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Network based analyses are commonly used as powerful tools to interpret the findings of genome-wide as-
sociation studies (GWAS) in a functional context. In particular, identification of disease-associated functional
modules, i.e., highly connected protein-protein interaction (PPI) subnetworks with high aggregate disease
association, are shown to be promising in uncovering the functional relationships among disease-associated
genes and proteins. An important issue in this regard is the scoring of subnetworks by integrating two quanti-
ties that are not readily compatible: disease association of individual gene products and network connectivity
among proteins. Current scoring schemes either disregard the level of connectivity and focus on the aggregate
disease association of connected proteins or use a linear combination of these two quantities. However, such
scoring schemes may produce arbitrarily large subnetworks which are often not statistically significant, or
require tuning of parameters that are used to weigh the contributions of network connectivity and disease
association. Here, we propose a parameter-free scoring scheme that aims to score subnetworks by assessing the
disease association of pairwise interactions and incorporating the statistical significance of network connec-
tivity and disease association. We test the proposed scoring scheme on a GWAS dataset for type II diabetes
(T2D). Our results suggest that subnetworks identified by commonly used methods may fail tests of statis-
tical significance after correction for multiple hypothesis testing. In contrast, the proposed scoring scheme
yields highly significant subnetworks, which contain biologically relevant proteins that cannot be identified
by analysis of genome-wide association data alone.

1 Introduction

In recent years, there has been an explosion in genome-wide association studies (GWAS) of complex diseases [8,
30]. These studies have successfully revealed many genetic variants conferring susceptibility to disease. How-
ever, GWAS have so far explained a small fraction of the heritability of common diseases and provided
limited insights into their molecular mechanisms. A commonly cited reason underlying the limitations of
GWAS is the complex nature of diseases, i.e., the interplay among multiple genetic variants in driving dis-
ease phenotype [23]. Therefore, many computational methods have been developed to integrate the outcome
of GWAS and with other biological such as pathways, annotations, and networks to provide a functional
context for disease association of multiple genetic variants [4, 15, 28, 33, 37] and the identification of epistatic
interactions [29].

Among computational methods that aim to identify multiple genetic variants associated with diseases,
identification of disease-associated functional modules has been commonly used as a powerful tool to gain
insights into the systems biology of disease mechanisms [15, 27]. These methods aim to identify highly con-
nected subnetworks of the human protein-protein interaction (PPI) network (hence, functional module) that
exhibit high aggregate association with the disease as indicated by the GWAS p-values of associated genetic
variants (hence, disease-associated). These methods have been shown to be effective in uncovering the func-
tional relationships among disease-associated genetic variants for a number of complex diseases, including
multiple sclerosis [4], breast cancer and pancreatic cancer [15], and sleep apnea [18].

In the identification of disease-associated functional modules, an important challenge is to define a scoring
function that will accurately assess the “interestingness” of a given subnetwork in terms of functional modular-
ity (network connectivity) and disease association. While scoring subnetworks, many of the existing methods
ignore the degree of network connectivity and score connected subnetworks of the human PPI network using
an aggregate of the disease association of comprising gene products [5, 14, 15]. Alternately, some methods
incorporate network connectivity by using a linear combination of this aggregate score and the density of the
induced subnetwork, using a free parameter to adjust the relative contributions of disease association and
network connectivity [20, 38]. Subsequently, they identify high-scoring subnetworks using various algorithmic
techniques [14, 20] and empirically assess the significance of these subnetworks based on permutation tests [4].



