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Abstract

Mass spectrometry enables high-throughput screening of phospho-proteins across a broad range
of biological contexts. When complemented by computational algorithms, phospho-proteomic data
allows the inference of kinase activity, facilitating the identification of dysregulated kinases in
various diseases including cancer, Alzheimer’s disease and Parkinson’s disease. To enhance the reli-
ability of kinase activity inference, we present a network-based framework, RoKAI, that integrates
various sources of functional information to capture coordinated changes in signaling. Through
computational experiments, we show that phosphorylation of sites in the functional neighborhood
of a kinase are significantly predictive of its activity. The incorporation of this knowledge in RoKAI
consistently enhances the accuracy of kinase activity inference methods while making them more
robust to missing annotations and quantifications. This enables the identification of understudied
kinases and will likely lead to the development of novel kinase inhibitors for targeted therapy of
many diseases. RoKAI is available as web-based tool at http://rokai.io.

1 Introduction

Protein phosphorylation is a ubiquitous mechanism of post-translational modification observed
across cell types and species, and plays a central role in cellular signaling. Phosphorylation is
regulated by networks composed of kinases, phosphatases, and their substrates. Characterization
of these networks is becoming increasingly important in many biomedical applications, including
identification of novel disease specific drug targets, development of patient-specific therapeutics,
and prediction of treatment outcomes (Rikova et al., 2007; Cohen, 2001).

In the context of cancer, identification of kinases plays a key role in the pathogenesis of specific
cancers and their subtypes, leading to the development of kinase inhibitors for targeted therapy
(Butrynski et al., 2010; Zhou et al., 2011; Perrotti and Neviani, 2013; Neviani and Perrotti, 2014).
Disruptions in the phosphorylation of various signaling proteins have also been implicated in the
pathophysiology of various other diseases, including Alzheimer’s disease (Neddens et al., 2018; Reese
et al., 2011), Parkinson’s disease (Koyano et al., 2014), obesity and diabetes (Choi et al., 2010; Copps
and White, 2012), and fatty liver disease (Puri et al., 2008), among others. As a consequence, there
is increased attention to monitoring the phosphorylation levels of phospho-proteins across a wide
range of biological contexts and inferring changes in kinase activity under specific conditions.

Mass spectrometry (MS) provides unprecedented opportunities for large-scale identification and
quantification of phosphorylation levels (Dephoure et al., 2013). Typically, thousands of sites are
identified in a single MS run. Besides enabling the characterization of the changes in the activity
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of phospho-proteins, MS-based phospho-proteomic data offers insights into kinase activity based
on changes in the phosphorylation of known kinase substrates (Drake et al., 2012; Casado et al.,
2013). Observing that phosphorylation levels of the substrates of a kinase offer clues on kinase
activity, Drake et al. (2012) use a Kolgomorov-Smirnov statistic to compare the phosphorylation
distributions of substrate sites and all other phosphosites. Building on this idea, kinase substrate
enrichment analysis (KSEA) (Casado et al., 2013) infers kinase activity based on aggregates of the
phosphorylation levels of substrates and assess the statistical significance using Z-test. Mischnik
et al. (2015) develop these ideas further by introducing a heuristic machine learning method, IKAP,
which additionally models the dependencies between kinases that phosphorylate the same substrate.
Other approaches (Suo et al., 2014; Ochoa et al., 2016) adapt the widely-used gene set enrichment
analysis (GSEA) (Subramanian et al., 2005) for kinase activity inference problem. In parallel to
these, a new branch of computational approaches focus on single samples to infer kinase activity
(Drake et al., 2016; Wilkes et al., 2017; Beekhof et al., 2019; Krug et al., 2019).

Despite the development of algorithms that utilize relatively sophisticated models, KSEA re-
mains one of the most-widely used tools for kinase activity inference (Wiredja et al., 2017a). This
can be largely attributed to the constraints posed by limited comprehensiveness of available data,
prohibiting the utility of such sophisticated models. Available kinase annotations still provide very
little coverage (less than 10%) for phosphosites identified in MS experiments (Needham et al., 2019).
The coverage of MS-based phospho-proteomics is also limited, and many sites existing in sample
may be unidentified due to technical factors (Liu and Chance, 2014). Computationally predicted
kinase-substrate associations (Linding et al., 2007; Horn et al., 2014) are successfully utilized to
expand the scope of kinase activity inference (Wiredja et al., 2017b). However, the coverage of
computationally predicted associations is also limited (Ayati et al., 2019) and most algorithms can
only make predictions for well-studied kinases (Deznabi et al., 2019).

