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Abstract

The problem of clustering continuous valued data has
been well studied in literature. Its application to microarray
analysis relies on such algorithms as k-means, dimension-
ality reduction techniques, and graph-based approaches for
building dendrograms of sample data. In contrast, simi-
lar problems for discrete-attributed data are relatively un-
explored. An instance of analysis of discrete-attributed data
arises in detecting co-regulated samples in microarrays. In
this paper, we present an algorithm and a software frame-
work, PrRoxiMUs, for error-bounded clustering of high-
dimensional discrete attributed datasets in the context of
extracting co-regulated samples from microarray data. We
show that PRoxIMUSs delivers outstanding performance in
extracting accurate patterns of gene-expression.

1. Introduction

Analysis of large datasets from microarray experiments
traditionally takes the form of clustering high-dimensional
data with a view to correlating samples. This is tradition-
ally done using eigenvalue/singular value decomposition
(PCA/rank reduction), k-means clustering, least squares
methods, etc. These analysis techniques view individual
samples as points in high dimensional space and build den-
drograms that cluster spatially proximate points together in
a hierarchy. One problem with this approach is that all di-
mensions in these datasets are treated identically and local
up- or down-regulation can be masked by gross behavior
over the entire experiment. While this can be addressed by
scaling dimensions, determining scaling coefficients is itself
difficult.

Another challenge associated with analyzing microarray
data is to determine samples that are co-regulated (up- and
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down-regulated together) and to detect motifs responsible
for this co-regulation. The objective function in this case
is defined over a discrete space of up- and down-regulation
and is therefore not amenable to clustering techniques that
treat it as continuous data. The starting point of such analy-
sis is a discretized vector derived from continuous microar-
ray (expression) data. A down-regulation during an interval
(with respect to previous interval) is discretized to value 0,
and to value 1, otherwise. A large set of such discrete vec-
tors must now be correlated to determine (i) sets of samples
that are co-regulated, and (ii) regions within a vector that
display strong correlations.

In order to overcome the computational requirements of
this problem while providing efficient analysis of data we
propose a new technique — binary({0, 1}) non-orthogonal
matrix transformation to extract dominant patterns. In this
technique, elements of singular vectors of a discrete, pos-
itive valued matrix are constrained to binary entries with
an associated singular value of 1. In contrast, in a related
technique called Semi-Discrete Decomposition (SDD), el-
ements of singular vectors are in the set {—1,0,1} and
the associated singular value is continuous. We show here
that our variant results in an extremely efficient algorithm
and powerful framework within which large discretized mi-
croarray datasets can be analyzed.

PROXIMUS is a non-orthogonal matrix transform based
on recursive partitioning of a dataset depending on the dis-
tance of a specific (discretized) gene expression pattern
from the dominant pattern. The dominant pattern is com-
puted as a binary singular vector of the matrix of discretized
vectors. PROXIMUS computes only the first singular vector
and consequently, each discovered pattern has a physical
interpretation at all levels in the hierarchy of the recursive
process. For the discovery of the dominant singular vector,
we adopt an iterative alternating heuristic. Due to the dis-
crete nature of the problem, initialization of singular vec-
tors is critical for convergence to desirable local optima.
We derive effective initialization strategies, along with al-
gorithms for a multiresolution analysis of discretized mi-



croarray datasets. We demonstrate excellent accuracy and
runtime of our methods on four microarray datasets.

2. Background and Related Work

Much of the existing literature on microarray analysis fo-
cuses on clustering high-dimensional datasets. These clus-
tering techniques range from k-means methods to matrix
transformations such as truncated singular value decompo-
sition (SVD) and rank-reduction, semi-discrete decompo-
sition (SDD), centroid decomposition, and principal direc-
tion divisive partitioning (PDDP) [1, 3, 5]. SDD is a variant
of SVD in which the values of the entries in matrices U
and V" are constrained to be in the set {—1,0,1} [5]. Cen-
troid Decomposition (CD) is an approximation to SVD that
is widely used in factor analysis. It has been shown em-
pirically that CD provides a measurement of second order
statistical information of the original data [3].

