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Abstract

Motivation: Genome-wide association studies show that variants in individual genomic loci alone are not sufficient
to explain the heritability of complex, quantitative phenotypes. Many computational methods have been developed
to address this issue by considering subsets of loci that can collectively predict the phenotype. This problem can be
considered a challenging instance of feature selection in which the number of dimensions (loci that are screened) is
much larger than the number of samples. While currently available methods can achieve decent phenotype predic-
tion performance, they either do not scale to large datasets or have parameters that require extensive tuning.

Results: We propose a fast and simple algorithm, Macarons, to select a small, complementary subset of variants by
avoiding redundant pairs that are likely to be in linkage disequilibrium. Our method features two interpretable
parameters that control the time/performance trade-off without requiring parameter tuning. In our computational
experiments, we show that Macarons consistently achieves similar or better prediction performance than state-of-
the-art selection methods while having a simpler premise and being at least two orders of magnitude faster. Overall,
Macarons can seamlessly scale to the human genome with �107 variants in a matter of minutes while taking the
dependencies between the variants into account.

Availabilityand implementation: Macarons is available in Matlab and Python at https://github.com/serhan-yilmaz/
macarons.

Contact: serhan.yilmaz@case.edu or cicek@cs.bilkent.edu.tr or otastan@sabanciuniv.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) attempt to find a relation
between the genetic variations and a phenotype. Many single-nu-
cleotide polymorphisms (SNPs) have been found to be associated
with various diseases or disorders including Type II diabetes, obesity
and schizophrenia as well as other quantitative traits like height in-
dividually (Goldstein, 2009; Visscher et al., 2017). However, indi-
vidual SNPs fail to explain complex phenotypes, in which multiple
SNPs contribute collectively (Manolio et al., 2009). Thus, as an al-
ternative and more powerful approach, many studies aim at finding
a good subset of SNPs that are associated with the phenotype of
interest as a group (Cordell, 2009; Phillips, 2008; Wang et al., 2010;
Wei et al., 2014). This study is mainly focused on the problem of

finding a subset of SNPs that are collectively predictive of the pheno-

type of interest. For the sake of brevity, we will simply refer to it as
the SNP subset selection problem throughout this article.

1.1 Approaches investigating combinations of SNPs
Finding combinations of SNPs that are predictive of a phenotype is

computationally challenging due to the large number of possible
combinations that need to be considered. There are methods that
focus on high-order interactions using exhaustive search (Lou et al.,
2007; Nelson et al., 2001) or greedy algorithms (Evans et al., 2006;
Yosef et al., 2007) on a small, limited pool of SNPs that is usually

not more than a few hundreds (Fang et al., 2012; Ritchie et al.,
2001). While such pools of ‘promising SNP candidates’ are typically
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obtained using a priori information sources by limiting the analysis
to SNPs residing in the coding regions of the genome, it is also pos-
sible to conduct a filtering based on automated searches (Ding et al.,
2015; Van Hulse et al., 2012).

Indeed, for combinatorial studies investigating the pair-wise

interactions (or as more commonly known as epistasis) between the
variants in full genome, recent studies show the importance of limit-

ing the search space through prioritization of the tests (Cowman
and Koyutürk, 2017; Piriyapongsa et al., 2012), both to alleviate the
computational intensity of the task, as well as to improve the overall

statistical power. Specifically, Caylak et al. (2020) demonstrates the
utility of an initial filtering of SNPs based on an automated SNP se-

lection algorithm (Yilmaz et al., 2019) as a powerful approach that
can improve the statistical power considerably.

1.2 Approaches for SNP selection problem in

quantitative phenotypes
The SNP selection problem in quantitative phenotypes essentially
corresponds to a feature subset selection problem for multivariate
regression (Miller, 2002). However, due to the high-dimensional na-

ture of typical GWAS data (millions of variants), established meth-
ods for feature selection such as linear regression with l1 (lasso)

regularization (Grave et al., 2011; Tibshirani, 1996), spectral-relax-
ation-based approaches (Das et al., 2012; Zhao and Liu, 2007),
graph-constrained feature selection methods like GraphLasso and

GroupLasso (Jacob et al., 2009; Meier et al., 2008), as well as vari-
ous other methods with sparsity constraints known in the bioinfor-
matics community in the context of other problems (e.g. for

selecting gene sets) (Jia et al., 2011; Li and Li, 2008; Liu et al.,
2017), are computationally too expensive for this task. Thus, a com-

mon strategy is to apply a simple threshold-based filtering (e.g. a P-
value cutoff) based on individual phenotype associations (Van Hulse
et al., 2012), for example, using a statistical test like sequence kernel

association test (SKAT) (Wu et al., 2011). The downside of this ap-
proach is that threshold-based filtering considers each variant inde-

pendently and does not take into account of the dependencies or
interactions between them.

To achieve a scalable solution for all known variants in the gen-
ome while considering the dependencies between them, alternative
SNP selection algorithms have been proposed (Azencott et al., 2013;

Yilmaz et al., 2019). Such algorithms simplify the problem by focus-
ing on a linear combination of individual phenotype associations of

SNPs while using some a priori information encoded in the form of
a biological network to improve the overall predictivity of the
selected subset. In particular, SConES (Azencott et al., 2013) uses a

minimum-cut solution under sparsity and connectivity constraints
on a SNP–SNP network. More recently, SPADIS (Yilmaz et al.,
2019) selects a diverse set of SNPs using the SNP–SNP network.

1.3 The drawbacks of existing methods
Linkage disequilibrium (LD) which refers to the non-random associ-
ation of variants is a common phenomenon for close variants on the
same chromosome (Ardlie et al., 2002). While the connectivity con-

straint of SConES helps to improve the quality of the selected set, it
implicitly promotes the selection of SNPs that are in LD impairing

the prediction performance. On the other hand, SPADIS seeks to in-
crease the diversity of SNPs by penalizing the selection of close SNPs
on the input network. While this diversity helps to avoid redundant

SNPs in LD and improves the phenotype predictions, the drawback
of SPADIS is that it requires two parameters without any interpret-

able meanings or default values, that need to be tuned through an
external procedure such as cross-validation. The need for such exter-
nal procedures not only makes the method hard to apply from a user

viewpoint, but also considerably exacerbates the run time and
reduces the robustness of the selections when there are time and re-
source constraints.