With a view to expanding the scope of kinase activity inference, we develop a framework that
comprehensively utilizes available functional information on kinases and their substrates. We hy-
pothesize that biologically significant changes in signaling manifest as hyper-phosphorylation or
de-phosphorylation of multiple functionally related sites. Therefore, having consistently hyper-
phosphorylated (or de-phosphorylated) sites in the functional neighborhood of a phosphosite can
provide further evidence about the changes in the phosphorylation of that site. Our framework, Ro-
bust Kinase Activity Inference (RoKATI), uses a heterogeneous network model to integrate relevant
sources of functional information, including: (i) kinase-substrate associations from PhosphositePlus
(Hornbeck et al., 2015), (ii) co-evolution and structural distance evidence between phosphosites from
PTMcode (Minguez et al., 2012), and (iii) protein-protein interactions (PPI) from STRING (Szk-
larczyk et al., 2014) for interactions between kinases. On this heterogeneous network, we propagate
the quantifications of phosphosites to compute representative phosphorylation levels capturing co-
ordinated changes in signaling. We develop a network propagation (Cowen et al., 2017) algorithm
that is specifically designed to accommodate missing sites not identified by MS. To predict changes
in kinase activity, we use the resulting representative phosphorylation levels in combination with
existing kinase activity inference methods.

A recent study by Hernandez-Armenta et al. (2017) benchmarks substrate based inference ap-
proaches using a comprehensive atlas of human kinase regulation (Ochoa et al., 2016), encompassing
more than fifty perturbations. Using this dataset, we systematically benchmark the improvement
provided by RoKAI on the performance of a variety of kinase activity inference methods. In our
computational experiments, we observe that the benchmark data is substantially biased in favor
of ”rich kinases” with many known substrates. Our results show that methods that appear to
provide superior performance (e.g., methods that utilize statistical significance) accomplish this by
increasing bias toward such rich kinases (since statistical power goes up with increasing number
of observations). Motivated by this observation, we systematically evaluate the robustness of ki-
nase activity inference methods using Monte Carlo simulations with varying levels of missingness.
The results of this analysis shows that methods biased toward rich kinases are more vulnerable to
incompleteness of available kinase-substrate annotations.

Next, we characterize the contribution of each source of functional information on enhancing
kinase-activity inference. Our results show that incorporation of ”shared kinase associations” (i.e.,
transferring information between sites that are targeted by the same kinase) significantly improves
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kinase activity inference. We observe that, other sources of functional information considered (PPI,
co-evolution and structure distance evidence) also provide statistically significant information for
kinase activity inference. However, their contribution is smaller in comparison due to either (i)
limited coverage or (ii) redundancy with existing kinase-substrate annotations. Finally, we sys-
tematically investigate the performance of RoKAI in improving the performance of kinase activity
methods. Results of these computational experiments show that RoKAI consistently improves the
accuracy, stability, and robustness of all kinase activity inference methods that are benchmarked.

Overall, our results clearly demonstrate the utility of functional information in expanding the
scope of kinase activity inference and establish RoKAI as a useful tool in pursuit of reliable ki-
nase activity inference. RoKAI is available as a web tool !, as well as an open source MATLAB
package 2.

2 Results

2.1 Robust inference of kinase activity with RoKAI

With a view to rendering kinase activity inference robust to missing data and annotations, we de-
velop RoKAI, a network-based algorithm that utilizes available functional associations to compute
refined phosphorylation profiles. We hypothesize that biologically significant changes in signal-
ing manifest as hyper-phosphorylation or de-phosphorylation of multiple functionally related sites.
Therefore, having consistently hyper-phosphorylated (or de-phosphorylated) sites in the functional
neighborhood of a phosphosite can provide further evidence about the changes in the phosphory-
lation of that site. Conversely, inconsistency in the change in the phosphorylation levels of sites in
a functional neighborhood can serve as negative evidence that can be used to reduce noise.

Based on this hypothesis, we develop a heterogeneous network model (with kinases and phos-
phosites as nodes) to propagate the phosphorylation of sites across functional neighborhoods. In
this model, each edge has a conductance allowing some portion of the phosphorylation to be carried
to the connecting nodes (illustrated in Fig. 1). Therefore, the propagated phosphorylation level of
a site represents an aggregate of the phosphorylation of the site and the sites that are (directly or
indirectly) functionally associated with it. Consequently, the propagated phosphorylation profiles
are expected to capture coordinated changes in signaling, which are potentially less noisy and more
robust.

In order to increase the coverage of network propagation, we develop an electric circuit based
algorithm (Cowen et al., 2017; Doyle and Snell, 1984) that is specifically designed to incorporate
missing sites not identified by MS. While RoKAI does not impute phosphorylation levels for uniden-
tified sites (i.e., it is not intended to fill in missing data), it uses these sites to bridge the functional
connectivity among identified sites.

It is important to note that, we do not use network propagation to directly infer kinase activity.
Rather, we use it to generate refined phosphorylation profiles that are subsequently used as input
to a kinase activity inference method. Thus, the framework of RoKAI can be used together with
any existing or future inference methods.

