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Circulating microbial content in myeloid
malignancy patients is associated with disease
subtypes and patient outcomes
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Although recent work has described the microbiome in solid tumors, microbial content in

hematological malignancies is not well-characterized. Here we analyze existing deep DNA

sequence data from the blood and bone marrow of 1870 patients with myeloid malignancies,

along with healthy controls, for bacterial, fungal, and viral content. After strict quality filtering,

we find evidence for dysbiosis in disease cases, and distinct microbial signatures among

disease subtypes. We also find that microbial content is associated with host gene mutations

and with myeloblast cell percentages. In patients with low-risk myelodysplastic syndrome, we

provide evidence that Epstein-Barr virus status refines risk stratification into more precise

categories than the current standard. Motivated by these observations, we construct

machine-learning classifiers that can discriminate among disease subtypes based solely on

bacterial content. Our study highlights the association between the circulating microbiome

and patient outcome, and its relationship with disease subtype.
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Myeloid malignancies are diseases that result from
abnormal proliferation or lack of differentiation in
myeloid progenitor cells. This class of neoplasms

includes acute myeloid leukemia (AML) as well as other diseases
that can progress to AML such as myelodysplastic syndrome
(MDS), characterized by dysplastic changes of hematopoietic
progenitor cells, and myeloproliferative neoplasm (MPN), an
over-proliferation of cells. Patients with characteristics of both
MDS and MPN are classified as MDS/MPN1. The annual inci-
dence rate of myeloid malignancy is approximately 8 per 100,000
in Europe2, for example, but is much higher among the elderly3.
While survival has improved, it is highly variable among the
different disease subtypes. In the US, AML 5-year survival is
estimated at around 27%, and treatment options become
increasingly limited and ineffective with increasing patient age4.
A better understanding of the factors that influence disease out-
comes and response to treatment is needed.

Meanwhile, evidence is growing for relationships between
human cancers and the microbiome. In the blood cancer realm,
some B-cell lymphomas have been associated with the bacteria
Helicobacter pylori5, while T-cell leukemia and Burkitt’s lym-
phoma have long been known to be caused by viral infections
(human T-cell lymphotropic virus 16 and Epstein-Barr virus7,
respectively). Recent work has investigated the relationships
between the microbiome and clinical features in myeloid malig-
nancy patients, though these studies have almost exclusively
analyzed the gut microbiome. For instance, multiple studies have
demonstrated that intestinal microbiota composition can predict
survival in stem cell transplant patients8,9. The connection
between the gut and the bone marrow is well-established10, and
therefore an impact of the gut microbiome on blood cancer and
its treatment11 is conceptually and empirically rational. However,
the microbiome at the actual tumor site of myeloid malignancy—
bone marrow and peripheral blood—remains unexplored. This
stands in contrast to solid tumors, where microbiome research
has recently been directed toward the tumor site itself12–15. A
survey of >1500 tumors revealed distinct microbiome composi-
tions for each of seven tumor types15. A similar study16 of
>18,000 solid tumor and matched normal blood samples was able
to find microbial signatures in both the solid tissue and blood that
could accurately predict tumor type, and the blood signatures
could differentiate between cancer patients and healthy
individuals.

Traditionally, human blood and bone marrow have been
considered to be normally sterile, and therefore microbiome
analysis of these entities would only be performed when dele-
terious infection was suspected. However, evidence is now accu-
mulating for a normal blood microbiome in healthy individuals17.
It is believed that microbiota in circulation is partially derived
directly from the gut through bacterial translocation18, and

therefore the established ability of intestinal flora to predict
patient outcomes may also be valid for blood. Given this and the
increasingly acknowledged relationships between microbial
communities and response to treatment, we hypothesized ana-
logous relationships between the bone marrow microbiome in
myeloid malignancy patients and disease characteristics. To this
end, we extracted bacterial, fungal, and viral sequence from deep
shotgun sequencing of DNA in the bone marrow and blood of
1870 myeloid malignancy patients, as well as in the bone marrow
of healthy donors. Our primary goal was to elucidate relation-
ships between microbial content/abundance and clinical features,
including disease subtype and outcomes, in the disease cohort.
Although our ability to perform case/control comparisons was
limited by a relatively small number of healthy controls, we were
nonetheless able to observe some significant differences in
microbial content between patients and healthy donors.

Results
Patient overview and microbiome ascertainment. The cohort
comprised 1870 myeloid malignancy patients. Bone marrow
(n= 1756) or peripheral blood (n= 114) was taken at diagnosis
and sent to the Munich Leukemia Laboratory between 2005 and
2017 for work-up. Disease subtypes included AML (n= 612),
MDS (n= 640), MDS/MPN (n= 264), and MPN (n= 354).
Patient characteristics are provided in Table 1. Bone marrow
samples from 12 healthy donors were also processed at the same
site. DNA extracted from all samples was subjected to whole-
genome sequencing, initially with the goal of comprehensively
profiling somatic mutations in human DNA. Human genome
average depth of coverage ranged between 76.8X and 183.8X
(median 97.5X; Supplementary Data 1). We used PathSeq19—a
tool that has been used in prior studies of tumor and blood
microbes in cancer16—to identify reads derived from bacterial,
fungal, and viral DNA. As shotgun metagenomic sequencing is
known to be highly prone to artifacts (particularly for low-
biomass samples such as blood), we followed strict filtering
procedures. Briefly, two broad categories of reads were removed
from consideration. First, we curated from the literature16,20–23 a
large list of 165 known problematic genera and 89 known pro-
blematic species (see the “Methods” section; Supplementary
Data 2). Reads that aligned to any of these taxa were omitted
from downstream analyses. Second, we manually inspected the
breadth of genome coverage in species. Species showing read
alignments only to very focal regions of their genomes indicate
that the reads were derived from cryptic human sequences20, and
thus reads aligning to such species were also filtered out. These
extremely strict filtering steps removed 184,919,804 of
185,938,531 reads (99.45%) mapping to unique genera and
128,135,955 of 129,323,801 reads (99.08%) mapping to unique

Table 1 Patient characteristics.

n Sex (%
female)

Mean age (years)
(1st, 3rd quartiles)

Karyotypic lesions (proportion)