1.4 Macarons: a fast and simple algorithm to select

complementary SNPs
To overcome these limitations, we determined three main objectives
a SNP selection algorithm should satisfy: (i) have good prediction
performance for quantitative phenotypes (at least as predictive as
available methods); (ii) fast enough to consider all variants in the
genome; and (iii) easy to use without requiring external parameter
tuning procedures like cross-validation. Thus, we propose a new al-
gorithm named Macarons that take into account the correlations be-
tween SNPs to avoid the selection of redundant pairs of SNPs in LD.
Overall, Macarons features two simple, interpretable parameters to
control the time/performance trade-off: the number of SNPs to be
selected (k), and maximum intra-chromosomal distance (D, in base
pairs) to reduce the search space for redundant SNPs. Note that,
since the parameters have interpretable meanings, they can be deter-
mined in advance (without requiring an external procedure for par-
ameter tuning) with the available computational resources and the
goals of further studies in mind.

2 Materials and methods

2.1 Background
2.1.1 Problem definition

We are given as input a ground set of SNPs V of cardinality n, geno-
type matrix X 2 f0;1;2gm�n decoding the number of alternate
alleles for m samples and n SNPs, and a phenotype vector Y 2 R

m�1

containing quantitative values for m samples. The number of SNPs
n is much larger than the number of samples n� m. Thus, we
would like a obtain a small subset of SNPs S ¼ fs1; s2; . . . ; skg � V
of size k that maximizes the prediction performance of the given
phenotype vector Y based on a regression model M. In this study,
we consider a linear model (i.e. without interaction terms modeling
epistasis), where each selected SNP si 2 S has an additive effect on
the phenotype:

Y � b0 þ b1s1 þ b2s2 þ � � � þ bksk þ � (1)

where bi is the regression coefficients to be learned from data and �i
is an error term that is normally distributed with zero mean. Based
on this model, the collective effect of the SNP set S can be character-
ized by the squared multiple correlation coefficient R2ðY; SÞ which
has the interpretation of the variance explained in Y by S. Thus, the
overall SNP selection problem can be defined as a SNP subset search
problem that maximize the following function:

max
S

R2ðY; SÞ subject to jSj ¼ k (2)

2.1.2 Forward step-wise regression

Generally, solving the regression problem given in Equation (2) is
NP-hard (Natarajan, 1995). However, due to near submodularity of
R2, greedy formulations that iteratively grow a set based on a local
gain function G (as in Algorithm 1), produce near-optimal results,
proving a good approximation for maximizing R2 under a cardinal-
ity constraint (Das and Kempe, 2011; Das et al., 2012). Among such
algorithms, a notable one that is commonly used is the forward step-
wise regression that maximizes semi-partial squared correlation as
its gain function:

GðSt; sxÞ ¼ R2ðY; ðsxjStÞÞ (3)

where St is the subset of selected features at the t iteration of the al-
gorithm, sx is a candidate feature being considered and
R2ðY; ðsxjStÞÞ is the semi-partial correlation coefficient between Y
and sxjSt, when sx is regressed and residualized with every variable
in St.

The main issue with using this approach for the SNP selection
problem is that it requires estimating and inverting the covariance
matrix. This requirement not only makes the algorithm computa-
tionally intensive with Oðn3Þ runtime complexity, but also leads to

Macarons 909

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/4/908/6448209 by C
ase W

estern R
eserve U

niversity user on 09 M
ay 2022



the selection of SNP sets that is likely to overfit to the given training
data (this is due to the high-dimensionality nature of the problem
where n� m).

2.2 Macarons
Here, we follow an approach similar to the forward step-wise regression
where we iteratively grow the selected SNP set based on their estimated
contribution G for phenotype prediction as measured by the semi-
partial correlation. However, to scale to all SNPs in a typical GWAS
study as well as to improve the robustness of the algorithm, we apply
some simplifying assumptions that reduce the computational complex-
ity and error in estimation. First, we start by expressing the semi-partial
correlation R2ðY; ðsxjStÞÞ in an alternate form:

R2ðY; ðsxjStÞÞ ¼ R2ðsx; St [ YÞ � R2ðsx; StÞ (4)

where R2ðsx; St [ YÞ and R2ðsx; StÞ are multiple correlation terms
corresponding to linear models predicting sx using the SNP set St

with and without the phenotype variable Y, respectively. Here, we
can further decompose R2ðsx; St [ YÞ into two parts:

R2ðsx; St [ YÞ ¼ 1�
�

1� r2ðsx;YÞ
��

1� R2ðsx; StjYÞ
�

(5)

where r2ðsx;YÞ is the squared Pearson’s correlation coefficient indi-
cating the individual predictivity of sx on Y, and R2ðsx; StjYÞ is the
partial correlation between sx and St given Y. Here, we assume that
the portion of variance that overlap between sx and St does not de-
pend on their overlap with Y, which can be expressed as follows:

R2ðsx; StjYÞ � R2ðsx; Stj1Þ ¼ R2ðsx; StÞ: (6)

With this assumption, the gain function R2ðY; ðsxjStÞÞ can be
simplified as follows:

R2ðY; ðsxjStÞÞ � 1�
�

1� r2ðsx;YÞ
��

1�R2ðsx; StÞ
�
� R2ðsx; StÞ

¼ r2ðsx;YÞ
�

1� R2ðsx; StÞ
�

(7)

Here, since r2ðsx;YÞ quantifies the individual predictivity of the
candidate SNP sx on phenotype Y, which we can also replace with
other phenotype association scores (denoted cx for SNP sx) such as
SKAT. Thus, a more general gain function can be defined as
follows:

GðSt; sxÞ ¼ cx

�
1� R2ðsx; StÞ

�
(8)

Overall, the multiple correlation R2ðsx; StÞ measures the collect-
ive redundancy between sx and St, and here used as a penalty func-
tion to facilitate the selection of complementary SNPs for the
phenotype prediction.