2.2 Experimental Setup

In this section, we describe our benchmarking setup for assessing the performance and robustness
of kinase activity inference methods. First, we demonstrate the bias in the gold standard bench-
marking data and show how this bias can lead to misleading conclusions on the performance of
existing methods. Next, we introduce a robustness analysis in order to (i) overcome the effect of
bias on performance estimations, and (ii) to assess the reliability of these algorithms in the presence
of missing data. To characterize the value added by RoKAI, we start by assessing the utility of
different sources of functional information in inferring kinase activity. Next, by focusing on a base-
line kinase activity inference method (mean substrate phosphorylation), we systematically assess
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Figure 1. The workflow and the key idea of RoKAI. Traditional algorithms for kinase activity
inference use condition-specific phosphorylation data and available kinase-substrate associations to
identify kinases with differential activity in each condition. RoKAI integrates functional networks
of kinases and phosphorylation sites to generate robust phosphorylation profiles. The network
propagation algorithm implemented by RoKAI ensures that unidentified sites that lack quantifi-
cation levels in a condition can still be used as bridges to propagate phosphorylation data through
functional paths.

the incorporation of various networks with RoKAI in enhancing the accuracy and robustness of the
inference. We then assess the generalizability of these results to a broad range of kinase activity
inference methods. Finally, we investigate whether RoKAI’s ability to incorporate missing sites in
its functional network contributes to the improvement of kinase activity inference.

2.3 Benchmarking Setup

Benchmarking data: Ochoa et al. (2016) compiled phospho-proteomics data from a comprehensive
range of perturbation studies and used these data to comprehensively benchmark the performance
of kinase activity inference methods (Hernandez-Armenta et al., 2017). This benchmark data brings
together 24 studies spanning 91 perturbations that are annotated with at least one up-regulated
or down-regulated kinase. In each of the studies, the phosphorylation levels of phosphosites are
quantified using mass spectrometry. In our computational experiments, we also use this dataset to
assess the robustness of existing kinase activity inference methods and validate our algorithms.
Kinase-substrate annotations: We obtain existing kinase-substrate associations from Phospho-
sitePlus (Hornbeck et al., 2015). PhosphositePlus contains a total of 10476 kinase-substrate links
for 371 distinct kinases and 7480 sites. Among these annotated sites, 2397 have quantifications in
the perturbation data. These sites have a total of 3877 kinase-substrate links with 261 kinases.
Benchmarking metric: The purpose of kinase activity inference is to prioritize kinases for further
computational and/or experimental validation. However, in practice, it is typically costly and
infeasible to experimentally validate more than a few kinases (Cichonska et al., 2017). Taking
this consideration into account, we use a metric, ”top-k-hit”, that focuses on the top-k kinase
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predictions for small values of k. Since the gold standard dataset is incomplete, this metric serves
as a minimum bound on the expected probability of discovering an up-regulated or down-regulated
kinase if top k kinases predicted by the inference method were to be experimentally validated.

2.3.1 Existing Inference Methods

Kinase activity inference methods differ from each other in terms how they integrate the phospho-
rylation levels of the substrates of a kinase to estimate its activity. These methods range from
simple aggregates and enrichment analyses to more sophisticated methods that take into account
the interplay between different kinases. We benchmark the following commonly used inference
methods:

Mean (baseline method): One of the simpliest kinase activity inference methods employed by
KSEA (Casado et al., 2013). This method represents the activity of a kinase as the mean phospho-
rylation of its substrates.

Z-score: To assess the statistical significance of inferred activities, KSEA uses z-scores, normal-
izing the total log-fold change of substrates with the standard deviation of the log-fold changes of
all sites in the dataset.

Linear model: The linear model, considered by Hernandez-Armenta et al. (2017), aims to take
into account of the dependencies between kinases that phosphorylate the same site. In this model,
the phosphorylation of a site is modeled as summation of the activities of kinases that phosphorylate
the site. A similar (but more complex) approach is also utilized by IKAP (Mischnik et al., 2015).

GSEA: Suo et al. (2014) and Ochoa et al. (2016) adopt gene set enrichment analysis (GSEA),
a widely used method in systems biology (Subramanian et al., 2005), to infer kinase activity by
assessing whether the target sites of a kinase exhibit are enriched in terms of their phosphorylation
fold change compared to other phosphosites.

2.4 Bias and robustness of existing inference methods

Previous benchmarking by Hernandez-Armenta et al. (2017) suggests that methods that rely on
statistical significance (Z-Score and GSEA) are superior to their alternatives. However, as shown
in Fig. 2(a)), we observe that there is substantial bias in the benchmarking data: “rich” kinases (i.e.,
kinases with many known substrates) are significantly over-represented among the 25 annotated
kinases that have at least one perturbation (median number of substrates: 29 for annotated and
4 for not-annotated kinases, K-S test p-value<3.5e-7 for the comparison of annotated kinases with
others in terms of their distribution of number of substrates).

Since methods that rely on statistic significance have a positive bias for kinases with many
substrates (statistical power is improved with number of observations), we hypothesize that this is
the reason behind their observed superior performance. To test this hypothesis, we benchmark two
additional inference methods that are artificially biased for kinases with many substrates: (i) Sum:
Sum of phosphorylation (log-fold changes) of substrates, and (ii) Num: Number of substrates, used
directly as the predicted activity of a kinase (clearly, this method does not use the phosphorylation
levels of sites, thus, it always generates the same ranking of kinases regardless of the phosphorylation
data). As shown in Fig. 2(b), methods that are artifically biased for rich kinases appear to have
better predictivity over the alternatives.