Scoring schemes that are based on an aggregate of individual disease association scores are highly influ-
enced by subnetwork size, i.e., the number of proteins in the subnetwork. More precisely, if the subnetwork
score is computed as the average of the individual association scores of constituent proteins, then obviously
smaller subnetworks would be favored. To deal with this problem, existing scoring schemes reward larger
subnetworks. However, this results in a “large subnetwork effect”, i.e., the resulting algorithms may arbi-
trarily grow subnetworks to maximize the score. Clearly, since the “large subnetwork effect” also applies to
randomized data, such arbitrarily large subnetworks are not likely statistically significant. Furthermore, since
the objective here is to identify parsimonious sets of interacting proteins that confer susceptibility to disease,
such large subnetworks may not be biologically relevant or useful, or they may require further computational
analyses for the extraction of their relevant parts [18]. Indeed, Branzini et al. [4] systematically show that, if
correction for multiple hypothesis testing is handled properly, such scoring schemes do not yield statistically
significant subnetworks for many diseases. Scoring schemes that incorporate the degree of network connec-
tivity, on the other hand, require tuning of a free parameter to adjust the relative contributions of disease
association and network connectivity, making it difficult to apply these algorithms to cases where no training
data is available. Unfortunately, this is the case for many applications since biologically relevant subnetworks
for many diseases are largely unknown.

In this paper, we propose a scoring scheme that (i) integrates disease association and network connectiv-
ity in a parameter-free fashion and (ii) incorporates an approximation of the statistical significance of this
integrated score. The key idea of the proposed method is to assess the disease association of each interaction
in the network and account for the background disease association as an approximation to statistical signifi-
cance. In this respect, the proposed approach may be thought of a generalization of Newman’s [7] measure of
modularity, which was developed for community detection in networks. We test the proposed scoring scheme
on a GWAS dataset for type II diabetes (T2D) and compare its performance with two most commonly used
scoring methods, namely scoring based on an aggregate of the disease association of individual proteins only
and scoring based on a linear combination of network connectedness and aggregate disease association. Our
results show that subnetworks that are scored high by the proposed scoring scheme are more likely to be
statistically significant as compared to those that are scored high by the other two scoring schemes. We also
assess the biological relevance of identified subnetworks in terms of their inclusion of known disease-related
proteins that do not exhibit significant disease association based on individual analysis of GWAS data. Our
results suggest that the proposed scheme yields parsimonious subnetworks that contain known proteins, as
well as those that are not individually significant, but are candidates for further investigation.

In the next section, we describe the proposed scheme for scoring protein subnetworks in terms of their dis-
ease association and network connectivity. Subsequently, in Section 3, we present comprehensive experimental
results on T2D data obtain from the Wellcome Trust Case-Control Consortium (WTCCC). We conclude our
discussion in Section 4.

2 Methods

In this section, we first describe the problem setting for the identification of disease-associated functional
modules. Then we describe the three scoring schemes we consider in this study. Subsequently, we describe
the algorithms used to identify high-scoring modules according to this scoring scheme. Finally, we discuss our
methodology for assessing the statistical significance of identified high-scoring modules.

2.1 Problem Setting

The input to the problem of identifying disease-associated functional modules (DAFM) is a graph G =
(V,E,w) that represents the human PPI network. Here, V denotes the set of proteins, E denotes the set of
pairwise interactions between these proteins, and w : E → R denotes edge weights, where w(u, v) represents
the likelihood that proteins u, v ∈ V interact. The likelihood scores for interactions are usually computed
by integrating the outcome of several experimental and computational methods for detecting and predicting
protein-protein interactions. In this paper, we use an online tool, MAGNET [17], to score the interactions.

Besides the network, we are given a genome-wide association (GWAS) dataset D = (C,M, g, f), where C
denotes the set of genomic loci that are assayed, M denotes the set of samples, g(c,m) denotes the genotype
of locus c ∈ C in sample m ∈ M , and f(m) denotes the phenotype of sample m ∈ M . If the phenotype is
dichotomous (i.e., f : M → {0, 1} where 1 denotes case and 0 denotes control), then the disease association
of each variant can be computed a standard statistical test, e.g. Cochran-Armitage trend test, Fisher’s exact



test, or Cochran-Mantel-Haenszel tests [3]. For quantitative traits (i.e., f : M → R), association tests such as
Breslow-Day or homogeneity of odds ratio can be used [12].