Normal −5/−5q −7 Trisomy 8 −Ya Complex Median survival
(years)

AML 612 45.8 63.42 (54.38,75.20) 0.367 0.077 0.088 0.103 0.066 0.203 1.41
MDS 640 42.7 71.07 (66.50,78.00) 0.609 0.189 0.025 0.044 0.114 0.028 6.14
MDS/
MPN

264 40.2 74.71 (70.78,80.72) 0.712 0.008 0.042 0.131 0.045 0.027 5.36

MPN 354 36.7 62.79 (53.90,73.75) 0.555 0.012 0.009 0.046 0.039 0.028 18.64
overall 1870 42.2 67.51 (60.85,77.10) 0.533 0.095 0.046 0.076 0.074 0.086 5.71

aCalculated only from male patients.
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species. Using the remaining reads, the burden of a taxon in a
sample was quantified as the number of reads from the sample
unambiguously aligning to the taxon, normalized to the number
of human reads sequenced in the sample (see the “Methods”
section).

Microbial landscape differs between cases and controls and
among disease subtypes. The sequencing and filtering protocols
yielded means of 48.6 fungal reads (s.d. 1408; range 0–56,363),
120.1 viral reads (s.d. 1588; range 0–27,420), and 3853.0 bacterial
reads (s.d. 12,897; range 245–400,560) per sample (Fig. 1a). To
visualize differences and similarities among the samples, we
generated t-distributed stochastic neighbor embedding (t-SNE)
plots from the relative abundances of genera (Fig. 1b), which
showed clear grouping of normal control samples. All but one of
the control samples have a first t-SNE coordinate >25, whereas
only four of 1870 (0.2%) cases do (Fisher’s exact P < 2.2 × 10−16).
This suggests that microbe composition in the bone marrow of
healthy individuals distinguishes them from disease cases. Fur-
thermore, some grouping of patients by disease subtype was
observed. For instance, more than half (52%) of MDS patients
have second t-SNE coordinates below −10, while only 12.4% of
patients from other subtypes did (Fisher’s exact P < 2.2 × 10−16).
These observations raise the potential for microbe content to
differentiate among subtypes. Interestingly, in these t-SNE plots
samples did not seem to group by age, sex, or blood/bone marrow
status (Supplementary Fig. 7), suggesting that these factors are
not strongly associated with microbial content. We did, however,
observe some degree of temporal association with microbial
content in the t-SNE plot (Supplementary Note). To ensure that
this association did not cause artifactual results in the remainder
of our study, we include supplementary analyses (see Supple-
mentary Note) demonstrating that all results presented below
remain valid even after controlling for temporal clusters.

We next calculated, for each pair of samples, the genus-level
Bray–Curtis dissimilarity, which measures how different each pair
is regarding microbial content. Normal controls are far more
similar to one another than to the case samples (Wilcoxon
P < 2.2 × 10−16; Fig. 1c). Interestingly, the same holds true for
each disease subtype—that is, patients with the same subtype on
average have lower dissimilarity than patients from different
subtypes (Fig. 1d). We next computed the first two principal
coordinates based on these dissimilarity measures. The resulting
plots showed four distinct clusters (Fig. 1e). The four subtypes
were not randomly dispersed among the four clusters. Instead, we
observed strong enrichment in specific clusters for certain
subtypes (Fig. 1f) (chi-squared test P < 2.2 × 10−16), providing
further evidence that the microbial landscape may carry disease
subtype-specific information in myeloid malignancy. Cluster
membership also showed strong association with various
karyotypic features, particularly normal karyotype, complex
karyotype, and trisomy 8 (logistic regression P= 0.00096,
1.83 × 10−6, and 0.023, respectively). For example, cluster 2 was
enriched for normal karyotype patients, clusters 3 and 4 for
complex karyotype, and cluster 1 for trisomy 8 (Fig. 1g). No
relationship was observed between the clusters and either age or
sex (P= 0.10 and 0.33, respectively; Supplementary Fig. 8).

Human herpesviruses prevalent among myeloid malignancy
patients and is associated with patient outcomes in MDS.
Although viruses have not been widely implicated in myeloid
malignancies, they have been linked to patient outcomes and do
have established roles in some lymphoid-lineage malignancies, as
noted above. In our cohort, viral reads were detected in 1346
(72.0%) cases. Particularly prevalent were torque teno viruses,

which are extremely common in humans24 and have very recently
been implicated in a childhood APL case harboring a torque teno
mini virus/RARA chimeric transcript25, and human herpesviruses
(Fig. 2a). In the latter category, human betaherpesviruses 5
(human cytomegalovirus, HCMV) and 6 (roseolovirus), as well as
human gammaherpesvirus 4 (Epstein-Barr virus, EBV) occur at
the highest burden. We observed extremely high levels of human
betaherpesvirus 6 in nine (0.48%) patients. In these patients, the
estimated number of copies of the viral genome approaches one
per human cell. This observation is consistent with the known
ability of human betaherpesvirus 6 to integrate into the human
germline, which a recent study26 found to occur in 0.58% of a
cohort with primarily European ancestry. None of the other
viruses showed evidence of germline integration. In contrast, in
the normal controls viral sequence was detected only at very low
levels and species could only be assigned in four of the 12 samples
(Fig. 2b) (Wilcoxon P= 0.019 for difference in numbers of
species-mapped viral reads in cases vs. controls).

Among cases, EBV and HCMV were by far the most frequently
detected, found in 640 (34.2%) and 311 (16.6%) patients,
respectively (Fig. 2c). The higher prevalence of these viruses in
some of the patients may be a result of disease-related
immunosuppression. Indeed, both EBV and HCMV are known
to exist in a latent stage in large proportions of the population
and can be reactivated upon suppression of host immune
system27. Recognizing that our ability to detect the presence of
a viral species may be strongly influenced by its genome length,
we also recomputed prevalence for each species, adjusting for its
genome length (see the “Methods” section). This adjustment
recapitulates the dominance of EBV but shows a much-
attenuated prevalence for HCMV (Supplementary Fig. 9).