2.2.1 Estimating the penalization function

The main challenge in estimating the multiple correlation is that it
requires the computation of high-order interaction terms among the

selected SNPs. This makes its estimation for a given data sample
both computationally intensive [with Oðmt2 þ t3Þ runtime complex-
ity], and noisy. To help overcome these issues, we first express the
multiple correlation as multiplication of several terms involving par-
tial correlations:

R2ðSt; sxÞ ¼ 1�
�

1� R2ðs1; sxj1Þ
�

�
1� R2ðs2; sxjs1Þ

�
. . .
�

1�R2ðst; sxjs1; . . . ; st�1Þ
�

¼ 1�
Yt

i¼1

�
1�R2ðsi; sxjs1; . . . ; si�1Þ

�

¼ 1�
Yt

i¼1

�
1�R2ðsi; sxjSi�1Þ

�
(9)

where R2ðsi; sjjS0Þ denotes the squared partial correlation between
SNPs si and sj given the SNPs within the set S0. Note that, these par-
tial correlation calculations also require computing high-order inter-
actions; thus do not simplify the computation of the multiple
correlation by themselves. For this purpose, we make the following
simplifying assumption:

R2ðsi; sxjSi�1Þ � R2ðsi; sxj1Þ ¼ r2ðsi; sxÞ (10)

where r2ðsi; sxÞ is the squared zero-order correlation coefficient (i.e.
ordinary Pearson’s correlation) between SNPs si and sx. Thus, with
this assumption, the estimation of the multiple correlation simplifies
to:

R
2ðSt; sxÞ ¼ 1�

Y
si2St

�
1� r2ðsi; sxÞ

�
(11)

This assumption helps with the overfitting problem in the esti-
mation of multiple correlation since it reduces the number of param-
eters needed to be estimated from the data and reduces the required
computation time drastically [from Oðmt2 þ t3Þ to O(mt)].

In the remaining sections of this manuscript, we will refer to the
estimation of the squared multiple correlation R

2ðSt; sxÞ simply as
the penalization function, and we will refer to the zero-order correl-
ation r2ðsi; sxÞ as the redundancy function.

Similar to the squared multiple correlation R2ðSt; sxÞ, this sim-
plified penalization function has several useful properties such as
being bounded in [0,1] region, being monotonic and applying
diminishing returns principle (where the increase in penalization
decreases proportionally on subsequent iterations as the selected
set grows). We explain these properties in more detail in
Supplementary Text S1.

2.2.2 Limiting the search space through intra-chromosomal

distance

One particular issue for directly using the penalization function
given in Equation (11) together with the gain function and algo-
rithm in Equation (8) and Algorithm 1 is that the overall runtime
can still be slow for large k (number of SNPs selected) with algo-
rithmic complexity of O(nmk) due to the requirement of comput-
ing O(nk) correlation coefficients. For this reason, we make an
additional simplifying assumption to limit the search space to
intra-chromosomal SNP pairs within a specified distance.
Specifically, we assume the following:

r2ðsi; sjÞ ¼
0 if si and sj are not on the same chromosome
0 if dðsi; sjÞ > D

�
(12)

where dðsi; sjÞ is defined as the intra-chromosomal distance between
SNPs si and sj (i.e. the distance on the genome) and D is an adjust-
able parameter (unit in base pairs) to control the time/performance
trade-off of the algorithm by limiting the search space for the redun-
dancy estimations. Note that, we consider the dðsi; sjÞ to be infinite
for SNP pairs that are on different chromosomes.

Algorithm 1 Greedy Subset Selection AlgorithM

Input: Gain function G, ground set V, cardinality constraint

k 	 jVj.
Output: Set S � V such that jSj ¼ k.

S 1
while jSj < k dO

S S [ argmaxsx2VnS GðS; sxÞ
end while
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2.2.3 Formulation of Macarons algorithm

Overall, with the three assumptions given in Equations (6 , 10 and
12), the penalty function becomes as follows:

r2ðsi; sjÞ ¼ r2ðsi; sjÞ; if dðsi; sjÞ 	 D
0; otherwise

� �

R
2ðSt; sxÞ ¼ 1�

Q
si2St

�
1� r2ðsi; sxÞ

� (13)

Thus, the gain function becomes:

GðSt; sxÞ ¼ cx

�
1�R

2ðSt; sxÞ
�

¼ cx

Q
si2St

�
1� r2ðsi; sxÞ

� (14)

The Macarons algorithm that encodes this gain function for
step-wise SNP selection is given in Algorithm 2. Overall, it has
Oðnkþ kDmkÞ run time complexity where the first term is for maxi-
mizing the gain function, and the second term is for computing the
gain function, which require the measurement of correlations from
data. Here, kD is a variable between ½1; n
 dependent on the D par-
ameter. It represents the average number of SNP pairs that require
the computation of correlation for a given D threshold. Thus, the
overall complexity for small D is O(nk) when the first term domi-
nates and O(nmk) for large D as the computation of Pearson corre-
lations becomes the bottleneck.

2.2.4 Optimizing Macarons algorithm for runtime

The gain function given in Equation (14) is monotonically non-
increasing with respect to the growing set of selected SNPs (i.e. at
each iteration, the gain of a SNP either stays the same or
decreases). Moreover, we know that the selected SNP set will ap-
proximately grow according to their individual association scores
(this is particularly true for low k and D parameters since there
would be less deviation from individual scores). Here, we leverage
these properties to further optimize the runtime of the algorithm.
For this purpose, we first sort all SNPs according to their pheno-
type association scores cx (such that ci � cj if i< j). Then, we limit
the search space of the algorithm to an active region consisting of
Nactive most promising SNPs with highest individual scores (hav-
ing an initial size of Nactive ¼ w). When the current search space is
insufficient (this can be detected by comparing the gain function
with the individual scores), we grow the active region by a factor
of c > 1. Specifically, when the maximum value of gain function
is greater than or equal to the minimum individual score in the ac-
tive region (i.e. when maxx	Nactive

ðGðSt; sxÞÞ � minx	Nactive
ðcxÞ), we

know that active region is sufficient (since we know

minx	Nactive
ðcxÞ > cj � GðSt; sjÞ 8fj > Nactiveg). Otherwise, the ac-

tion region might be insufficient, thus, we grow the active region
to include the most promising dcNactivee SNPs and repeat this pro-
cess as necessary. The optimized Macarons algorithm that imple-
ments this idea is given in Supplementary Algorithm S1. Note
that, the output of this algorithm is always equal to the output of
Algorithm 2 regardless of the parameter values (i.e. the parame-
ters w and c does not change the output, only affects the runtime).
In our experiments, we use w¼1000 and c¼ 2 unless otherwise
specified.