In this paper, our focus is not on assessing the disease association of each variant. We rather assume that
the statistical significance of the association of each locus c ∈ C with the disease is given as a p-value, denoted
p(c). From these significance values, we compute the significance of the association of each gene coding for a
protein v ∈ V by taking the most significant association of the variants that lie within the region of interest
for that gene. For the experiments reported in this paper, we define the region of interest for a gene, denoted
N(v) ⊂ C, as the genomic region within 20kb up- and down-stream the coding region for the gene. We further
log-transform the significance of disease association for each gene v ∈ V to obtain disease association score

r(v) = max
c∈N(v)

{− log(p(c))}. (1)

The objective of the disease-associated functional module (DAFM) identification problem is to identify
PPI subnetworks such that:

– the subnetwork is enriched in proteins that are associated with the disease,

– the proteins in the subnetwork are functionally associated with each other.

Consideration of these two criteria together enables identification of functionally modular processes that
are associated with the disease. An important challenge in this regard is to develop scoring schemes that can
achieve a reasonable balance between these two criteria so that the subnetworks that are assigned statistically
significant scores are those that are biologically most meaningful and useful.

2.2 Scoring Subnetworks

(a) (b) (c)

Fig. 1: Illustration of existing and proposed scoring schemes for quantifying the disease association of protein sub-
networks: (a) Node-Based scoring, (b) Linear Combination of node scores and edge scores, (c) the proposed
Modularity-Based (MoBaS) scoring scheme. For each method, the score of subnetwork is computed as the sum-
mation of all quantities in the figure.

In this section, we describe the three scoring schemes that are used in our experimental studies. These
scoring schemes are illustrated in Figure 1. Two of these schemes are based on existing methods for the
identification of active subnetworks using gene expression data, and these methods are commonly used in
integrating GWAS outcome with PPI networks. The third is a novel scoring method that is based on a
measure of modularity in networks [24].

Node-Based Scoring A popular method for scoring subnetworks is implemented in JactiveModules [14],
a Cytoscape plug-in for the identification of “active subnetworks”. This method was originally designed to
integrate gene expression data with PPI networks to identify PPI subnetworks that are differentially expressed
(or “active”) under a certain condition or phenotype. However, it has also found common application in
integrating GWAS data with PPI networks to identify disease-associated subnetworks. It takes as input
the individual disease association scores for all proteins and aims to identify connected subgraphs of the



PPI network with high aggregate association score. More precisely, under this scoring scheme, a subnetwork
Q ⊂ V that induces a connected subgraph in the PPI network is scored as follows:

σN (Q) =
1

√

|Q|

∑

u∈Q

r(u). (2)

The Node-Based scoring scheme is illustrated in Figure 1(a). Since this scoring scheme is based on
the individual disease association of the proteins composing the subnetwork, we refer to it as Node-Based
scoring. Under this scheme, the connectivity of the subnetwork is imposed as a qualitative constraint to ensure
that the proteins in the subnetwork are functionally related. However, the degree of connectivity, hence the
degree of functional association among the proteins, is not quantified.

Many studies in the context of a related problem, candidate disease gene prioritization, have shown that
the degree of network connectivity provides valuable information on the functional relationships between
individual proteins in terms of their association with disease [11, 36]. To this end, taking into account the
degree of network connectivity may lead to the identification of more relevant networks since it may better
account for the noise in the network, as well as the modularity of the processes in which the proteins are
involved together.

Linear Combination of Node and Edge Scores Disease association and the degree of connectivity in the
network are two criteria that are not readily comparable. Therefore, incorporation of these two criteria into
a single scoring scheme is rather challenging. To this end, scoring subnetworks based on a linear combination
of the two criteria is reasonable, in that it provides a framework in which the relative contributions of the
two criteria can be adjusted using a single parameter. Indeed, Ma et al. [20] propose the following Linear
Combination based scoring scheme for the identification of disease associated subnetworks:

σL(Q) = λ

∑

u,v∈Q w(u, v)
√

(

|Q|
2

)

+ (1− λ)

∑

u∈Q r(u)
√

|Q|
. (3)

This approach has been shown to be more effective than Node-Based scoring in the context of identi-
fying ”active subnetworks” [20]. However, to the best of our knowledge, it has not found application in the
identification of disease-associated subnetworks based on GWAS outcome. An important drawback of this
approach is its dependence on a tunable parameter, since the objective of DAFM is to find subnetworks that
exhibit statistically significant association with the disease in an unsupervised manner, and training data
(i.e., ”known” disease-associated subnetworks) are rarely available.