Differences in overall viral read presence were observed among
the four disease subtypes, with MDS patients showing the highest
prevalence (78.0% vs. 68.9% for all other diagnoses; logistic
regression P= 2.51 × 10−5) as well as the highest burden (median
14.0 vs. 6.9; Wilcoxon P= 1.12 × 10−8). In MDS patients, worse
overall survival was associated with EBV presence, even after
adjusting for age (Fig. 2d), suggesting potential for EBV as a
biomarker for overall survival in MDS. None of the other disease
subtypes (AML, MPN, or MDS/MPN) showed an association
between EBV and overall survival. We validated our sequence-
based inferences of EBV presence/absence and burden using
qPCR in a subset of our MDS samples. The results were strongly
concordant (Supplementary Fig. 10).

The current standard for risk stratification of MDS patients is
the Revised International Prognostic Scoring System (IPSS-R)28,
which uses five risk categories. To explore whether the addition of
EBV status could improve survival prediction, we tested for its
association with survival within IPSS-R categories, finding that
higher EBV status was able to refine risk prediction within the
low-risk IPSS-R group. In aggregate, low-risk patients had
survival outcomes between very low-risk and intermediate-risk
patients (Fig. 2e), as expected, but low-risk patients with EBV
reads detected were statistically indistinguishable from
intermediate-risk patients, and those without EBV reads were
indistinguishable from very low-risk patients (Fig. 2f). We could
detect no impact of EBV on survival in the higher risk IPSS
categories, likely because any effect of EBV is overwhelmed by the
strongly deleterious impact of the risk-defining characteristics
(unfavorable blood cell counts and/or cytogenetic abnormalities).
To determine more directly whether the impact of EBV on
survival is related to the clinical components of the IPSS-R score
(hemoglobin, neutrophils, platelets, blasts, and cytogenetics), we
tested for association between these components and EBV
detection in MDS patients. None of the associations are
significant, save that platelet levels are nominally significantly
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lower in EBV-positive individuals (Wilcoxon P= 0.033).
This overall lack of association suggests that EBV presence is a
risk factor that is independent of IPSS-R, which is unsurprising
given our observation that EBV refines IPSS-R’s low-risk
prognosis.

EBV is frequently integrated into the host genome in known EBV-
associated tumor types29, though it is unclear whether these
integrations promote malignancy. Given the paired-read nature of
the sequencing data, we were able to identify human genome-
mapped reads whose mates mapped to the EBV genome, yielding

Fig. 1 Landscape of microbial content in circulation. a Barplot showing total numbers of reads for each of the three kingdoms. b t-SNE plot colored by
case/control status (controls shown as black triangles) and disease subtype. c Bray–Curtis dissimilarity measures, on the genus level, based for all case-
control pairs (left, n= 22,440 comparisons) and all pairs of control samples (right, n= 66 comparisons). In boxplots, bounds of box indicate first and third
quartiles, center line indicates median, and whiskers extend to (first quartile −1.5 × IQR) and (third quartile +1.5 × IQR) or extrema, whichever is less
extreme (here IQR= interquartile range, i.e. third quartile−first quartile). P-value computed using two-sided Wilcoxon test. d Heatmap representing the
average of all Bray–Curtis dissimilarity measures between sample pairs from the indicated groups. Squares are colored according to rank in the row
(yellow=most similar, blue= least similar). e The first two principal coordinates, on the genus level, colored by disease subtype as in panel (b). For clarity,
two outliers (an MDS patient and an AML patient) are omitted. f Mosaic plot indicating the proportion of the patient cohort in each cluster/subtype pair.
The area of each rectangle (colored by subtype) is proportional to the number of patients in the corresponding subtype and cluster. P-value from chi-
squared test. g Barplots indicating proportion of patients, within each principal coordinate cluster, with complex karyotype, normal karyotype, and trisomy
8. P-values from two-sided logistic regression-based test. tSNE t-distributed stochastic neighbor embedding, PCo principal coordinate.
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information regarding putative integration sites in our patient cohort.
Among the 640 patients with EBV reads, 19 showed evidence of
integration, with numbers of putative integration sites ranging from 1
to 15 per patient (Supplementary Data 3). Overall, 47.5% of
integration sites were within gene bodies, all intronic. The only
recurrently integrated gene was long non-coding RNA LINC00486,
which has been identified as a recurrent hepatitis B virus integration
site in the liver cancer intrahepatic cholangiocarcinoma30.

Fungal prevalence is highest in MDS and is dominated by
Trichosporon asahii. As with viruses, fungal reads were found in
a higher proportion of MDS patients than those from other
disease subtypes (63.3% vs. 56.7%; logistic regression
P= 0.00586). Trichosporon asahii was the most commonly
observed fungal species, present in 343 (18.3%) patients. Tri-
chosporon infection is commonly reported in patients with acute
leukemia31 and MDS32, and is a known contributor to mortality

in hematological malignancy patients33. However, we found no
association between Trichosporon asahii presence and overall
survival.

Landscape of the bacteriome in circulation. The composition of
bacteria present in human circulation is known to differ sub-
stantially from that in the gut. While gut bacteria are dominated
by the phyla Bacteroidetes and Firmicutes34, studies of the nor-
mal blood microbiome consistently demonstrate dominance of
Proteobacteria and Actinobacteria17. We confirmed the latter
composition in our healthy controls (Fig. 3a), with Proteobacteria
and Actinobacteria together comprising between 98.8% and
99.9% of all bacterial reads in each sample. Proteobacteria was
somewhat more dominant (46.1%–77.4%) than Actinobacteria
(21.3–53.7%). The bacterial landscape in disease cases was sub-
stantially different from normal controls (Fig. 3b). Proteobacteria

Fig. 2 Circulating viral content is associated with clinical characteristics. a Individual species among the top 1/3 of patients with regard to viral burden.
b All controls are shown with their corresponding detected viruses, on the same (logarithmic) scale as panel a, for comparison. Only the leftmost four
samples had any detectable viral species. c The prevalence of viral species (those found in >1% of cases are shown). d Presence of EBV (192 patients with
EBV, 448 without) is associated with worse survival in MDS patients (HR and P-value are age-adjusted). E The Kaplan–Meier curves for intermediate
(n= 135), low (n= 224), and very low (n= 92) IPSS-R categories. f As in panel e, but the low category is stratified by EBV status. Low-risk patients with
(n= 59) and without (n= 165) EBV become statistically indistinguishable from the intermediate-risk and very low-risk categories, respectively. Two-sided
P-values are computed using the Wald test applied to the Cox proportional hazards model. EBV Epstein-Barr virus; HCMV human cytomegalovirus.
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was generally more dominant in cases (median relative abun-
dance 91.3% vs. 61.1% in controls, Wilcoxon P= 8 × 10−7).