3 Results

3.1 Experimental setup
3.1.1 Summary of the experiments and the results

First, we investigate the effect of limiting the search of Macarons
using intra-chromosomal distance (D parameter) in terms of redun-
dancy and runtime, and whether Macarons can successfully avoid
the selection of highly redundant SNPs (Fig. 1). Then, we compare
Macarons with other SNP selection methods on a small but compre-
hensive dataset (AT dataset with 17 flowering time phenotypes) in
terms of their predictivity, runtime and redundancy characteristics
(Figs 2 and 3; Supplementary Fig. S1) and investigate the trade-off
between different assumption models in Macarons (Fig. 4). Next,
we demonstrate that Macarons can seamlessly scale to large datasets
with � 107 variants (in human height dataset). Afterwards, we in-
vestigate the utility of avoiding redundancy with Macarons over
using a fixed threshold based on individual phenotype association
scores on two larger datasets (rice700k and human height) based on
two different association scores (Fig. 5) and we inspect the charac-
teristics of Macarons by visualizing the correlation structure of the
selected SNPs while marking the ones near coding regions (Fig. 6).
Finally, we benchmark the utility of using Macarons in conjuction
with various regression models (Fig. 7).

3.1.2 Datasets

For a considerable portion of our analysis (e.g. for the comparisons
with other SNP selection methods), we use the Arabidopsis Thaliana
(AT) dataset (Atwell et al., 2010) which provides data for 17 flower-
ing time phenotypes. The availability of multiple phenotype data
helps to estimate the variance in phenotype prediction performance
more accurately. Also, this is relatively small dataset where the num-
ber of samples is between 119 and 180 (depending on the pheno-
type), and there are 214 051 SNPs before any filtering. Thus, this
dataset allows us to test the performance of some methods that
would otherwise not scale to larger datasets. In our analysis, we fil-
ter out variants with minor allele frequency (MAF) of < 10%,
which remains 173 219 SNPs.

As an additional dataset, we use the rice700k data (McCouch
et al., 2016) which contains 1145 samples and 700 000 SNPs before
filtering. Here, the phenotype is related to the rice grain-length. In
our analysis, after applying a MAF < 5% filter, 463 907 SNPs re-
main. Note that, this is a medium-sized dataset that is roughly 20
times larger than the AT dataset.

As our largest dataset, we consider the human height data
(https://zenodo.org/record/1442755) collected from openSNP,
which is a crowd-sourced genetic test sharing website (Greshake
et al., 2014). It was prepared by researchers from École
Polytechnique Fédérale de Lausanne (EPFL) as a part of a machine
learning challenge on CrowdAI (https://www.crowdai.org/chal
lenges/opensnp-height-prediction). This dataset contains human
height data for 784 individuals and 7 252 636 SNPs. Thus, this data-
set is about 10 times larger than the rice700k dataset (and about
200 times larger than AT dataset).

3.1.3 Phenotype association scores

For consistency with the previous results (Azencott et al., 2013;
Yilmaz et al., 2019), we use SKAT (Wu et al., 2011) to score the in-
dividual phenotype association of each SNP, unless otherwise

Algorithm 2 Macarons Algorithm

Input: Ground SNP set V, chromosome numbers and posi-

tions for all SNPs si 2 V, the phenotype association scores ci

for all si 2 V, cardinality constraint k 	 jVj, trade-off par-

ameter D � 0 in base pairS

Output: Set S � V such that jSj ¼ k.

S 1
G fci 8i 2 Vg
while jSj < k do

si  argmaxsx2VnS GðsxÞ
S S [ fsig
for all (si, sx) with dðsi; sxÞ 	 D do

rðsi; sxÞ  compute Pearson’s correlation between si

and Sx

GðsxÞ  GðsxÞ
�

1� r2ðsi; sxÞ
�

end for

end while
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specified (as a part of one of the experiments, we also run our
method with another phenotype association measure). While com-
puting the SKAT score, we use the top principal component of the
genotype matrix to alleviate the effect of the population stratifica-
tion (Price et al., 2006).

3.2 Effect of limiting the search space through intra-

chromosomal distance
The premise behind Macarons is to select a complementary set of
SNPs while avoiding redundant (correlated) SNPs that are in LD. As
we discuss in the methods, the process of taking into account of all
redundant SNPs overall requires k� n (number of selected SNPs �
number of SNPs) correlation estimations from the data, which is
both computationally intensive and superfluous since most highly
correlated variants tends to be closely located on the genome. To
overcome this issue, we limit the search space for correlated SNPs to
close intra-chromosomal pairs with maximum distance of D, where
D is an adjustable parameter (unit in base pairs).

Here, we investigate the effect of the parameter D on the SNPs
selected by Macarons, particularly to examine its effect on the selec-
tion of highly correlated SNPs. For this purpose, we select k¼1000
SNPs for each of the 17 flowering time phenotypes of AT using
Macarons with various D parameter values. For each tested value of
the D parameter, we investigate the distribution of the redundancy

for
1000

2

� �
� 17 pairs of selected SNPs, in addition to the overall

runtime characteristics of Macarons (Fig. 1). Note that, since the
distribution of the redundancy is greatly skewed (i.e. many pairs
with low redundancy, a few with high redundancy), we visualize it
using percentile lines (similar to a boxplot) starting from the 50th
percentile (median) all the way to the 99.9th percentile, denoted as
top-0.1% redundancy. As it can be seen in Figure 1, with a priori
selected D value of 20 kbps [which is the estimated LD range for AT
according to Atwell et al. (2010)], Macarons can considerably re-
duce the selection of highly redundant SNP pairs without being
bottleneck from a runtime perspective (since the association scores
needs to be computed regardless of the D parameter or the redun-
dancy calculations). We observe that the redundancy calculations

only start to become a bottleneck after around D ¼ 106 base pairs.
Next, we investigate whether avoiding the selection of redundant
pairs would translate into an improved phenotype prediction per-
formance by comparing the Macarons with other SNP selection
methods.

3.3 Benchmarking SNP selection methods
3.3.1 Compared methods

We compare Macarons with the following methods:

• Baseline: A simple greedy approach that selects the top k SNPs

with the highest individual phenotype association scores. This

method becomes equivalent to Macarons when the search space

(D) parameter of Macarons is set to 0 (since no redundancy cal-

culations are made and phenotype association scores are not

updated in that case). This method considers the association of

each SNP independently, thus, serves as a baseline for other SNP

selection methods that attempt to take into account of interac-

tions or dependencies between selected SNPs in some manner.
• SConES: A SNP selection algorithm that rewards SNPs according

to their individual phenotype association scores of SNPs while

employing a connectivity constraint on an SNP–SNP network

(Azencott et al., 2013). It features two parameters k and g that

controls the connectivity and sparsity constraints respectively.
• SPADIS, our previous work, rewards SNPs according to their in-

dividual phenotype association scores of SNPs while applying a

diversity penalty based on the shortest-path distances on an input

network (Yilmaz et al., 2019). It features three parameters k (for

number of SNPs selected), b (for the strength of penalization)

and D (for limiting the search range in the network).
• Lasso: A linear regression method with l1 (lasso) regularization

that forces the regression weights of some features (SNPs) to be

zero. SNPs with non-zero weights are considered to be selected.