Modularity Based Scoring (MoBaS) The objective in any pattern discovery problem for biological
applications is to discover patterns that are statistically significant. To this end, it is important to note that
“high scoring” does not necessarily mean “statistically significant” and a scoring scheme should not be overly
conservative or overly relaxed, since a conservative scoring scheme may not produce any non-trivial high-
scoring patterns and a relaxed scoring scheme may produce high scoring patterns that are not significant.
Here, we argue (and show in Section 3) that both Node-Based and Linear-Combination based scoring
schemes are overly relaxed in that they can lead to the identification of very large subnetworks that will
achieve high scores just because of their size, since these scoring schemes do not explicitly penalize for the
inclusion of more proteins in the subnetwork.

In this paper, we propose a novel scoring scheme that integrates degree of network connectivity with
disease association in a parameter-free manner by assessing the disease association of each pair of proteins
(a potential interaction) in the network. Further, building on Newman’s [24] measure of modularity for
community detection in networks, the proposed scoring scheme incorporates (an approximation of) statistical
significance into the scoring of subnetworks by taking into account the background disease association scores.

Namely, we define the disease association of a pair of proteins u, v ∈ V as follows:
Recall that ru indicates the likelihood that protein u is associated with the disease of interest. Therefore,

suv provides a measure of the disease association of the interaction between u and v with the disease; i.e., the
higher suv, the more likely it is that u and v are two functionally related proteins that are both associated
with the disease. Note that, if proteins u and v do not interact, we have suv = 0; i.e., the disease association
of a non-extant interaction is zero.



We then define the disease association score of a given subnetwork Q ⊆ vertexset as follows:

σM (Q) =
∑

u,v∈Q

suv − r̂ur̂v, (4)

where r̂u and r̂v respectively denote the “background” disease association scores for proteins u and v. We
compute these background scores empirically for each protein. For this purpose, we randomize the original
GWAS data by permuting the labels of the samples to break the relationship between the genotype and
phenotype, while preserving the distribution of genotypes for each locus. We repeat the permutation multiple
(N) times such that the number of samples derived from the distribution is sufficiently large and the compu-
tation is feasible (we use N = 100 in our experiments). For each randomized instance 1 ≤ i ≤ N , we compute

the disease association of gene u on that instance i as r
(i)
u using Equation 1. Subsequently, we compute the

background disease association of each individual gene u as

r̂u =

N
∑

i=1

r(i)u /N. (5)

In other words, the disease association of subnetwork Q ⊆ V is defined as the linear combination of
the differences between the observed and background disease association scores of all potential pairwise
interactions in the subnetwork. Note that, it is assumed that an interaction exists between every pair of
proteins in the background, therefore any pair of proteins in the subnetwork that do not interact with each
other are penalized by a factor of the multiplication of their background association scores. For this reason,
groups of proteins that induce a heavily connected (hence, functionally modular [34]) subgraph in the PPI
network are favored by this scoring scheme.