Studies of solid tumors have reported reduced microbial
diversity as compared to matched-tissue controls13,35. Consistent

with these reports, we find reduced α-diversity in cases compared
to controls, as measured by the Shannon diversity index (see the
“Methods” section), at all taxonomic levels save class (Fig. 3c).
For instance, the median α-diversity at the phylum level is 0.33

Fig. 3 The bacterial landscape in the bone marrow/blood of myeloid malignancy patients and controls. a Relative abundances of phyla are represented
by a colored bar for each of the 12 control bone marrow samples. b The 1870 colored bars, one for each patient, are ordered left to right by decreasing
Proteobacteria relative abundance. The disease subtype of each patient is indicated in the horizontal color bar at the bottom (the enrichment of AML
patients among the Proteobacteria-dominant samples is apparent by the color shift at the left side of the bar). c α-diversity of each sample within each
taxonomic level, stratified by case/control status and disease subtype. Boxplots are ordered top to bottom in decreasing median α-diversity, with sample
sizes 12, 612, 640, 264, and 354 for controls, AML, MDS, MDS/MPN, and MPN, respectively. In boxplots, bounds of box indicate first and third quartiles,
center line indicates median, and whiskers extend to (first quartile −1.5 × IQR) and (third quartile +1.5 × IQR) or extrema, whichever is less extreme (here
IQR= interquartile range, i.e. third quartile–first quartile). d Plot showing pairwise concordance/discordance of taxa, at the phylum (top) and class
(bottom) levels, both with regard to presence/absence (left) and abundance (right). Sizes of the circles indicate statistical significance, and color indicates
strength and direction of association (odds ratio or Pearson correlation). Only taxa with significant (Q < 0.1) concordance/discordance with at least one
other taxon are shown. e Rarefaction plot showing number of genera as a function of number of patients, stratified by disease subtype. For each patient
number n, a random sample of n patients was drawn from each subtype, 500 times. Solid curves represent the mean across the 500 replicates. For control
samples, sampling is performed exhaustively (that is, all possible subsets of n individuals are selected for each n= 1,2,…,12).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28678-x

6 NATURE COMMUNICATIONS |         (2022) 13:1038 | https://doi.org/10.1038/s41467-022-28678-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


for cases and 0.70 for controls (Wilcoxon P= 4.1 × 10−6); at the
species level it is 2.1 for cases and 2.8 for controls (Wilcoxon
P= 1.3 × 10−4).

The reduced diversity in cases raises the question of whether
there is competition and cooperation among the various bacterial
taxa in patients with myeloid malignancy. To investigate, we
tested for correlation/anticorrelation between all pairs of phyla
and all pairs of classes. This was assessed both with regard to
presence/absence (that is, whether two taxa tend to appear
together more or less frequently than would be expected by
chance) and burden (whether the burdens are statistically
correlated) (Fig. 3d). Assessment of statistical significance,
however, is not straightforward in this setting since assumptions
of independence are violated. This effect is well known in studies
measuring statistically significant mutational concordance/dis-
cordance in tumors36, and renders the use of approaches such as
Fisher’s exact test prone to false positive discoveries of
concordance. As such, we adopted a permutation approach to
assess significance of concordance/discordance of taxa (see the
“Methods” section). In our analyses, all significant pairs showed
positive correlation. Conceivably, this could suggest synergy
among different bacterial entities. It could also indicate
bacteremia from a common source. For instance the strong
positive correlation between Bacteroidetes and Firmicutes, both
in terms of presence/absence and burden, could be the result of
varying degrees of intestinal barrier permeability (leaky gut) as
these are the two most common gut phyla, comprising 90% of
microbiota there37.

Relationship between bacteriome and clinical characteristics.
The wide range of Actinobacteria–Proteobacteria ratios in our
disease cohort led us to inquire whether the ratio corresponded
with clinical characteristics. We observed strong association
between disease subtype and Proteobacteria relative abundance
(age-adjusted ANOVA P= 7.1 × 10−7; also visible in the hor-
izontal bar at bottom of Fig. 3b). In particular, AML had the
highest Proteobacteria relative abundance (median 95.0% vs.
89.5% in non-AML cases; logistic regression P= 2.2 × 10−16).
AML patients also tended to have the lowest bacterial α-diversity
(Fig. 3c) and richness (Fig. 3e).

Given the observed differences in microbial content among disease
subtypes (Figs. 1f and 3c, e), we reasoned that microbial taxa might
be able to classify patients by subtype. To this end, we constructed
machine learning classifiers to identify disease subtype from blood/
bone marrow bacterial genus burdens. The genus level was chosen as
a compromise between reduced resolution at the higher taxonomic
levels and the overabundance of classifying taxa on the species level.
For each subtype we developed a binary classifier to distinguish it
from all others. Briefly, random forest38 classifiers were constructed
using a randomly selected training subset of the patient cohort.
Classifier performance was assessed using the test subset comprised
of the remaining samples (see the “Methods” section for details). The
classifiers were best able to distinguish AML patients using bacterial
content (average area under receiver operating characteristic curve
(AUROC)= 0.87, 95% CI 0.84–0.90), though considerable separ-
ability was also achieved for MDS (AUROC= 0.84, 95% CI
0.81–0.88) and, to a lesser degree, MDS/MPN (AUROC= 0.75,
95% CI 0.70–0.80) and MPN (AUROC= 0.79, 95% CI 0.75–0.83)
(Fig. 4a). We also constructed a pan-subtype classifier that sought to
assign subtype to each patient, from among the four (as opposed to
distinguishing one vs. the rest), based on genus bacterial burden. We
computed AUROC using a method of Hand and Till39, demonstrat-
ing reasonable accuracy for subtype assignment based on microbial
content (AUROC= 0.84, 95% CI 0.84–0.84). In general, the
performances of our machine learning classifiers provide evidence

that circulating microbial content contains a signal that tracks with
disease subtype.