In order to overcome the effect of this bias on evaluation, we perform a robustness analysis
where we hide a percentage of the known substrates of the 25 annotated kinases from the infer-
ence methods. The results of this analysis are shown in Fig. 2(c). As seen in the figure, even
though methods biased for rich kinases appear to have higher predictivity when all of the available
kinase substrate annotations are used, they are not robust to increasing rate of missingness in
kinase-substrate annotations. The performance of artificially biased methods fall below that of the
low-biased methods (e.g., Mean and Linear Model) at around 50% missingness. At around 80%
missingness, the effect of the bias on evaluation is mitigated i.e., the difference between number
of substrates of 25 annotated kinases and the remaining kinases is not at a statistically detectable
level anymore. Thus, the performance of biased (e.g., statistical significance based) methods fall
below the low-bias methods at around 80% missingness. These observations make the reliability
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Figure 2. Existing benchmark data for kinase-activity inference is biased toward kinases
with high number of substrates and can be misleading in assessing the performance
of inference methods. (a) Inverse cumulative distribution of the number of substrates for the
25 kinases that are annotated with a perturbation in gold standard benchmarking data compared
to all kinases. The x-axis indicates the quantiles. For example, the value on the y-axis that
corresponds to z = 50% indicates the median number of substrates. (b) Performance and bias
of baseline kinase activity inference methods. The bars show the probability of identifying an
annotated ”true” kinase in top 10 predicted kinases (PHit10). The dashed line indicates the
average number of substrates of the top 10 predicted kinases for the corresponding method. The
high-bias methods (Sum: total substrate phosphorylation, and Num: number of substrates) are not
used in the literature, but are shown here to illustrate the effect of bias on performance assessment.
(¢) The robustness analysis of the methods for missingness in kinase-substrates links. The x-axis
shows the percentage of (randomly selected) kinase-substrates links of 25 gold standard kinases
hidden from the kinase activity inference methods. The gray areas indicate the 95% confidence
intervals for the mean performance across 100 runs.

of biased methods highly questionable since the available kinase-substrate annotations are largely
incomplete.

2.5 Utility of functional networks for inferring kinase activity

To improve the predictions of kinase activity inference methods in a robust manner, our approach
is to utilize available functional or structural information. We hypothesize that phosphorylation
of sites that are related to the kinase substrates (whether functionally or structurally) would be
predictive of kinase activity. Specifically, we investigate the predictive ability of following functional
networks:

Known Kinase-Substrates (baseline network): This network comprises of the kinase-substrate
associations obtained from PhosphoSitePlus. This is the (only) network that is utilized by all kinase
activity inference methods and serves as our baseline.

Shared-Kinase Interactions: Here, we consider two phosphosites to be neighbors if both are
phosphorylated by the same kinase. We hypothesize that phosphorylation of neighbor sites of
kinase-substrates would be predictive of kinase activity. Note that in RoKAI’s heterogeneous
functional network, there are no additional edges that represent shared-kinase interactions. Instead,
RoKAT’s network propagation algorithm propagates phosphorylation levels across shared-kinase
sites through paths composed of kinase-substrate associations.

STRING Protein-Protein Interactions (PPI): We hypothesize that the phosphorylation levels
of the substrates of two interacting kinases will be predictive of each other’s activity.

PTMcode Structural Distance Fvidence: We hypothesize that phosphorylation of sites that are
structurally similar to a kinase’s substrates will be predictive of that kinase’s activity.

PTMcode Co-FEvolution Evidence: We hypothesize that phosphorylation of sites that show sim-
ilar evolutionary trajectories to a kinase’s substrates will be predictive of that kinase’s activity.

For each of the functional or structural networks described above, we compute a network activity
prediction score for each kinase based on the mean phosphorylation of sites that are considered of
interest for the corresponding network (illustrated in Fig. 3). Note that, except for the baseline
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Figure 3. Utility of available functional or structural information in providing informa-
tion on kinase activity. Each row represents a different information source. The upper-most row
(Kinase-Substrates) represents the information source that is utilized by all existing kinase activity
inference methods, the other four rows represent the information sources introduced here. In each
row, the relationship between a kinase (blue square) and the site(s) (red circles) that provide(s)
information on the activity of the kinase is illustrated. The center-left plot compares the empirical
cumulative distribution (ECDF) of the phosphorylation levels of the ”information-providing” sites
for “true” perturbed kinases in the benchmark data against all kinases. The center-right plot
compares these two distributions using a Q-Q plot. The right-most plot shows the predictivity
(accuracy in predicting kinase activity), complementarity (information provided in addition to the
substrates of the kinase), and coverage (fraction of kinases that are affected) of the information
source. The positive y-axis on the right-most plot shows the overall effect of the information source
calculated as the product of the scores shown on the other axes.

network (known kinase-substrates), we do not use the phosphorylation levels of the kinase’s own
substrates to compute the scores for each network.
To characterize the contribution of each source of functional information on enhancing kinase-
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activity inference, we consider the following metrics:

Predictivity: To assess the utility of functional networks in predicting the ”true” perturbed ki-
nases in gold standard dataset, we use Kolmogorov-Smirnov (K-S) test (Massey Jr, 1951) comparing
the distribution of network scores for true kinases with the distribution of all other kinases. For
each functional network, we consider the K-S statistic as the predictivity score of the corresponding
network.