Our approach differs from these methods in that it dis-
covers naturally occurring patterns in discretized microar-
ray data with no constraint on cluster sizes or number of
clusters. Thus, it provides a generic interface to the microar-
ray analysis problem. Furthermore, the superior execution
characteristics of our approach make it particularly suited
to extremely high-dimensional attribute sets (well beyond
those currently encountered in high-throughput microarray
experiments).

3. Non-Orthogonal Decomposition of Binary
Matrices

PrRoOXIMUS is a collection of novel algorithms and data
structures that rely on modified SDD to find error-bounded
correlations of binary attributed datasets. While relying on
the idea of non-orthogonal matrix transforms, PROXIMUS
provides a framework that captures the properties of dis-
crete datasets more accurately and takes advantage of their
binary nature to improve both the quality and efficiency of
the analysis. Our approach is based on recursively comput-
ing discrete rank-one approximations to the matrix to ex-
tract dominant patterns hierarchically [6].

A binary rank-one approximation for a matrix is defined
as an outer product of two binary vectors that is at minimum
Hamming distance from the matrix over all outer products.
In other words, the rank-one approximation problem for
matrix A with m columns and n rows is one of finding two
vectors z and y that maximize the number of zeros in the
matrix (A — zyT), where z and y are of dimensions m and
n, respectively. Here, vector y is the pattern vector which
is the best approximation for the objective (error) function
specified. Vector x is the presence vector representing the
rows of A that are well approximated by the pattern de-
scribed by y.

Conventional singular value decompositions (SVDs) can
be viewed as summations of rank-one approximations to a
sequence of matrices. Here, the first matrix is the original
matrix itself and each subsequent matrix is a residual ma-
trix, i.e., the difference between the given matrix and the
matrix produced by sum of previous rank-one approxima-
tions. However, the application of SVDs to binary matri-
ces has two drawbacks. First, the resulting decomposition
contains non-integral vector values, which is generally hard
to interpret for binary datasets. SDD partially solves this
problem by restricting the entries of singular vectors to the
set {-1, 0, 1}. However, the second drawback is associ-
ated with the idea of orthogonal decomposition, and there-
fore, SDD also suffers from this problem: if the underlying
data consists of non-overlapping (orthogonal) patterns only,
SVD successfully identifies these patterns. However, if the
patterns with similar strengths overlap, then, because of the
orthogonality constraint, the features contained in some of
the previously discovered patterns are extracted from each
pattern. Furthermore, in orthogonalizing the second singu-
lar vector with respect to the first, SVD introduces nega-
tive values into the second vector. There is no easy inter-
pretation of these negative values in the context of up- or
down-regulation of genes (recall that a 0 corresponds to a
down-regulation and 1 otherwise).

Based on these observations, our modification to SDD
for binary matrices has two major components: (i) pattern
and presence vectors are restricted to binary elements; and
(i) the matrix is partitioned based on the presence vec-
tor after each computation of rank-one approximation, and
the procedure is applied recursively to each partition. This
method provides a hierarchical representation of dominant
patterns.

3.1. Discrete Rank-one Approximation of Binary
Matrices

The problem of finding the optimal discrete rank-one ap-
proximation for a binary matrix can be stated as follows.

Definition 3.1 Rank-one approximation
Given matrix A € {0,1}™ x {0,1}", find 2z € {0,1}™ and
y € {0,1}™ to minimize the error:

A=y |7 = [{ai; € (A—ay") : |ag| =1}. (D)

In other words, the error for a rank-one approximation is the
number of nonzero entries in the residual matrix. This prob-
lem is closely related to finding maximal cliques in graphs.
This problem is known to be NP-hard and there exist no
known approximation algorithms or effective heuristics in
literature. As a matter of fact, if we view the problem as one
of discovering significant patterns in the matrix, the optimal
solution is not necessarily the desired rank-one approxima-
tion [6].



Alternating Iterative Heuristic Since the objective (er-
ror) function can be written as

14 = 2y |5 = [|Al[} — 22T Ay + [l=[31lyl13, ()
minimizing the error is equivalent to maximizing
Ca(z,y) = 227 Ay — ||z[[3lyl 13- ®3)

If we fix y and set s = Ay, the corresponding z that maxi-
mizes this function is given by the following equation.