It has one parameter k that determines the strength of regulariza-

tion and therefore the sparsity (size) of the selected SNP set.

For methods that utilize a SNP–SNP network (i.e. SPADIS and
SConES), we use the best performing network. Based on the results of
previous benchmarkings (Azencott et al., 2013; Yilmaz et al., 2019):
Genomic sequence network (where SNPs that are adjacent on the
chromosome are connected) for SPADIS, and Genomic interaction
network (where SNPs that are in the same genomic region as well as
the SNPs between interacting genes are connected to form cliques).

Since Macarons has interpretable parameters and does not require a
parameter optimization procedure, we tested it for two a priori selected
D values. We choose D¼20 kbp as suggested by (Atwell et al., 2010),
and we also test D ¼1 (which covers the entire chromosome and
includes all intra-chromosomal pairs) to see the effect of limiting the
search space on phenotype prediction performance.

Note that, to compare phenotype prediction performances of the
methods on equal footing, we apply a cardinality constraint k on the
selected SNP set and compare the results of the algorithms for differ-
ent values of k. To control the number of SNPs selected, the baseline
method, SPADIS and Macarons already has a parameter k that we
can set directly. On the other hand, SConES and lasso features spars-
ity parameters that indirectly controls the size of the selected SNP
subset. For these methods, we apply a binary search and select the
sparsity parameters (g for SConES, k for lasso) that yield the closest
number of selected SNPs to the predefined cardinality constraint k.

3.3.2 Evaluating phenotype prediction performance

Our testing scheme consists of using a nested cross-validation
scheme (outer for evaluation, inner for parameter selection). First,
we use 10 cross-validation folds to split the data into training and
test samples. For each of the 10 cross-validation folds, we compute
phenotype association scores and run the SNP selection methods

Fig. 1. The characteristics of Macarons algorithm with respect to its D parameter in

terms of the redundancy between the selected SNPs and the runtime of the algo-

rithm. Redundancy (measured by squared correlation) between all pairs of selected

SNPs in AT data for k¼ 1000. Each line indicates a different percentile for the dis-

tribution of redundancy (e.g. top-1% line indicates 1%th most redundant pair).

Note that, the lines are averaged across 17 runs corresponding to different flowering

time phenotype of AT. The left-most point at the x-axis (for D¼1 parameter) corre-

sponds to the baseline method of selecting the highest scoring SNPs (without apply-

ing any penalization or regularization). The dotted line indicates a priori selected D

parameter value of 20 kbp. At the top, the blue lines indicate the total runtime (in

seconds) to run Macarons for the corresponding D parameter (the dashed line add-

itionally includes the time to compute SKAT phenotype association scores)
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using training portion of the data, and we predict the phenotype
on the test portion using ridge regression. Next, we assess the pre-
diction performance using Pearson’s squared correlation coeffi-
cient (R2) between the predicted and observed (actual) phenotype
vectors. Note that, some methods (e.g. SPADIS and SConES) re-
quire further cross-validation to tune their parameters. For this
purpose, we use a nested-5-fold cross-validation where the training
portion of the data is further split into five validation folds. On
these validation folds, the model’s generalizability to unseen sam-
ples is measured by using ridge regression with R2 and the parame-
ters with highest R2 are selected. Since Macarons’s parameters are
selected a priori, it does not require this nested cross-validation
procedure.

3.3.3 Comparison of SNP selection methods

Here, to compare the performances of different SNP selection meth-
ods, we use the AT dataset because it has two main advantages: (i) it
contains 17 flowering time phenotypes that allows us to more accur-
ately estimate the phenotype prediction performance (by reporting
the averages over all flowering time phenotypes) and (ii) it is rela-
tively small dataset (with �102 samples, �105 SNPs) which allows
us to report results for relatively slow methods (e.g. lasso) that

would otherwise not scale to larger datasets. For methods that util-
ize a phenotype association score (i.e. for all tested methods except
lasso), we use SKAT score mainly for consistency with previous
benchmarkings that use this dataset (Azencott et al., 2013; Yilmaz
et al., 2019).

First, we run each method on each of the 17 flowering time phe-
notypes for k¼1000 and assess their 10-fold cross-validated pheno-
type prediction performance (using ridge regression as the
prediction model and measuring by R2). In Supplementary Figure
S1, we report the prediction performance of the methods relative to
the performance of the baseline method (of selecting the top-k SNPs
that are most associated to the phenotype individually). Here, we
make the following observations:

Fig. 2. The phenotype prediction performances and runtimes of the SNP selection methods for different number of selected SNPs (indicated by k values). The methods are

tested for k¼ 50, 100, 250 and 1000 selected SNPs. (A) Each colored bar represents a different SNP selection method. The y-axis shows the averaged Predictivity (measured by

Pearson’s squared correlation coefficient, R2) across all 17 flowering time phenotypes. The black lines indicate the 95% confidence interval for the average R2 performance for

the corresponding method and the k value. (B) Each line indicates time required (in seconds) to run the corresponding method for a flowering time phenotype of AT. Note

that, since AT dataset consists of 17 phenotypes, the values shown for runtime are averaged across all phenotypes

Fig. 3. Top-level overview of the characteristics of the SNP selection methods in

terms of their predictivity, redundancy and runtime. The predictivity indicate the

average phenotype prediction performance (measured by R2) of the corresponding

method for k¼1000 selected SNPs. The redundancy axis indicates the presence of

high correlation among the selected SNPs (measured by top-0.1% redundancy:

99.9th percentile of the squared correlation between all pairs of selected SNPs). The

time axis (in log-scale) shows the average time required (in seconds) to run the cor-

responding method in the AT dataset. Note that, since AT dataset consists of 17

phenotypes, the values shown for runtime are averaged across all phenotypes

Fig. 4. The predictivity, runtime and robustness characteristics of Macarons

under various assumption models on AT data. (a) The phenotype prediction per-

formance (measured by R2) versus the number of selected SNPs (k). Each colored

line shows the performance of Macarons under different assumption models. (b)