Coverage: The network scores contain missing values for kinases without any edges in the
corresponding functional networks. Thus, while assessing predictivity (as explained above), we
utilize only the kinases with a valid network score. To take missing data into account, we compute
a coverage score which is equal to the percentage of kinases with a valid network score with respect
to that functional network.

Complementarity: We aim to utilize the functional networks as an information source that
complements available kinase-substrate associations. If there is statistical dependency between
functional network scores and the activity inferred by the kinase’s own sites, the information pro-
vided by the network would be redundant. We use complementarity score as one minus absolute
linear (Pearson) correlation between the score of each network scores and kinase activity inferred
based on the kinase’s own substrates. Since the kinase-substrate association network serves as our
baseline, we consider it to have 100% complementarity.

Overall Effect: To quantify the overall contribution of the functional networks for improving
the predictions of kinase activity, we combine the predicity, coverage and complementarity scores
and obtain an overall effect score:

Overall Effect = Predictivity x Coverage x Complementarity (1)

The results of this analysis are shown in Fig. 3. As seen in the figure, all considered functional
information sources exhibit statistically significant predictivity of the kinase-perturbations: Known
kinase-substrates (K-S statistic = 0.20, p-value<1.6e-4), Shared-kinase interactions (K-S statistic
= 0.21, p-value<9.7e-5), Protein-protein interactions (K-S statistic = 0.18, p-value<0.001), Struc-
ture distance evidence (K-S statistic = 0.28, p-value<0.04), Co-evolution evidence (K-S statistic
= 0.26, p-value<8.6e-5). We observe that the incorporation of ”shared kinase associations” in
addition to the known kinase substrates has the most overall contribution to the inference of ki-
nase activities (Fig. 3, first and second rows), followed by kinase-kinase interactions (Fig. 3, third
row). Even though co-evolution and structural distance networks exhibit strong predictivity, their
overall contribution is relatively low due to their limited coverage and redundancy with existing
kinase-substrate annotations (Fig. 3, fourth and fifth rows).

2.6 Benchmarking RoKAI-enhanced inference methods

Motivated by the utility of the functional networks for predicting kinase activity, we gradually
explore a set of heterogeneous networks with RoKAI by adding sources of functional information
based on their overall effect observed in the previous section:

Kinase-Substrate (KS) network: The network used by RoKAT consists only of the known kinase-
substrate interactions. Use of this network allows RoKAI to utilize sites with shared-kinase inter-
actions (illustrated in Fig. 3, 2nd row), i.e., sites that are targeted by the same kinase cTontribute
to their refined phosphorylation profiles.

KS+PPI network: In addition to KS, this network includes weighted protein-protein interac-
tions between kinases. This allows propagation of phosphorylation levels between substrates of
interacting kinases (illustrated in Fig. 3, 3rd row).

KS+PPI+SD network: In addition KS+PPI, this network includes interactions between phos-
phosites with structural distance (SD) evidence obtained from PTMcode. This allows the utilization
of sites that are structually proximate to the substrates of a kinase (illustrated in Fig. 3, 4th row).

KS+PPI+SD+CoFv (combined) network: In addition KS+PPI+SD, this network includes in-
teractions between phosphosites with co-evolution evidence obtained from PTMcode. This allows
the utilization of sites that are evolutionarily similar to the substrates of a kinase (illustrated in
Fig. 3, 5th row).
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Figure 4. Comparison of the accuracy and stability of mean substrate phoshorylation
and its RoKAI-enhanced versions using various functional or structural networks. (a)
The hit-10 performance (the probability of ranking a true perturbed kinase in the top ten), as a
function of missingness (the fraction of kinase-substrate associations that are hidden). (b) The
distribution of hit-10 probabilities for 100 instances at 50% missingness. (c) Stability of the inferred
activities (measured by the average squared correlation between inferred activities when different
portions of kinase-substrate associations are hidden from the inference methods) as a function of
missingness. (d) The distribution of stability for 100 instances at 50% missingness.

To assess the performance of RoKAI with these networks, we use the benchmarking data from
the atlas of kinase regulation. As previously discussed, this dataset is heavily biased toward kinases
with many known substrates. To overcome the effect of this bias on evaluation, we perform ro-
bustness analyses where we hide a portion of known kinase-substrate interactions of the 25 kinases
that have perturbations. For predicting kinase activity, we use the mean substrate phosphoryla-
tion (baseline inference method) and compare the performance of original predictions and RoKAI-
enhanced predictions. As shown in Fig. 4(a) and Fig. 4(b), RoKAI consistently and significantly
(p < 0.05) improves the predictions in a robust manner for varying levels of missing data.