2.3 Searching for High Scoring Subnetworks

Subnetwork search queries with combinatorial objective functions often lead to NP-hard problems. For this
reason, existing methods for identifying disease-associated functional modules use approximation algorithms
or heuristics, such as greedy algorithms, simulated annealing [14], genetic algorithms [20], or linear program-
ming based on a continuous approximation [38]. Since our focus here is on the development of a sound scoring
function, the algorithm we use to search for high scoring subnetworks should be compatible with those im-
plemented by existing methods, so that the scoring functions can be compared without any algorithmic bias.
Here, for simplicity, we implement a greedy algorithm as well. Namely, to find all high-scoring subnetworks,
we search the PPI network by starting from the protein with most significant disease association, repeatedly
examining the proteins in the neighborhood of the proteins so far in the subnetwork, and adding to the
subnetwork the protein that provides the best improvement of the subnetwork score. We repeat these steps
until we cannot find any neighboring protein that improves the subnetwork score. We further reduce the com-
putational complexity of the search algorithm by constraining the search space to a locality in the network
(i.e. within two jumps of the first protein added to the subnetwork). Once a subnetwork with maximal score
is found, we save it as a high-scoring subnetwork and remove its constituent proteins from the network. We
then repeat the procedure to find other high scoring modules, until the entire network is exhausted. Finally,
we sort all identified modules according to their score and assess the statistical significance of their scores.

2.4 Assessment of Statistical Significance

The proposed scoring scheme approximates the statistical significance of subnetworks by accounting for the
background distribution of disease association. However, the distributions used in this approximation do not
take into account multiple hypothesis testing, since each subnetwork is scored independently. Furthermore,
only sample means are incorporated in the scoring function, which may not account for the variability in the
distributions of network connectivity and disease association. Consequently, high-scoring modules identified
using the proposed scoring scheme are not necessarily significant. For this reason, for all the three scoring
schemes that are considered, we assess the statistical significance of all identified subnetworks using empirical
distributions generated by running the algorithm on multiple randomized datasets.

We generate the randomized datasets using two different approaches:



1. Random permutation of the phenotypes of samples, with a view to testing the hypothesis that the the
high score of each identified subnetwork arises from the correlations between genotype and phenotype.

2. Random permutation of the PPI network, with a view to testing the hypothesis that each high-scoring
subnetwork are composed of functionally associated proteins. To randomize the PPI network while pre-
serving the degree of each protein, we use a standard algorithm that repeatedly swaps the two ends of
randomly selected pairs of interactions [22].

Observe that, since the number of hypotheses being tested is equal to the number of potential connected
subnetworks of the PPI network, multiple hypothesis testing poses an important challenge in evaluating the
significance of identified subnetworks. We tackle this challenge by using the ranking of subnetworks identified
on random datasets to generate a null distribution for each subnetwork based on its rank on the original
dataset. Namely, for the subnetwork that has the ith highest score on the original dataset, we test the
hypothesis that the algorithm could discover at least i subnetworks with higher or equal score even if the
phenotypes and the interactions in the network were assigned at random.

To be more precise, we generate a sufficiently large number (M) of randomized datasets for each type of
permutation (i.e., randomized genotype and randomized PPI). Then we identify and rank all high-scoring
subnetworks on each dataset. We then assess the statistical significance of each subnetwork identified on the
original data by comparing its score against the scores of the subnetworks that are ranked at least as high as
itself on the randomized datasets. Namely, for subnetwork Qi that is ranked ith in the original dataset, we
take the highest scoring i subnetworks from each of the M datasets and compute the fraction of subnetworks
among these Mi modules whose scores are at least as high as that of Qi. We call this fraction the q-value of
the module, since it implicitly accounts for multiple hypothesis testing. We call a subnetwork is significant
only if its q-value for both types of permutation is below a preset q-value threshold. We use M = 100 (as a
trade off between feasibility and statistical power) and a q − value threshold of 0.05 in our experiments.

3 Results

In this section, we first describe the datasets used in our experiments. Subsequently, we investigate the
statistical significance of the subnetworks identified by the proposed scoring scheme, as well as those identified
by aggregation of node scores (Node-Based) and linear combination of node and edge scores (Linear
Combination). We assess the biological relevance of the identified subnetworks using a literature-driven
list of genes and processes that have been reported to be associated with T2D. We also perform pathway
enrichment analysis to identify the biological processes and pathways potentially associated with T2D. Finally,
we investigate the biological relevance of the ”novel genes” identified by the scoring gene, namely those that
are not known to be associated by the disease, do not show significant disease association according to GWAS
data, but are recruited in the significant subnetworks identified by the proposed scoring scheme.