In addition to providing an algorithm to assign classes (disease
subtype in our case) based on features (burdens of bacterial genera),
a random forest also assigns a measure of variable importance (VI)
to each classifying feature. The VI of a feature measures the
deterioration of accuracy resulting from obscuring that feature. In
our setting, VI can therefore indicate the strength of association of a
bacterial genus with each subtype. Among the genera with the
highest VI (Fig. 4b, c) are Dermabacter and Kytococcus, both of
which have been reported to infect immunocompromised
individuals40,41. The species Kytococcus schroeteri in particular has
been found in multiple patients with myeloid malignancies42. Many
other genera that contribute to discrimination among subtype
(Fig. 4b, c) are known causes of bacteremia, e.g., Staphylococcus,
Streptomyces, Rothia, Gordonia, and Pandoraea, among others.

Microbial differences between AML and MDS are largely dri-
ven by myeloblast percentage. Clinically, AML is distinguished
from MDS by the patient’s having ≥20% myeloblasts (blasts) in
the bone marrow1. We therefore next sought to determine whe-
ther the microbial characteristics that differ between the two
disease subtypes also track with patient blast percentage. Viral
read presence (Wilcoxon P= 0.0013; Fig. 5a) and burden
(Spearman ρ=−0.104; P= 0.00038; Fig. 5b) were anticorrelated
with blast percentage, consistent with higher levels of both
observed above in MDS patients. Regarding the bacteriome, blast
percentage was correlated with Proteobacteria relative abundance
(Spearman ρ= 0.247; P= 1.1 × 10−17; Fig. 5c) and anticorrelated
with α-diversity at most taxonomic levels (Fig. 5d–i), again
consistent with what we observed above with AML patients.
Taken together, these data demonstrate an association between
blast percentage and microbial characteristics and suggest that the
microbial differences we observe among different disease sub-
types are at least partially driven by blast percentage.

To investigate this association further, we next modified our
machine learning classifier to distinguish between patients with
blast percentages above and below varying threshold levels. That
is, we built multiple machine learning classifiers, one for each of
varying blast percentage thresholds bp, to distinguish patients
with blast percentage ≥bp from those with blast percentage <bp
based solely on their bacterial content. Each classifier’s perfor-
mance was then assessed by its AUROC. As shown in Fig. 5j, the
optimal threshold is 18% (AUROC 0.88, 95% CI 0.86–0.91), i.e.
the bacteriome most accurately distinguishes between patients
above and below 18% blast percentage, intriguingly quite close to
the somewhat arbitrary 20% threshold used clinically.

Relationships between bacteriome and host mutations. Recent
work has shown that AML may be spurred by gut microbiota that
enter circulation via host mutation-induced intestinal
permeability43. To investigate possible impact of host mutation
on the circulating microbiome, we tested the relationship between
microbial characteristics and mutations in genes commonly
mutated in myeloid malignancy (ASXL1, CALR, CBL, CEBPA,
DNMT3A, EZH2, FLT3 point mutation, FLT3 internal tandem
duplication (FLT3-ITD), IDH1, IDH2, JAK2, KRAS, NPM1,
NRAS, RUNX1, SETBP1, SF3B1, SRSF2, STAG2, TET2, TP53,
U2AF1, WT1, and ZRSR2). Specifically we tested for differences,
between mutant and wild-type patients for each gene, in overall
bacterial burden, genus α-diversity, Proteobacteria relative
abundance, and Firmicutes relative abundance+ Bacteroidetes
relative abundance (this last characteristic was used as a proxy for
potential gut permeability, since Firmicutes and Bacteroidetes are
the two dominant phyla in gut microflora). This analysis entailed
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96 statistical tests, of which three achieved Bonferroni-corrected
statistical significance (P < 0.05/96): DNMT3A mutations were
associated with lower genus α-diversity (logistic regression
P= 0.00027; Fig. 6a), while FLT3 and NPM1 mutations were
associated with higher Proteobacteria levels (logistic regression
P= 0.00052 and 0.00030, respectively; Fig. 6b, c). Both FLT3 and
NPM1 are among the most frequently mutated genes in AML44

but are rarely mutated in MDS45,46. It is therefore possible that

the observed associations with Proteobacteria levels are simply a
consequence of higher Proteobacteria levels in AML.

Among MPN patients, the JAK2-mutant cases are considered a
distinct clinical entity. We compared the microbial composition
of JAK2-mutant (n= 162) with that of JAK2-wild type (n= 181)
MPN patients but found no statistical differences in the four
microbial characteristics tested above. We next built a machine-
learning classifier to distinguish JAK2-mutant from JAK2-wild

Fig. 4 Bacterial composition differs among disease subtypes. a ROC curves showing, for each disease subtype, the performance on the test set
(randomly selected 30% of samples) of binary random forest classifier trained on the training set (remaining 70%). The AUROC values shown are
averaged across 1000 random 70%/30% splits. The random forest generates a probability of a sample having the disease subtype in question. The color
bar indicates varying thresholds of this probability. b Volcano plot showing enrichment/depletion of bacterial genera in specific disease subtypes.
Here horizontal axis indicates differences in mean abundance (subtype of interest—all others), and variable importance is shown on the vertical axis.
Point size indicates number of subtypes (0= smallest, 4= largest) for which the corresponding genus has variable importance >5. Points with mean
abundance difference >5 and variable importance >5 are colored by corresponding subtype. Points of interest are labeled with their corresponding genera.
(VI variable importance). c Mean abundances, in each subtype, of the genera that are among the top five in variable importance for at least one of
the subtypes. Circle size indicates the average abundance in the corresponding subtype. AUROC area under receiver operating characteristic curve; FPR
false positive rate.
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type MPN patients from microbial content, much in the same
manner as above for the subtype classifiers. The performance of
the JAK2 classifier was not as strong, but the AUROC (0.63, 95%
CI 0.54–0.71) was significantly above 0.5 (Fig. 6d). This result
suggests some relationship between JAK2 mutation and the
circulating microbiome, though further study is required to
validate the relationship and elucidate its nature.