The average time required (in seconds) to run the corresponding model in the AT

dataset. Note that, since AT dataset consists of 17 phenotypes, the values shown

for runtime are averaged across all phenotypes. (c) Robustness (measured by the

average overlap in the selected sets between different cross-validation folds), (d)

A snapshot of the predictivity, runtime and robustness characteristics of the

models for a fixed k (k¼ 100 for all models except the most complex model with-

out assumptions, due to limiting runtime, that one is given for k¼30). The mod-

els are ordered such that the ones on the left are more complex models with less

simplifying assumptions
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• SConES does not seem to perform better than the baseline

method for predicting the phenotype. We argue that this may be

because the network connectivity constraint in SConES reinfor-

ces the selection of highly correlated SNPs that are in LD, which

likely pose difficulties for the regression step.
• SPADIS and Macarons (with D ¼ 20 kbp) seem to perform quite

similarly while both having a higher phenotype performance

than the baseline method on most phenotypes.
• Lasso and Macarons (with D ¼ 1, measuring the redundancy of

all intra-chromosomal SNP pairs) seem to perform similarly

while lasso performs considerably worse than the baseline

method on two of the phenotypes.
• For Macarons, using D ¼ 1 to expand the search space over

using D ¼ 20 kbp does not seem to provide a considerable bene-

fit in phenotype prediction performance for most phenotypes.

Next, in Figure 2, we consider the averaged phenotype predic-
tion performances (R2, denoted predictivity for brevity) across all
17 phenotypes for various number of selected SNPs
(k ¼ 50; 100; 250;500 and 1000). Here, our first observation is that
the overall performances of all methods consistently increase as the
number of selected SNPs (k) is increased. We argue that this is be-
cause ridge regression can provide an adequate amount of regular-
ization and improve the predictivity even for relatively large k
(where k>m, the number of samples). Secondly, we observe that,
for each computational experiment (for different k), the prediction
performance of Macarons (for either of the D parameter values) is
consistently similar or better than all other methods although there
is not sufficient statistical power to conclude that one method has
significantly better predictive performance than the others at 95%
confidence level for any k experiment. Whereas, when we look at
the average performance across the five computational experiments
for different k (Supplementary Fig. S2), we observe that Macarons
have a significantly higher prediction performance than baseline
method, SConES and Lasso, while having a similar performance to
SPADIS.

Additionally, in Figure 2 (right panel), we compare the methods
in terms of the runtime required to run them on the AT dataset (we
perform the time measurement on a 40 core machine with Intel(R)
Xeon(R) CPU E5-2650 v3 2.30 GHz, parallelized on 17 threads for
phenotypes). For each method, we report the CPU runtime averaged
across 17 phenotypes with respect to k. Note that, the reported
times include the method runs, 10-fold cross-validation used for
evaluation, the calculation of association scores and (if any) the
cross-validation for parameter tuning.

As it can be seen on Figure 2, Macarons with D¼20 kbp is at
least two orders of magnitude faster than other methods (i.e.

SPADIS, SConES, lasso), and compared to the baseline method of
using individual association scores for subset selection, improves the
predictivity and the redundancy characteristics (Fig. 1) of the
selected SNP subsets. We also observe that, even though considering
all intra-chromosomal pairs (with D ¼ 1) in Macarons does not
provide an additional benefit in predictivity over using D¼20 kbp
for k¼1000, the performance of Macarons D ¼ 1 is typically
higher than D¼20 kbp for lower k values. This indicates that, for
target subsets of small size, increasing the depth of the search space
through D parameter might be a more optimal choice.

In Figure 3, we summarize the differences and potential trade-
offs between different SNP selection methods by considering three
metrics: (i) Predictivity (measured by R2) for phenotype prediction;
(ii) Runtime in seconds; and (iii) Redundancy (measured by top-
0.1% redundancy, in a similar manner to the results in Fig. 1) that
investigates the presence of highly redundant SNP pairs in the
selected SNP subset. Overall, Figure 3 suggests that Macarons
(D¼20 kbp) can offer a good trade-off between different character-
istics, with decent predictivity, fast runtime and a moderate level of
redundancy.

In Supplementary Text S2, we also investigate the concordance
of the selected SNPs by Macarons based on the candidate genes
obtained from (Segura et al., 2012) on the AT dataset.

3.4 The impact of the simplifying assumptions in

Macarons
Next, we investigate the effect of the simplifying assumptions in
Macarons on important characteristics like model predictivity, run-
time and robustness. Overall, we utilize three simplifying assump-
tions in Macarons:

• Assumption in Equation (6) (assuming that the overlap between

a candidate SNP and the selected SNP set does not depend on

their overlap with the phenotype, Y). This assumption results in

a gain function (Equation 7) that is monotonically non-

decreasing with respect to the increased set size. This monoton-

icity allows the optimized algorithm (given in Supplementary

Algorithm S1) to be used rather than the straightforward imple-

mentation described in Algorithm 1.
• Assumption in Equation (10) (assuming that the partial correl-

ation between two SNPs in the set does not depend on other

SNPs in the set, thus, are equal to their zero-order correlation).

This assumption eliminates the need for making high-order cor-

relation estimations from data, thus allowing the optimization of

SNP sets with cardinality larger than k>m (where m is the num-

ber of samples).
• Assumption in Equation (12) (assuming that SNPs that are more

than D base pairs apart are not correlated).

Thus, we run Macarons with different versions of these assump-
tions, where the main difference between these versions is the defin-
ition of the gain function that determines which SNP is to be added
to the set next. Overall, we consider the following five models (from
the most complex to the least complex):

• Macarons (without assumptions): This is a straightforward

model implementing Algorithm 1 without any of the assump-

tions in Equations (6) and (10).
• Macarons (only assumption 6): Here, since we make assump-

tion 6, the gain function becomes monotonic, which allows us

to utilize the optimized algorithm to speed-up the computation

drastically.
• Macarons (assumptions 6 and 10): Here, the inclusion of as-

sumption 10 allows us to eliminate the high-order estimations

from data, thus allowing SNP sets larger than k > m to be

Fig. 5. Contribution of Macarons in improving the prediction performance for vari-

ous datasets and phenotype association scores. The bars represents the predictivity

(measured by R2) of the selected SNPs by the corresponding method for k¼1000.