3.1 Datasets and Preprocessing

GWAS dataset: To evaluate the performance of the proposed method, we use a Type 2 Diabetes (T2D)
case-control dataset, obtained from Wellcome Trust Case-Control Consortium (WTCCC) [8]. The T2D data
contains SNP microarray data for 500000 SNPs on 1999 case and 1504 control samples (1958 British Birth
Cohort). For this dataset, we use the genotype calls provided by WTCCC, which were obtained by using
CHIAMO.SNPs with > 10% missing genotypes are excluded from the analyses.

Association analysis for individual SNPs: We compute the statistical significance of the association of each
SNP with T2D using PLINK[26], a well-established toolkit for whole-genome association analysis. We assess
the disease-association of SNPs based on minor allele frequency, obtaining a p-value for the association of
each SNP with the disease. We use raw p-values instead of correcting for multiple hypothesis testing, since
the p-values are used for scoring the nodes of the PPI network and not for assessing the statistical significance
of individual SNPs.

SNP-gene mapping and association analysis for individual genes: To compute the disease-association for
individual genes, we map SNPs to genes by defining the region of interest (ROI) for a gene as the genomic
region that extends from 20kb upstream to 20kb downstream of the coding region for that gene. We compute
the disease association of each gene as the minimum of the p-values of the SNPs in the region of interest for
that gene, that is the p-value of the most significant SNP associated with the gene. We log-transform these
values to obtain a disease association score for each gene, as described by Equation 1.
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Fig. 2: Statistical significance of high-scoring subnetworks identified using Node-Based scoring (first column), Linear
Combination of node scores and edge scores (second column), and Modularity-Based (MoBaS) scoring (third
column). The highest scoring 20 subnetworks identified using each scoring scheme are shown. The x-axis shows the
rank of each subnetwork according to their score, the y-axis shows its score. The blue curve shows the scores of the
subnetworks identified on the WTCCC-T2D dataset. For each i on the x-axis, the red curve and error bar in the
first row (the green curve and error bars in the second row) show the distribution of the scores of i highest scoring
subnetworks in 100 datasets obtained by permuting the genotypes of the samples (permuting the interactions in the
PPI networks while preserving node degrees).

Protein-protein interaction (PPI) dataset: We use a comprehensive human PPI network downloaded from
NCBI Entrez Gene Database [21]. This database integrates interaction data from several PPI databases,
including HPRD, BioGrid, and BIND. The PPI network contains 56110 interactions among 7692 proteins.
We assess the reliability of each interaction in this dataset using MAGNET [17], a web service that uses logistic
regression to assign reliability scores to PPIs. For this purpose, MAGNET utilizes the type of experimental
platform, mRNA-level co-expression, and co-localization, as well as gold standard interactions from MIPS.

Genes reported to be associated with T2D: In order to assess the biological relevance of identified sub-
networks, we use a manually curated database of genes that are reported to be associated with T2D in the
literature [16]. This list contains 286 genes. We also use a second database that is generated by using seven
independent computational disease gene prioritization methods [31], namely GeneSeeker [10], POCUS [35],
G2D [25], PROSPECTR [1], eVOC annotation [32], DGP [19] and SUSPECTS [2].

Pathway enrichment analysis: We also evaluate the subnetworks that are found to be significantly asso-
ciated with T2D using pathway enrichment analysis. For this purpose, we use Ingenuity Pathway Analysis
(IPA), a commercial software that uses a manually curated and highly reliable database of pathway associa-
tions to perform pathway enrichment analysis.

Table 1: Statistical significance(q-value) of top two subnetworks identified using each scoring scheme according to the
permuted genotype and PPI for WTCCC-T2D

Scoring Method Size q-value in Permuted Genotype q-value in Permuted PPI networks

Node-Based
187 0.37 0.45
190 0.70 0.92

Linear Combination
41 0.46 0.09
17 0.79 0.52

MoBaS
14 0.04 < 0.01
14 0.05 < 0.01



3.2 Significance of Identified Subnetworks

In this section, we investigate the statistical significance of the subnetworks identified by each scoring scheme.
For this purpose, we compare the scores of highest-scoring subnetworks identified on the WTCCC dataset
with that of the highest-scoring subnetworks identified on 100 randomized datasets in which (i) the sample
phenotypes are permuted, (ii) PPIs are randomly permuted while preserving the number of interactions for
each protein. The results of this analysis are shown in Figure 2.