Discussion
Here we have reported results of a large, high-resolution survey of
microbial content in the blood and bone marrow of myeloid
malignancy patients. We have cataloged bacterial, fungal, and
viral content in circulation for 1870 disease cases and 12 healthy
controls, all processed and sequenced at the same center. Our
overarching aims were to investigate the relationships between

Fig. 5 Associations between myeloblast percentage and microbial characteristics. a Viral read presence is associated with lower blast percentage. Here
868 patients have virus present and 296 patients have virus absent. P-value from two-sided Wilcoxon test. In boxplots, bounds of box indicate first and
third quartiles, center line indicates median, and whiskers extend to (first quartile −1.5 × IQR) and (third quartile +1.5 × IQR) or extrema, whichever is less
extreme (here IQR= interquartile range, i.e. third quartile–first quartile). b Viral burden are both associated with lower blast percentage. c Proteobacteria
relative abundance is positively correlated with blast percentage. d–i For most taxonomic levels, α-diversity is negatively correlated with blast percentage.
j AUROCs for random forest classification of patients (n= 1164) above/below various blast percentage thresholds, with mean over 1000 independent
training/test splits indicated in black and 95% confidence intervals indicated with gray shading. In panels b–i, green indicates MDS patients (n= 638),
salmon indicates AML patients (n= 526), shading indicates the 95% confidence interval, and P-values are from two-sided Spearman correlation test.
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disease subtypes/patient outcome and the circulating microbiome
in myeloid malignancies.

Interestingly, we did not observe any strong differences in
microbial content between patient samples taken from peripheral
blood and those taken from bone marrow, suggesting that the
microbes and/or their DNA are transported freely into and out of
the marrow through the bone vessels and sinusoids. However, it is
unknown if the species detected here are living or active, and, if
living, whether they are extracellular or have entered human cells.
Even active microbes may be in circulation only transiently, likely
translocating from the gut, skin, or mouth47,48. Strong effects of
age and sex on microbial content were also not detected.

Our study provided strong evidence for substantial dysbiosis in
the circulating microbiome of myeloid malignancy patients. The
patients had significant shifts in dominant bacterial phyla as
compared to healthy controls, and a reduction in α-diversity. This
dysbiosis may partially be explained by intestinal permeability in
some patients. Intestinal permeability is present in myeloid
malignancy patients even before treatment49, and has been
recently implicated in leukemia development in mice43,50. All
samples analyzed here were taken at diagnosis, and therefore
microbial content would not be influenced by therapy.

In 1954 Ludwig Gross hypothesized, based on mouse experi-
ments, a viral cause for human leukemia51. Although the
hypothesis has not been validated for most leukemias (with some
exceptions), recent work has shown associations between viral
content and leukemia patient outcomes52,53. In our cohort, cases
had a much higher viral burden than controls, largely from
herpesviruses EBV and HCMV. Viruses and fungi were most
prevalent in MDS patients, and our analysis revealed association
of EBV with overall survival in MDS. Additional research is
required to determine whether the high levels of viral burden
among disease cases play a causal role or are instead a con-
sequence of the immunosuppressive effects of the disease.

On the bacterial level, the landscape differed significantly
among the four disease subtypes, with multiple taxa showing
significant differences among the subtypes. AML patients had
significantly higher bacterial burden but lower diversity, perhaps
reflecting the dominance of Proteobacteria in AML patients.
These observations motivated us to develop machine learning
classifiers to predict subtype from microbial content. The classi-
fiers showed the ability to separate each subtype from the other
three, demonstrating promise for further refinement of this
approach. Our results here are analogous to recent microbe-based

classifiers that were able to distinguish between different stages of
some solid tumors16. Similarly, bacterial taxa have shown dif-
fering prevalence among breast cancer subtypes15. In our setting,
the differences in bacterial signature among subtypes could be the
result of varying degrees of immunocompromise among the four
entities, leading to differential ability to combat bacteremia.
Hematopoietic cell composition in circulation could also affect
microbial content. AML patients have a higher prevalence of
neutropenia, and absolute neutrophil counts (ANC) vary greatly
by disease subtype. There is the possibility that the observed
associations could be the result of confounding factors. For
instance, differences in antibiotic use among the different sub-
types would likely produce subtype-specific microbial signatures.
We do not have data on patient medications, but it is important
to note that all samples analyzed in our study were taken at
diagnosis, and any antibiotics differentially prescribed because of
subtype would not yet have affected these signatures.

A natural extension of the work presented here would be to
query the circulating microbiomes of patients with MDS pre-
cursor conditions such as clonal hematopoiesis of indeterminate
potential (CHIP) and clonal cytopenia of undetermined sig-
nificance (CCUS)54. Given the differences in microbial char-
acteristics that we observed among different disease subtypes, risk
categories, and gene mutation statuses, one might hypothesize
that individuals with CHIP or CCUS would show microbial sig-
natures that are intermediary between normal and MDS (parti-
cularly low-risk MDS) signatures, and that the CHIP/CCUS-
defining mutation(s) may track with microbial characteristics.
Such studies would shed further light on the implications and
potential mechanisms of the associations reported in the
current work.

The strengths of our study include a large cohort of disease
cases, all processed and sequenced at the same facility along with
12 healthy controls. We used shotgun metagenomic sequencing,
which has advantages over 16S sequencing, including better
taxonomic resolution, with typically higher revealed diversity55. It
also enables ascertainment of viral and fungal content along with
bacterial content. We took a very aggressive approach to data
filtering, taking care to remove all reads that were likely artifactual
results of contamination or mis-mapping of human reads. The
fact that our filtering approach removed more than 99% of the
data serves as a warning that it is critically important to take great
care in microbiome studies (particularly those analyzing low-
microbial biomass samples).