The functional networks that contribute most to the improvements in prediction performance
of RoKAT are respectively: KS network (modeling shared-kinase interactions) followed by PPI
(for including kinase-kinase interactions) followed by co-evolution evidence. Compared to these,
including structural distance evidence in the network has a minor effect on prediction performance.
This is in line with the overall effect size estimations (shown in Fig. 3). Since structural distance
network has relatively small number of such edges, it provides low coverage and a minor effect size
even though the existing edges are estimated to be more predictive of kinase activity compared to
other networks.

To further evaluate the robustness of the predictions, we assess the stability i.e., the expected
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Figure 5. Contribution of RoKAI (combined network) in improving the performance
of different kinase activity inference methods for predicting the true (annotated)
kinase in the top %k kinase predictions for various k. The bars show the mean probability
of predicting a true kinase among the top k kinases at 50% kinase-substrate missingness. The
blue bars indicate the prediction performance using the original (unmodified) phosphorylation
profiles and red bars indicate the performance of using RoKAlI-enhanced profiles for inferring
kinase activity. The dashed lines indicate the average number of substrates of the top k kinases
predicted by the corresponding inference method. The black error bars indicate the 95% confidence
intervals for the mean performance across 100 runs.

degree of aggreement between the predicted kinase activity profiles when different kinase substrates
are used (e.g., because some sites are not identified by a MS run) to infer the activity of a kinase.
We measure the stability by computing average squared correlation between different runs of ro-
bustness analysis (where a different portion of kinase-substrate links are used for inferring kinase
activity in each run). As shown in Fig. 4(¢) and Fig. 4(d), predictions made by RoKAI-enhanced
phosphorylation profiles are significantly (p < 0.05) more stable in addition to being more predic-
tive.

2.6.1 Improvement of RoKAI over a broad range of methods

Since RoKAI provides refined phosphorylation profiles (propagated by functional networks), it can
be used in conjunction with any existing (or future) kinase activity inference algorithms. Here, we
benchmark the performance of RoOKAI when used together with existing inference methods. For
each of these methods, we use the refined phosphorylation profile (obtained by RoKAI) to obtain the
RoKAI-enhanced kinase activity predictions. To assess the prediction performance while addressing
the bias for rich kinases, we perform robustness analysis at 50% kinase-substrate missingness and
measure the top-k hit performance for k = 2,5, 10 and 20. As shown in Fig. 5, RoKAI consistently
improves the predictions of all inference methods tested.
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Figure 6. RoKAI improves kinase activity inference by enabling utilization of the
unidentified sites (without quantifications) for predicting the activity of kinases. In
type I (illustrated in top left), the network consists only of sites with quantifications. Whereas,
in type II (illustrated in top right), the network includes sites without quantifications to utilize
them as bridge nodes. (Bottom Left) Robustness analysis with respect to missingness of kinase-
substrate links. The shaded area shows the 95% confidence interval for the mean performance on
100 randomized runs where different kinase-substrate links are removed. (Bottom Right) The per-
formance of RoKAI Type I and Type II at 50% missingness. Each point indicate the performance
on a different run. The colored lines indicate the mean performance.

2.6.2 Effect of incorporating unidentified sites in RoKAI

An important feature of RoKAI’s network propagation algorithm is its ability to accommodate
unidentified sites (i.e., sites that do not have quantified phosphorylation levels in the data) in the
functional network. While RoK AT does not impute phosphorylation levels for unidentified sites (i.e.,
it is not intended to fill in missing data), it uses these sites to bridge the functional connectivity
among identified sites. To assess the value added by this feature, we compare two versions of ROKAI:
One that removes unidentified sites from the network (Type I) and one that utilizes unidentified
sites as bridges (Type II). The results of this analysis are shown in Fig. 6. The kinase activity
inference activity method we use in these experiments is mean phosphorylation level. As seen in
the figure, retention of unidentified sites in the network consistently improves the accuracy of kinase
activity inference. We observe a similar improvement for all other kinase activity inference methods
that are considered.
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3 Discussion

By comprehensively utilizing available data on the functional relationships among kinases, phospho-
proteins, and phosphorylation sites, RoKAI improves the robustness of kinase activity inference to
the missing annotations and quantifications. We expect that this will facilitate the identification
of understudied kinases with only a few annotations and lead to the development novel kinase
inhibitors for targeted therapy of many diseases such as cancer, Alzheimer’s disease, and Parkinson’s
disease. As additional functional information on cellular signaling becomes available, the inclusion of
these information in functional networks utilized by RoKAI will likely further enhance the accuracy
and robustness of kinase activity inference.

4 Methods

4.1 Problem Definition

Kinase activity inference can be defined as the problem of predicting changes in kinase activity based
on observed changes in the phosphorylation levels of substrates. Formally, let K = {k1, ko, ..., km }
denote a set of kinases and S = {s1, s9,..., 8, } denote a set of phosphorylation sites. For these
kinases and phosphosites, a set of annotations are available, where S; C S denotes the set of
substrates of kinase k;, i.e., s; € S; if kinase k; phosphorylates site s;.

