephosphorylation of Numerous Cell Cycle-Related Proteins

This initial observation provided very interesting insight on dif-
ferential signaling changes from a kinase perspective. However,
since only a small subset of the experimental phosphosites had
K–S annotations and were thus used for KSEA calculations, we
wanted to expand our analysis to general pathway enrichment,
so we could potentially characterize processes that have too few
identified substrates to generate robust KSEA signatures. Con-
sequently, we performed Reactome pathway enrichment scored
by Fisher’s exact test against a background of all the proteins
from the phosphoproteomics dataset. Interestingly, when focus-
ing on the dephosphorylated proteins, cell cycle pathways were
significant for both cell types (Figure 4A); however, cell cycle an-
notations (notably, those linked with transcriptional regulation)
were more numerous for the A549 cell line. Furthermore, H358
displayed notable dephosphorylation of MAPK-related signaling,
while these pathways were not significant for A549. Analysis of
hyperphosphorylated pathways revealed common hits on intra-
cellular transport (Figure 4B). Network-based pathway enrich-
ment using the YourCrosstalker software also revealed similar
trends as with Figure 4A: there was a stronger cell cycle effect
in A549 and preferential enrichment of IGF1R, mTOR, EGFR,
and SOS-mediated signaling pathways—all of which overlapwith
RAS and/or MAPK signaling—in H358 (Supporting Informa-
tion, Figure 6; http://proteomics.case.edu/ct/nsclc/dwiredja/).

3.5. MoBas Network-Based Scoring Identified a Protein Cluster
That Reflected Differential SMAP Response Between A549 and
H358 Cells

Since canonical pathways are predefined and rigid, the earlier Re-
actome enrichment results may miss protein groupings that are
not classically established but may better capture the differential
signaling response in our model. Motivated by this challenge, we
decided to take a PPI network approach and employedMoBaS.[25]

Overall, this method aims to identify densely-connected subnet-
works of proteins that (1) are functionally related and (2) exhibit

Figure 3. KSEA calculations identified common downregulation of select
MAPK proteins but a high proportion of cell cycle kinases in A549. Heat
map reporting KSEA results according to the normalized scores. Only ki-
nases that are shared between the two datasets and that have 5+ sub-
strates are included. Asterisks indicate the scores meeting the p <0.05
statistical cutoff. Blue color represents negative kinase scores and red rep-
resents positive.
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Figure 4. Reactome pathway enrichment revealed dephosphorylation of cell cycle pathways. Analysis was performed at the protein level, in which the
p-value and phosphorylation fold change values for each protein was selected from the peptide with the lowest p-value from the Welch’s t-test. All the
pathways with visible bars met the Fisher’s exact p < 0.05 cutoff in the designated cell line(s). All shared pathways are listed, but only the top five
unique pathways to each cell line are included. The purple dots in the volcano plots indicate the proteins that enrichment was calculated for. A) Pathways
enriched with dephosphorylated proteins. B) Pathways enriched with hyper-phosphorylated proteins.
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Figure 5. MoBaS identified a tightly-interconnected subnetwork involved in cell cycle progression. A) The top-scoring PPI subnetwork in A549 identified
from the MoBaS approach. B) Second top-scoring subnetwork from MoBaS analysis on H358 cells, which enriched for cell cycle proteins. Each node is
a phosphoprotein represented by its most significant peptide. Node color is based on log2(FC) relative to DMSO control.

robust differential phosphorylation with treatment. Statistical
scoring of the subnetworks is illustrated in Supporting Informa-
tion, Figure 7, and the top ten readouts are listed in Supporting
Information, Figure 8 for both cell lines.
Not only did the resulting top module for A549 comprise en-

tirely of proteins that participate in cell cycle processes, but all
the protein nodes were also uniformly dephosphorylated in drug
treatment (Figure 5A). Analysis of theH358 dataset yielded a sim-
ilar module comprising of cell cycle players; however, these pro-
teins displayed no coherent directional phosphorylation change
(Figure 5B). To verify that MoBaS offers relevant cluster iden-
tification, we performed a parallel analysis using the popular
MCODE method.[26] Indeed, for both A549 and H358, MCODE
also extracted high-scoringmodules populatedwith cell cycle pro-
teins (Supporting Information, Figure 9), and these constituents
significantly overlappedwith the proteins from theirMoBaS clus-
ter counterparts (p-value< 2.2× 10−16 for both cell lines, Fisher’s
exact test). Along with previous kinase and pathway findings,
MoBaS analysis confirms that A549 has greater cell cycle sensi-
tivity to drug treatment.

3.6. TRC-794 Induces A549-Specific Cell Cycle Disruption

Thus far, although our SMAP compound frequently induced
dephosphorylation of many cell cycle and RAS/MAPK-related
proteins, bioinformatic analyses have consistently uncovered a
more vigorous downregulation of cell cycle processes in A549.
We sought to confirm this collective observation by testing if
these system-level patterns translate into specific phenotypic dif-
ferences between A549 and H358’s response to TRC-794. Cells
were differentially treated with DMSO or two varying doses
of our compound for 24 h and subsequently incubated with
PI to stain the DNA content. Flow cytometric analysis against
the PI staining would then determine the distribution of cells
across the different phases of the cell cycle. Interestingly, A549
treatment with 10 μM SMAP induced a striking increase in

the G1 population and shrinkage of the G2M phase (Figure 6,
thin arrow), whereas H358 experienced a more apoptotic/cell
death reaction at the same dose (Figure 6, thick arrow), as in-
dicated by the rise in cells that had undergone DNA fragmen-
tation (Sub-G1). Ultimately, however, the higher concentration
of TRC-794 had marked increase in the Sub-G1 population in
both cell lines. Collectively, these observations reaffirm our com-
putational findings and suggest that our SMAP promotes di-
verging intermediate cellular responses within KRAS mutant
lines at the given time points, which ultimately converge on
cell death.

Figure 6. SMAP resulted in A549-specific cell cycle disruption. Cell cycle
analysis measured by propidium iodide staining of DNA in the samples.
Cells were treated with DMSO or two different concentrations of SMAPs
for 24 h prior to analysis. The thin and thick arrows mark specific condi-
tions featured in the “Results and Discussion” text.
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4. Concluding Remarks

Our study applied quantitative phosphoproteomics to explore
the global signaling effects of a novel phosphatase activator in
KRAS mutant NSCLC, and subsequent bioinformatics analy-
ses revealed stronger disruption of cell cycle proteins in A549,
while H358 had amore prominent dysregulation of RAS/MAPK-
related pathways. These observations not only corroborate pre-
vious studies that suggest diverging pathway dependencies be-
tween the two,[27–29] but they also exemplify how SMAP therapy
may target unique combinations of pathways that eventually pro-
mote cell death. Although our current experimental study did not
explore the temporal aspect of the signaling response and can-
not distinguish whether or not a given dephosphorylation event
is due to direct PP2A–substrate interaction, our work highlights
the intricacies of the primary and secondary signaling patterns
that accumulate from small molecule phosphatase activation. Ul-
timately, the observed variations in response of similar cell lines
depict potential complexities in drug response for individual pa-
tients harboring identical mutations. Phosphoproteomics, cou-
pled to advanced bioinformatics, is a valuable tool to dissect the
phosphosignaling basis of these differences.
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