a

b

c

d Classifying MPN patients
by JAK2 mutation status

Fig. 6 Associations between gene mutations and microbial characteristics. a Genus α-diversity stratified by DNMT3A mutation status (1580 WT, 259
mutated). b, c Proteobacteria relative abundance stratified by FLT3 (1804 WT, 56 mutated) and NPM1 (1698 WT, 167 mutated) mutation status. In
boxplots, bounds of box indicate first and third quartiles, center line indicates median, and whiskers extend to (first quartile −1.5 × IQR) and (third quartile
+1.5 × IQR) or extrema, whichever is less extreme (here IQR= interquartile range, i.e. third quartile–first quartile). P-values are from a two-sided logistic
regression-based test. d ROC curve for random forest algorithm to classify MPN patients by JAK2 mutation status from microbial content. The random
forest generates a probability of a sample having a JAK2 mutation. The color bar indicates varying thresholds of this probability for calling the sample as
having the mutation. WT wild type, AUROC area under receiver operating characteristic curve, CI confidence interval, FPR false positive rate.
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Our study also had weaknesses. It did not include an inde-
pendent validation cohort owing to the considerable expense in
performing shotgun sequencing in a large sample of myeloid
malignancy patients with disparate subtypes. It should be noted,
however, that our disease subtype classifier was validated to some
degree by building it on a subset of the cohort and testing it on
the remaining samples. Another issue is that our data was derived
from samples processed for human DNA analysis. Ideally, we
would have included technical controls56 in our study, to account
for artifacts specific to our experimental protocols. Since the
samples were originally collected in clinical practice for mutation
profiling, such controls were not available. Nonetheless, our
computational approach was conservative, omitting a large list of
known reagent and kit contaminants along with other artifacts.
Finally, we acknowledge that our study has a relatively small
number of healthy controls as compared to cases. Overall, we felt
that the importance of using controls well-matched to cases in
terms of tissue source and processing/sequencing site outweighed
the statistical power gained by seeking other sources of data.
Using externally-processed controls could lead to batch effects
and artifactual results. As our results show, however, we were still
well-powered to uncover a number of differences in microbial
composition between the two groups.

In conclusion, this report serves as an initial baseline for future
studies of the microbiome in circulation of myeloid malignancy
patients. As growing evidence emerges that response to treatment
may be influenced through gut microbiome perturbations, the
results reported here may shed light on the potential for analo-
gous manipulation of the blood microbiome to favorably impact
patient outcomes57. Future work to replicate our findings in
separate cohorts is crucial, and functional experiments are needed
to determine whether and how microbes influence the course of
disease. Such experiments will shed light on the potential of
bacteria, fungi, and viruses to serve as biomarkers in myeloid
malignancies, and may suggest treatment options for a subset of
patients.

Methods
Disease subtype assignment, sample acquisition and processing, and whole-
genome sequencing. For all 1870 cases, diagnosis and disease subtypes were
assigned using cytomorphology, immunophenotyping, cytogenetics, and molecular
genetics following World Health Organization (WHO) guidelines. All patients gave
their written informed consent for scientific evaluations. The study has been
approved by the Internal Review Board of the Munich Leukemia Laboratory as well
as by the ethics committee of the Bavarian physicians´ chamber and adhered to the
tenets of the Declaration of Helsinki. Additionally, 12 bone marrow samples from
healthy donors were included as controls. All donors gave their written informed
consent for scientific evaluations. Complete cytogenetic data according to ISCN
nomenclature58 is available for all patients by request at Munich Leukemia
Laboratory.

For whole genome sequencing (WGS), peripheral blood or bone marrow
aspirates were processed using the TruSeq DNA PCR-free library prep kit and
150 bp paired-end sequences were generated on a NovaSeq 6000 or HiSeqX
instrument (Illumina, San Diego, CA). Fastq generation and read alignment to the
human reference genome were performed using Illumina’s BaseSpace platform
(whole genome sequencing app 5.0.0).

Identification and quantification of microbial reads. Whole-genome bam files
were converted back to fastq files using the GATK459 SamToFastq tool. The
resulting fastq files were then aligned to the hg19 build of the human genome using
bwa mem60, yielding bam files that served as input into PathSeq19, distributed as
part of GATK 4.0.6.0. Briefly, PathSeq first removes all human genome-aligned
reads, then aligns those remaining to an NCBI database of known microbial
reference genomes. Default options were used with parameters --min-clipped-read-
length 70 and --is-host-aligned true. Required reference files (microbe-fasta,
microbe-bwa-image, and taxonomy-file) were downloaded as part of the GATK
resource bundle. The output of PathSeq provides, for each taxon and patient,
counts of reads that could be unambiguously assigned to that taxon. After filtering
steps (see below), burden of taxon i in individual j was quantified as

6:4 billion ´
number of reads aligning unambiguously to taxon i in individual j
number of reads aligning to the human genome in individual j

ð1Þ

The rationale for this measure is that it estimates the number of bases of the taxon
DNA present per human cell, since there are ~6.4 billion bases of human sequence
per human cell.

Quality filtering. Reads deemed unambiguously aligned by PathSeq were subjected
to two filtering steps. First, we curated a list of genera and species that were
reported in the literature as being problematic for various reasons, including: (i)
contamination in commercially available kits and reagents; (ii) common low-read
levels across tumor types; (iii) anticorrelation between measured abundance and
analyte concentration; (iv) high frequency in negative blanks; and (v) artifactual
human sequence within species reference genomes. Second, alignments of species
were manually examined for their locations in the microbe genome. Species that
had reads only aligning to focal regions of their genome were flagged as proble-
matic. We removed all reads unambiguously aligned to these problematic taxa and
propagated the removal up the taxonomic tree. For example, if a problematic genus
had 20 unambiguously aligned reads in that patient, then 20 reads would also be
removed from that genus’ parent family, order, class, and phylum. Furthermore, all
daughter species of the genus and their reads would be removed from further
analysis.

Computing microbial landscape characteristics. Let rij denote the number of
unambiguous reads from taxon i in individual j. Then the relative abundance for
the taxon in that individual is computed as rij/Tj, where Tj denotes the total number
of reads in that individual that map unambiguously to a taxon at the same taxo-
nomic level as taxon i. The t-SNE coordinates were generated from the matrix
giving the relative abundance of each genus for each sample. A series of pre-
processing steps was first implemented as suggested by Kobak et al.61, then FIt-SNE
(FFT-accelerated Interpolation-based t-SNE)62, a variant of t-SNE algorithm, was
used to generate the coordinates.