In the figure, the identified subnetworks are sorted according to their score and the scores of the top 20
subnetworks identified by each method are shown with blue curves. In each plot, the red and green curves
with error bars show the distribution of the scores of the modules that have at least the respective rank in the
100 randomized datasets. Randomized permutation of samples captures the significance of the score of the
subnetworks in terms of the the component of the score that represents disease association. On the other hand,
randomized permutation of PPIs assesses the significance of the score in terms of the network connectivity
component. Comparison to the highest ranked subnetworks identified on permuted data by the same method
corrects for multiple hypothesis testing, since the null distribution represents the scores of highest scoring
subnetworks that can be found by the method, as opposed to the score of the subnetwork being tested on the
randomized datasets.

The null distribution displayed in Figure 2 is precisely the distribution used to compute the q-values of
each identified subnetworks, as described in Section 2.4.

As seen in top row of Figure 2, the nine highest scoring subnetworks identified using MoBaS have scores
at least one standard deviation above the mean of the top subnetworks identified on randomized datasets. At
a q-value threshold of 0.05, two of these subnetworks are detected to be statistically significant. In contrast,
all subnetworks identified by Linear Combination and Node-Based scoring are within one standard
deviation of the average score of the top subnetworks identified on randomized datasets. In other words,
when the existing genotype-phenotype relationship in the dataset is broken via randomization of samples,
Linear Combination andNode-Based can still detect subnetworks that score high. The respective q-values
are shown in Table 1.

We observe a similar pattern when we compare the subnetworks identified on the original data to those
identified on randomly permuted PPI networks. The bottom row of Figure 2 shows that the top-scoring 20
subnetworks identified by MoBaS on the original dataset have higher scores compared to those identified
on the permuted dataset. The respective q-values are shown in table 1. Baranzini et al. [4] also investigate
this issue systematically on a number of complex diseases and show that, while the subnetworks identified
by jActiveModules (Node-Based scoring) on some diseases (including multiple sclerosis and rheumatoid
arthritis) are significant, many subnetworks that are identified for other diseases are not, including those for
T2D. Our results stand as a reproduction of these results and suggest that the proposed modularity-based
scoring scheme does not suffer from this problem.

To choose significant subnetworks for further investigation, we require statistical significance in terms of
both disease association and network connectivity. For this purpose, we compute the q-value of each subnet-
work as the maximum of its q-values with respect to permuted genotype and permuted PPI. Consequently,
only the two subnetworks identified by the proposed method are deemed statistically significant at a false
discovery rate of q < 0.05.

3.3 Biological Relevance

In this section, we investigate the biological relevance of the two statistically significant subnetworks (q < 0.05)
identified by the proposed method. These two subnetworks are shown in Figure 3. According to Ingenuity
Pathway Analysis (IPA) software, the top subnetwork (Figure 3(a)) is significantly enriched in Estrogen
Receptor Signaling (p < 3.42E − 12) and Glucocorticoid Receptor Signaling (p < 1.19E − 3). The second
subnetwork (Figure 3(b)) is significantly enriched in Wnt/β-catenin Signaling (p < 0.01) and Cell Cycle
Regulation by BTG Family Proteins (p < 2.2E − 4).

The association between a region of the estrogen receptor-α (ESR1) gene and T2D is reported in the
literature [13]. Although the p-value of its association with T2D according to GWAS data before correction
for multiple hypotheses is moderate (p < 0.003), this gene appears in the most significant subnetwork identified
by the proposed algorithm. This subnetwork is significantly enriched in Estrogen receptor signaling pathway,
which is known to play a crucial role on insulin resistance syndrome [9]. Glucocorticoid excess in vivo has
been shown to cause decreased insulin sensitivity and insulin receptor binding in target tissues [6]. The first
subnetwork is also enriched in Glucocorticoid Receptor Signaling. As shown in 3(a), this subnetwork contains



nine subunit of mediator complex which has an important role in regulating lipid metabolism linked to major
human diseases including type 2 diabetes [39].