In addition to the annotations, we are given a phosphorylation data set representing a specific
biological context. This data set can be represented as a set of quantities g; for 1 < j < n, where
g; denotes the change in the phosphorylation level of phosphosite s; € S. Usually, g; represents
the log-fold change of the phosphorylation level of the site between two sets of samples representing
different conditions, phenotypes, or perturbations. The objective of kinase activity inference is
to integrate the annotations and the specific phosphorylation data to identify the kinases with
significant difference in their activity between these two sets of samples. In the below discussion,
we denote the inferred change in the activity of kinase k; as a;. Since existing kinase activity
inference methods are unsupervised, many activity inference methods also compute a p-value to
assess the statistical significance of a; for each kinase.

4.2 Background

Kinase activity inference methods differ from each other in terms how they integrate the phospho-
rylation levels of the substrates of a kinase k; to estimate its activity a;. These methods range from
simple aggregates and enrichment analyses to more sophisticated methods that take into account
the interplay between different kinases.

Mean (baseline): One of the simpliest kinase activity inference methods employed by KSEA (Casado
et al., 2013), this method represents the activity of a kinase as the mean phosphorylation (log-fold
change) of its substrates:

~ (mean ES/'ESi 4q;
ag ea ) = 7|JS| . (2)

where |S;| is the number of substrates of kinase k;.

Z-score: To assess the statistical significance of inferred activity, KSEA normalizes the total
log-fold change of substrates with the standard deviation of the log-fold changes of all sites in the
dataset:

A (z-score) ZSJGS;‘ 45 o |S7,‘ ~ (mean)
a; == 5 (3)
o o
where o denotes the standard deviation of phosphorylation across all phosphosites.

Linear model: The linear model, considered by Hernandez-Armenta et al. (2017), aims to take
into account of the dependencies between kinases that phosphorylate the same site. A similar
(but more complex) approach is also utilized by IKAP (Mischnik et al., 2015). In this model, the
phosphorylation of a site is modeled as summation of the activities of kinases that phosphorylate
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the site:

4 = > a; (4)

for all kinases i
phosphorylating site j
where a; is variable representing the activity of kinase k;. To infer the kinase activities, least squares
optimization function with ridge regularization is used:

g (inear) _ argmin, Z (q; — Z ai)Q + /\||a||2 ) (5)

sJ-eS k,;EKj

where K; denotes the set of kinases that phosphorylate site s;, and A is an adjustable regularization
coefficient. The first term in the objective function (squared loss) ensures that the inferred kinase
activities are consistent with the phosphorylation levels of their substrates, whereas the second
term (regularization) aims to minimize the overall magnitude of inferred kinase activities. In all
experiments, we utilize a regularization coefficient of A = 0.1 as previously done in Hernandez-
Armenta et al. (2017).

GSEA: Gene set enrichment analysis (GSEA) (Subramanian et al., 2005) is a widely used
method in systems biology. It uses a weighted Kolmogorov-Smirnov statistic to assess whether
a specific set of genes (or in general molecular entities) are significantly over-represented among
differentially expressed genes (or in general differential activity/abundance). Ochoa et al. (2016)
adopt GSEA to infer kinase activity by assessing whether the target sites of a kinase exhibit are
enriched in terms of their phosphorylation fold change compared to other phosphosites. For this
purpose, the sites are first ranked based on their absolute fold changes. For each kinase k;, a
running sum is computed based on the ranked list of sites. The running sum increases for each
site s; € S; (i.e., s; is a known substrate of k;), and decreases for each site s; & S; (i.e., s; is not
a known substrate of k;. The maximum deviation of this running sum from zero is used as the
enrichment score of a kinase. The statistical significance of this enrichment score is assessed using
a permutation test. Namely, fold changes of sites are permuted 10,000 times and enrichment scores
are computed for each. The p-value for a kinase is then computed as the number of permutations
with higher enrichment score than observed. As the predicted activity of a kinase, -logl0 of this
p-value is used.

4.3 Phospho-proteomics data preprocessing

Following the footsteps of previous studies (Ochoa et al., 2016; Hernandez-Armenta et al., 2017), we
apply some quality control steps to the phospho-proteomics data that is used for benchmarking: (i)
we restrict the analysis to mono-phosphorylated peptides that are mapped to canonical transcripts
of Ensembl, (ii) we average the log fold changes of technical replicates as well as peptides that are
mapped to the same Ensembl position (even if the exact peptides sequences are not identical), and
(iii) we filter out the peptides that are identified in only a single study to reduce the amount of
false-positive phosphosites, and (iv) we restrict the analysis to perturbations in the gold standard
with more than 1000 phosphosite identifications. As a result of these steps, we obtain 53636 sites
identified in at least one of 80 perturbations. For these 80 perturbations, there are 128 kinase-
perturbation annotations for 25 different kinases.

4.4 Computing benchmarking metric (top-k-hit)
To compute the Pyt (k) metric (read ”top-k-hit”), we apply the following procedure:
1. For each perturbation separately, we rank the kinases based on their absolute activities pre-
dicted by the inference method.