Bray–Curtis dissimilarity statistics were calculated for each pair of samples
using burden. For each pair of samples x and y, Bray–Curtis dissimilarity is
calculated across n genera as

∑n
i jxi � yij

∑n
i ðxi þ yiÞ

ð2Þ

where xi and yi denote the burden of genus i in sample x and y, respectively. Then the
dissimilarity measures were used to generate principal coordinates of this
neighborhood matrix using the pcnm function in the vegan package (version 2.5-6).

The α-diversity for a taxonomic level was calculated for patient s as

�∑
t

i
pi ln pi ð3Þ

where pi is the proportion of unambiguous reads at the taxonomic level that map to
taxon i within patient s, and t is the total number of taxa observed in patient s
within the taxonomic level.

Statistical analyses. All statistical analyses were performed using R version 4.0.3.
Reported P-values are two-sided. To assess the significance of concordance/dis-
cordance between all pairs of taxa, the presence/absence of all n taxa within the
same taxonomic level was represented as an n × 1870 matrix, where the rows
represent the n taxa, the columns represent the 1870 patients, and entry (i, j) is 1 if
patient j has detected presence of taxon i and 0 otherwise. The odds ratio for each
pair of taxa is computed in the observed data. To determine the statistical sig-
nificance of each odds ratio, we first repeatedly permuted the data matrix in a
manner that keeps the row and column sums (the total number of patients har-
boring each taxon, and the total number of observed taxa within each patient,
respectively) constant. In this way, we preserve taxonomic richness for each patient
and overall frequency of each taxon. Permutations were performed using the
permatfull function in the vegan package, using seed 2021 and parameters fix-
edmar= “both”, shuffle= “both”, mtype= “prab”, and times= 100, and odds
ratios computed for all pairs in each permutation. The P-values corresponding to
each odds ratio x in the observed data is computed as the proportion of permuted
odds ratios as or more extreme as x. The Q-values were computed from each
observed P-value by dividing the average number of permuted P-values lower than
or equal to the observed P-value (false discoveries) by the total number of observed
P-values lower than or equal to the observed P-value (discoveries).

Logistic regression P-values were computed using the R command anova(mdl,
test= “Chisq”), where “mdl” is the fitted logistic regression model.

Survival analysis was performed using the R packages survival (3.2–7) and
survminer (0.4.8). Age-adjusted hazard ratios and corresponding confidence
intervals and P-values were obtained by fitting Cox proportional hazards regression
models using the coxph function.

qPCR validation of EBV. The total genomic DNA isolated from the patient-derived
mononuclear cells were used for the EBV detection using real time quantitative poly-
merase chain reaction (RT-qPCR)63,64. Briefly, the primers for detection of EBV were
designed to target the BamHI-W sequence in EBV using following pairs of forward and
reverse primers: 5′-CCAGACGAGTCCGTAGAAGG-3′ and 5′-AGCCTAATCCCAC
CCAGACT-3′, respectively.
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The 96 ng of each of DNA samples were added in per PCR reaction for Sso Fast
EvaGreen Super mix (Bio Rad) and subjected to 40 amplification cycles in C1000
Touch™ thermal cycler (Bio Rad Inc) interfaced with CFX 96 system manager
software. The TAL57 region of the Human Beta-Globin (HBB) gene was used for
control using 5′-TAGCAACCTCAAACAGACACCA-3′ and 5′-
CAGCCTAAGGGTGGGAAAAT-3′ forward and reverse primers respectively. The
Ct values on RT-qPCR were collected by the CFX Manager Software (Bio Rad Inc)
and the relative copies/µg DNA was calculated by ΔCt method.

Calling EBV integration sites. To identify putative EBV integration sites, all read
pairs with one end mapping to the human genome and the other mapping to the
EBV genome were flagged. The mapped position in the human genome was
reported as the putative EBV integration site, after confirming that the human-
mapped read did not map to the EBV genome.

Adjusting viral prevalence for genome length. For a given viral species and a
given patient, let r denote the number of reads mapping to that species in the
patient sample, and let s denote the species’ reference genome length. If the species
instead had a reduced genome of length only 2442 (the length of the smallest
reference genome among all viruses we observed in our study), for each of the r
reads, the probability of its mapping to a specific reduced genome, 442-base region
is ~2442/s, so the probability that all r reads do not map to the region (i.e. the
probability that the virus is not observed in the patient) is (1−2442/s)r, giving the
probability of observing the virus in the patient as 1−(1−2442/s)r. If we now
consider all n patients, with number of reads mapping to the species’ actual genome
denoted ri (i= 1,…,n), the expected number of patients in which at least one read
maps to the reduced genome (i.e. the expected prevalence, adjusted for genome
length) is therefore

∑
n

i¼1
1� 1� 2442

s

� �ri
� �

ð4Þ

Disease subtype/JAK2-mutant classifiers. A classifier to predict one disease
subtype against all others was built by training a random forest using the ran-
domForest R package (4.6–14) with default parameters. The model was trained on
the bacterial genus burdens in 70% of the samples, and performance was assessed
on the remaining 30%. ROC curves were built for the classification model using R
package PRROC (1.3.1). Here a sample is deemed to have the disease subtype in
question if the proportion of trees classifying it as such exceeds a threshold. The
ROC curves are generated by assessing sensitivity and false positivity at each value
of the varying threshold. AUROC was used to evaluate performance on the test set
of binary classifiers using the ROCR R package (v1.0-11), and of the multiclass
classifier using the pROC R package (v.1.18.0), the latter implementing the method
from Hand and Till39. To test whether the model assessments were robust, the
process of training random forest models on 70% of samples and assessing per-
formance on 30% (keeping the relative proportions of disease subtypes equivalent
in training and test sets) was repeated 1000 times for each subtype. 95% confidence
intervals around the mean of the AUROCs from the 1000 classifiers were deter-
mined as the 2.5th and 97.5th percentiles from the 1000 AUROCs calculated. The
same procedure was used to build and validate the JAK2-mutant classifier.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Bam files generated in this study containing all non-human reads have been deposited in
the NCBI’s database under accession code PRJNA746290. Human genome build hg19
can be downloaded from https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/
hg19.fa.gz.
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