The second subnetwork is enriched in Wnt/β-catenin Signalling, which is a well-known pathway related
to T2D. STRN, STRN4 and PPP2CA are previously reported to be associated with T2D, but do not have
significant p-value according to the association analysis for individual variants (respectively 0.16, 0.19 and
0.12 before correction for multiple hypothesis testing). The subnetwork discovered using the proposed scoring
scheme reveals the involvement of these genes in T2D-related processes, demonstrating that network analysis
can provide information beyond what can be detected by GWAS data alone.

(a)

Gene p-value
MED17 7.88E-08
MED31 0.000167
POU2F1 0.000292
CDK8 0.002154
ESR1 0.003988

HNF4A 0.004325
BARD1 0.0141
BRCA1 0.02167
MED9 0.03583
MED25 0.04457
MED1 0.05521
MED10 0.08962
MED23 0.09706
MED19 0.3629

MED17

CDK8

ESR1

BRCA1

BARD1

POU2F1

MED25

MED10

MED9

MED31

MED1

HNF4A

MED19

MED23

(b)

Gene p-value
MCC 0.001308

STRN3 0.001537
TRAF3IP3 0.001746
FAM40A 0.002053

CTTNBP2NL 0.004266
STK25 0.01041

FGFR1OP2 0.01574
CTTNBP2 0.023
STK24 0.03524

PPP2R1A 0.06095
PDCD10 0.06578
PPP2CA 0.1232
STRN 0.1642
STRN4 0.1934

MCC

FAM40A

STRN3

TRAF3IP3

FGFR1OP2

PDCD10

STK25

STK24

CTTNBP2NL

PPP2R1A

PPP2CA

CTTNBP2

STRN

STRN4

Fig. 3: Two subnetworks that are found to be significantly associated with T2D. The size of each node indicates the
significance of the association of the corresponding protein with T2D (rv, as defined by Equation 1). The diamond
nodes are those that are previously reported to be associated with T2D in the literature [16]. The intensity of purple
coloring in the nodes indicates the number of computational disease gene prioritization methods [31] that identified
the respective gene to be associated with T2D. The individual p-values of each gene in the subnetwork are shown
in the table left of the subnetwork. The genes with insignificant p-value (p > 0.05) that are known to be related to
T2D are highlighted in yellow. The genes with insignificant p-value and are not reported to be related to T2D are
highlighted in blue. These genes can be candidates for further investigation.

4 Conclusion

In this paper, with a view to facilitating the identification of disease-associated functional modules, we propose
a novel methodology for scoring PPI subnetworks in terms of their association with a complex disease of



interest and their network connectivity. Our experimental studies show that objective criteria for scoring
subnetworks have to be selected carefully to ensure that the algorithms can detect parsimonious subnetworks
that are statistically significant. In particular, we show that, with a carefully designed scoring scheme, network
analysis can extract knowledge from GWAS data beyond the scope of the data itself. Namely, the subnetworks
identified by the proposed method contain genes that do not exhibit significant association with the disease
based on analysis of GWAS data, but are known to have mechanistic role in the disease. Furthermore, the
subnetworks identified by the proposed method include genes that are not yet reported to have a role in the
disease, are not detected to be significant by GWAS, but have molecular functions that indicate potential
involvement in the disease.

The method presented in this paper focuses on a single network pattern: dense subgraphs of the PPI
network. However, investigation of different network patterns may provide additional insights on the relation-
ships between different disease-associated genes and molecular mechanisms of these associations. The results
reported here are limited to a single disease (T2D) based on a single large scale GWAS. In future work, appli-
cation of the proposed method to various diseases and reproducibility analyses based on data from multiple
cohorts will be crucial in establishing the generalizability of these promising results.
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