2. For each perturbation, we consider the top k kinases with highest predicted activity and
compare them with the ”true” perturbed kinases in gold standard.

3. If any of the top k kinases is a true kinase (i.e., a kinase that is perturbed in the experiment),
we consider the inference method to be successful (i.e., a hit) for that perturbation.
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4. We compute the percentage of perturbations with successful predictions and report this quan-
tity as Ppi (k). Since the gold standard dataset is incomplete, Py (k) metric serves as a min-
imum bound on the expected probability of discovering an up-regulated or down-regulated
kinase if top k kinases predicted by the inference method were to be experimentally validated.

4.5 Robust kinase activity inference (RoKAI)

4.5.1 Heterogeneous network model

RoKAI uses a heterogeneous network model in which nodes represent kinases and/or phosphosites.
The edges in this network represent different types of functional association between kinases, be-
tween phosphosites, and between kinases and phosphosites. Namely, RoKAI’s functional network
consists of the following types of edges:

Kinase-Substrate Associations: An edge between a kinase k; and site s; indicates that k; phos-
phorylates s;. These kinase-substrate associations obtained from PhosphositePlus (Hornbeck et al.,
2015), representing 3877 associations between 261 kinases and 2397 sites.

Structure Distance FEvidence: This type of edge between phosphosites s; and s; represents
the similarity of s; and s; on the protein structure. We obtain structure distance evidence from
PTMcode (Minguez et al., 2012), which contains 7821 unweighted edges between 8842 distinct sites.
Note that, in this network, a large portion of the edges (7037 edges) are intra-protein.

Co-Evolution FEvidence: This type of edge between phosphosites s; and s; indicates that the
protein sequences straddling s; and s; exhibit significant co-evolution. We obtain this co-evolution
network from PTMcode which contains 178029 unweighted edges between 19122 distinct sites. After
filtering the sites for rRCS > 0.9 provided by PTMcode, 41799 edges between 8342 distinct sites
remain. Note that, 3516 of these edges overlap with the structural distance network. Thus, when
co-evolution and structural distance networks are used together, these 3516 overlapping edges are
considered to have a weight of 2.

Protein-Protein Interactions: An edge between kinases k; and kinase k; represents a protein-
protein interaction between k; and k;. We use the protein-protein interaction (PPI) network ob-
tained from STRING (Szklarczyk et al., 2014). As the edge weights, we utilize the combined scores
provided by STRING. Overall, the kinase-kinase interaction network contains 13031 weighted edges
(weights ranging from 0 to 1) between 255 distinct kinases.

4.5.2 Network propagation

Let G(V, &) represent RoKATD’s heterogeneous functional network, where ¥V = KU S and £ contains
four types of edges as described above. To propagate phosphorylation levels of sites over G, we
utilize an electric circuit model (illustrated in Fig. 1). In this model, each node n; € V (kinase or
phosphosite) has a node potential V;. Each edge e;; € £ (which can be a kinase-substrate associ-
ation, kinase-kinase interaction or association between a pair of phosphosites) has a conductance
c;; that allows some portion of the node potential V; of node n; to be transferred to node n; in the
form of a current I,;:

Lij = (Vi = Vj) i (6)

As seen in the equation, the current [;; carried by an edge is proportional to its condundance and
the difference in node potentials. In our model, we use the weights available in the corresponding
networks to assign conductance values to the edges.

We model the phosphorylation level of a site s; that is identified in the experiment as a current
source I; = ¢; connected to the reference node (representing the control sample) with a unit
conductance. This ensures that the node potential V; of site s; is equal to its phosphorylation level
g; if it is not connected to any other nodes. This is because the current incoming to a node is
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always equal to its outgoing current:

Incoming current = QOutgoing current

¢ =Vi+ Z (Vi = V))eij, if n; has quantification
(ij)EE (7)
0= Z (Vi = Vj)eij, if n; does not have quantification
(i,j)EE

Observe that, in this model, the nodes without measured phosphorylation levels (sites that are
not identified in an MS run or kinases) act as a bridge for connecting (and transferring phosphoryla-
tion levels between) other nodes. This is an important feature of RoKAI as it allows incorporation
of unidentified phosphosites in the network model.

To compute the node potentials for all nodes in the network, we represent Equation 7 as a linear

system:
CV=b (8)
1 if ¢ = j and n; has quantification
Cij = Cij if 4 %] and nin; € & (9)
0 otherwise
~_ | @ if n; has quantification
bi _{ 0 otherwise } (10)

Thus, the node potentials V' can be computed using linear algebra as follows:
V= (CTc)"'c"p (11)

Note that, to make the matrix inversion numerically stable, we add a small 7 = 1072 to the
diagonals of the matrix C.
Once node potentials are computed, we output the propagated phosphorylation levels for iden-
tified sites as:
4 =Vj. (12)

These propagated phosphorylation levels §; are used as input to kinase activity inference algorithms
to obtain the inferred activity of kinases.
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