The blue bars indicate the prediction performance of baseline method (filtering

based on individual phenotype association scores), whereas, red and orange bars in-

dicate the performance of Macarons for various datasets (AT, Rice, Human height)

and association scores (SKAT, Rho). The black error bars indicate the 95% confi-

dence intervals. The dashed lines on the top side indicate the runtime of the corre-

sponding method in seconds. Note that, since AT dataset consists of 17 phenotypes,

the values shown for predictivity and runtime are averaged across all phenotypes
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considered. Note that this model does not limit the search

according to D and corresponds to Macarons with D ¼ 1.
• Macarons (D ¼ 20 kbps): Again, with the assumptions 6 and 10,

but also assuming that only SNPs that are less than 20kbps apart

are correlated. This is the proposed Macarons version that we

run.
• Macarons (D ¼ 0): This is the simplest model we consider that

assumes no SNPs are associated with each other. This is equiva-

lent to the baseline method of using univariate associations (i.e.

selecting top k SNPs with highest individual associations with

the phenotype).

We investigate the performance of the selected SNP sets by these
methods for different k values on the AT dataset (across the 17 phe-
notypes). For this purpose, we consider three metrics: the predictiv-
ity (R2), the time performance and robustness (the consistency of the
selected SNP sets across different cross-validation folds, measured
by jaccard index).

As it can be seen in Figure 4, more complex models take more
time to run and the formulated assumptions considerably improve
the runtime performance as expected. Notably, we also observe that
decreasing the complexity has another important benefit of improv-
ing the model’s robustness to noise. Namely, we observe that models
without the simplified assumptions are noticeably less robust com-
pared to simplier models (e.g. Macarons with D¼0, or D¼20
kbps).

In phenotype prediction, we observe that Macarons (assumption
6) and Macarons (assumption 6 and 10) follows similar perform-
ance curves (Fig. 4a), which suggests that assumption 10 does not
have a strong effect on the predictive performance of the models and
is likely to hold. Here, we also observe that predictive performance
typically increases with the selected SNP set size k, and simpler mod-
els with larger sets can offer more predictive performance compared
to complex models that are limited to smaller sets.

In Figure 4d, we also present a snapshot of the characteristics of
these models for a fixed k value (k¼100 for all models except the
most complex model, which we selected k¼30 due to time issues).
The models are ordered by their complexity (models with more sim-
plifying assumptions are on the right). Here, we clearly observe the
trade-off between predictivity, runtime, robustness and model com-
plexity: More complex models are slower and less robust, but (pre-
sumably) better fits/explains the given data. Whereas, the model
with the best cross-validated predictivity is in the middle, represent-
ing a good trade-off point between the model fit and the model’s ro-
bustness to noise.

3.5 Contribution of using Macarons to take

dependencies between variants into account
Here, we investigate the effect of Macarons (and avoiding redun-
dancy between the variants) on the characteristics of the selected
subsets. First, we compare Macarons with the baseline method
(which does not take dependencies into account) in terms of pheno-
type prediction performance. For this purpose, we benchmark the
methods on three datasets (AT, and two larger datasets: rice700k,
and human height) and two phenotype association scores: (i) SKAT
as done in previous sections and as an alternative measure (ii) abso-
lute Pearson correlation which is denoted as Rho (q). For this ana-
lysis, we predict the phenotype using ridge regression on k¼1000
selected SNPs and report the performance using R2. For Macarons,
we consider two D parameter values: (i) D¼20 kbps as previously

Fig. 6. Visualization of the selected SNPs on human height dataset for k¼ 100. Each panel corresponds to a different SNP selection method (Baseline method of selecting top-k

SNPs with highest association, Macarons with D¼20 kbp, and Macarons with D ¼ 106 base pairs). The circles indicate selected SNPs and the rectangles indicate genes (col-

ored red or light red) or chromosomes (colored yellow). Weighted edges between SNPs indicate their redundancy (measured by squared correlation R2, We include pairs with

R2 � 0:35 and we highlight highly redundant pairs with R2 � 0:7 with thick lines and black color). The red colored SNPs are within coding region, and light red colored SNPs

are within 620 kbp around coding region. Similarly, we use red (light red) color for genes with at least one selected SNP in a coding region (around 620 kbp of coding region).

The sizes of the circles (SNPs) indicate the strength of their individual association with the phenotype (measured by R2)

Fig. 7. The prediction performances and runtimes of various regression methods

and their Macarons-enhanced versions on the human height dataset. (a) The predic-

tion performances (R2) of three regression methods (BL, BGLR and rrBLUP) that

can run using all SNPs, as well as the performance of Macarons (for k¼1000 and

D¼ 20 kbps, using ridge regression for predictions). (b) The prediction performan-

ces (R2) of the Macarons-enhanced regression methods (labeled Macarons þ meth-

ods) with respect to the number of SNPs (k) parameter of Macarons. The dashed or

dotted black lines indicate the standalone R2 of the corresponding regression

method (using all SNPs). Note that, it is not possible to run the random forest and

elastic net regression using all SNPs due to time and memory constraints
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done and (ii) D ¼ 106 bp which is approximately the maximum
D values before Macarons becomes a bottleneck in terms of runtime
(according to our analysis on AT data, Fig. 1).

As it can seen from Figure 5, we observe a consistent increase in
phenotype predictivity when using Macarons across different data-
sets and association scores although the magnitude of the increase
depends on the datasets (e.g. rice dataset exhibits minor differences
while the differences in AT are more prominent). In addition, we ob-
serve that different association scores result in similar prediction
performances. In Figure 5, we also report the overall runtime of the
methods (total 10 runs for 10-cross validation folds). As it can seen,
Macarons can scale to large datasets (e.g. human height data with
�107 variants) without compromising from runtime (i.e. the compu-
tation of phenotype association scores becomes the bottleneck rather
than the subset selection).

Next, to elucidate the effect of taking into account of dependency
on the characteristics of the selected subset, we visualize the selected
SNPs (for k¼100 subsets on the human height dataset using q for
phenotype associations) in the form of a correlation network while
marking the variants in the coding regions or near 620 kbp of the
coding regions (Fig. 6). Our first observation is that there are some
highly correlated clusters of variants in the selections of baseline
method (can be considered as Macarons with D¼0 bp, which consid-
ers the variants to be independent). Whereas, these tightly coupled
clusters starts to disappear as a higher portion of the dependencies be-
tween the variants are taken into account with higher D parameter (to
the point that there are only a few pairs that are highly correlated for
D ¼ 106 bp). Interestingly, we also observe that avoiding the redun-
dancies during the subset selection leads to the selection of more var-
iants in coding regions (and more genes with at least one selected
variant in their coding region, Supplementary Table S1). Nevertheless,
most of the selected variants are not near coding regions, including
some of the highly associated ones (Fig. 6). Note that, for the human
height dataset, all k¼100 selected SNPs (regardless of the method
used) turn out to be either in chromosome X or Y. This is likely be-
cause gender is a strong predictor of height, e.g. there is considerable
difference in the mean heights of males and females in this dataset
(males: 1.79 m and females: 1.65 m).

3.6 Improvement of Macarons over a broad range of

regression methods
We investigate the utility of the SNP subsets obtained by Macarons
when used in conjuction with various regression methods (other
than ridge regression used in the previous analyses) on the human
height dataset. For this purpose, we consider five well-established re-
gression models which are: (i) rrBLUP (Endelman, 2011); (ii)
Bayesian Lasso (BL) (Park and Casella, 2008); (iii) BGLR (BayesA
model) (Pérez and de Los Campos, 2014); (iv) Elastic-Net regres-
sion; and (v) Random Forest. Here, the first three methods (rrBLUP,
BL and BGLR) are iterative methods that are designed to handle a
large number of features. Thus, these can be run on the entire gen-
ome (even for a large dataset with high dimensionality like the
human height data), while the Random Forest and Elastic Net mod-
els are not optimized enough to run on the entire dataset due to run-
time and/or memory issues.

First, we benchmark the predictive performance (R2) of these
methods on the human height dataset and compared them with
Macarons (followed by ridge regression) for k¼1000 and D¼20
kbps. The results of this analysis are provided in Figure 7a. Here, we
observe that Macarons followed by ridge regression can outperform
rrBLUP, BL and BGLR methods while being two magnitudes faster
(Macarons framework takes 25 min to run, while the others take
50–60 h to run, Supplementary Fig. S3).

Next, we investigate the performance of Macarons-enhanced re-
gression models (rrBLUP, BL, BGLR, Random Forest, Elastic-Net)
that are run using k SNPs selected by Macarons (for D¼20 kbps)
on the human height dataset. As it can be seen in Figure 7b (for R2)
and Supplementary Figure S4 (for mean squared error), using
Macarons in conjunction with rrBLUP, BL and BGLR improves
their prediction performance compared to running them alone using

all SNPs, while dramatically reducing the runtime as much as 100x
(Fig. 7c). Particularly, in the case of BL, we observe that, even
though using BL alone has a considerably lower performance, using
Macarons together with BL results in a comparable performance to
other regression methods. Overall, the results of these experiments
suggest that using Macarons to reduce the feature space can benefit
various regression methods both from a perspective of prediction
performance as well as runtime.

In addition, using Macarons to filter the feature space allows us
to run regression methods that would otherwise not be possible to
do so, such as Elastic-Net and Random Forest. Most notably, we ob-
serve that Macarons þ Random Forest has the highest prediction
score across all k values compared to all other methods tested, while
still being an order of magnitude faster than running rrBLUP, BGLR
and BL on the whole dataset. This suggests that running a more
sophisticated, non-linear method using a carefully selected subset of
features could be a good strategy to improve the predictive perform-
ance further.

Finally, we investigated the performance of using the baseline
method of univariate selection (i.e. selecting the top k SNPs with
highest associations) instead of Macarons to filter the feature space
of the regression methods. As shown in Supplementary Figure S5,
we observe that selecting using Macarons consistently increases the
prediction performance across all regression methods without com-
promising the runtime (Supplementary Fig. S3).

3.7 Suggested settings for using Macarons
For the maximal chromosomal distance (D) parameter, we recom-
mend an analysis similar to the one in Figure 1 and suggest the use
of a default D value of 20 kbps based on our results. Whereas, for
selecting the number of SNPs parameter (k), our recommendation is
to select the highest possible k based on the available computational
and experimental resources in mind (as a general guideline, we sug-
gest k¼1000 for use with ridge regression, and k¼10 000 for use
with rrBLUP regression as good initial values to consider) and fine-
tune it with the help of a cross-validation analysis as in Figure 7b
and Supplementary Figure S6. In Supplementary Text S3, we detail
our reasoning and suggestions on the selection of k.

4 Discussion

In order to select a complementary set of SNPs for the prediction of
quantitative phenotypes, we develop Macarons, a fast and interpret-
able model with a simple idea: the joint selection of highly depend-
ent SNPs would be redundant and would not provide
complementary information for the prediction of a phenotype.

Overall, this task is known as feature selection in the machine
learning literature, and the idea to take redundancy into account is
applied extensively. However, most of the established feature selec-
tion methods do not scale (from a runtime standpoint) to the SNP
selection problem due to the high dimensionality of the GWAS data
(e.g. typically up to �107 variants). Furthermore, such methods suf-
fer from over-fitting since the number of variants is much larger
than the number of samples.

To overcome these issues, we make simplifying assumptions (as
shown in Equation (6) and Equation (10)) and limit the search space
to intra-chromosomal pairs in close proximity (controlled by a par-
ameter D in base pairs, Equation (12).

Our results demonstrate that, with the assumptions and the opti-
mizations in its algorithm, Macarons can seamlessly scale to variant
sets as large as �107 in a matter of minutes. We expect that
Macarons (with D¼20 kbp, or up to D ¼ 106 base pairs) can be of
practical use in large GWAS studies since it can take into account of
the dependencies between the variants without compromising run-
time. Overall, it can offer a reasonable trade-off between phenotype
predictivity, runtime and redundancy of the selected subsets.

The intra-chromosomal distance idea and D parameter in
Macarons can be efficiently generalized to input dependency net-
works (where the presence of an edge indicates the decision to meas-
ure redundancy for that SNP pair, for example, the D parameter can
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be represented as connecting close SNPs as cliques in the network)
to limit the search space of the algorithm. We provide a version of
Macarons with input dependency network in our implementation

though we leave experimentation with it as future work. We expect
that this would be useful to take into account of the dependency be-

tween variants through more sophisticated models, for example, by
considering the 3D structure of the chromosome through Hi-C data.

Macarons can be used in combination with any metric for indi-
vidual phenotype association (including for dichotomous pheno-
types). We expect that Macarons can be especially useful as a part of

a multi-stage analysis for performing the initial filtering to reduce
the search space, followed by epistasis tests or other subsequent
analyses. Overall, the framework we present can be generalized to

various other feature selection problems involving high dimensional-
ity within and beyond biomedical applications.
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