0, otherwise

This equation follows from the idea that a nonzero ele-
ment of z can have a positive contribution to C4(z, y) if and
only if at least half of the nonzero elements of y match with
the nonzero entries on the corresponding row of A. Clearly,
this equation leads to a linear time algorithm in the number
of nonzeros of A to compute 2, as computation of s requires
O(nz(A)) time and Equation 4 can be evaluated in O(m)
time. Similarly, we can compute vector y that maximizes
Ca(z,y) for a fixed z in linear time. This leads us to an
alternating iterative algorithm based on the computation of
SDD [5], namely initialize y, then solve for z. Now, we
solve for y based on updated value of z. We repeat this
process until there is no improvement in the objective func-
tion. Indeed, this technique is distantly related to expecta-
tion maximization, which is a commonly used technique in
statistical analysis [4].

Although the objective function of Equation 3 leads to a
linear time algorithm and guarantees convergence to a local
maximum, it has a significant drawback due to the discrete
nature of the domain. Specifically, this algorithm does not
have any global awareness, i.e., it always converges to the
local maximum closest to initialization. This leaves the task
of solving the problem to suitable initialization of the pat-
tern vector. A continuous objective function approximating
Cq(z,y), addresses this problem, since it is more successful
in forcing convergence to desired local maxima, especially
for sparse matrices.

Approximate Continuous Objective Function In the
case of decomposing continuous valued matrices, it has
been shown that the objective function of rank-one approx-
imation is equivalent to maximizing

Culay) = & AV ©)
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Although this function is not equivalent to the objective
function in the case of binary matrices, i.e., Cy(z,y) and
C.(z,y) do not have their global maximum at the same

point, the behavior of these two functions is highly corre-
lated. Thus, we can use C.(x,y) as a continuous approx-
imation to Cy(z,y). Fixing y and letting s = Ay/||y||3

as above, the objective becomes one of maximizing (ﬁZﬂ)ZZ .
This can be done in linear time by sorting elements of s
via counting sort and visiting elements of z in the result-
ing order until no improvement in the objective function is
possible.

This continuous function has the desirable property of
having a broader range of convergence compared to the
discrete objective function. Furthermore, since the rate of
growth of this function declines less rapidly with increas-
ing number of nonzeros in z, it favors discovery of sparser
patterns. Although a local maximum of C.(x,y) does not
necessarily correspond to a local maximum of the objective
function, it may correspond to a point that is close to a local
maximum and has a higher objective value than many un-
desirable local maxima. Note that although this metric pro-
vides more flexibility in initialization, selection of the initial
pattern vector still has a significant impact on the quality of
the solution due to the discrete nature of the domain.

3.2. Recursive Decomposition of Binary Vectors

We use the rank-one approximation of the given matrix
to partition the gene regulation vectors into two groups.

Definition 3.2 Partitioning based on rank-one approxi-
mation:

Given rank-one approximation A ~ zy”, a partition of A
with respect to this approximation is defined by two sub-
matrices A, and Aq, where

Mne{Ahifﬂﬂzl

Ag, otherwise

for 1 < i < m. Here, A(i) denotes the i row of A.
The intuition behind this approach is that the rows corre-
sponding to 1’s in the presence vector are the rows of a max-
imally connected submatrix of A. Therefore, these rows
have more similar non-zero structures among each other
compared to the rest of the matrix. This partitioning can
also be interpreted as creating two new groups of genes, Aq
and A;. Since the rank-one approximation for A gives no
information about Aq, we further find a rank-one approxi-
mation and partition this matrix recursively. On the other
hand, we use the representation of the rows in A; given by
the pattern vector y and check if this representation is ade-
quate via a stopping criterion. If so, we decide that matrix
A; is adequately represented by matrix zy” and stop; else,
we recursively apply the procedure for A, as for Ay.

The partitioning-and-approximation process continues
until the matrix cannot be further partitioned or the result-
ing approximation adequately represents the entire group.



We define a metric, called normalized Hamming radius, to
measure the adequacy of the representation in terms of the
Hamming distances of rows to the underlying pattern vec-
tor.

Definition 3.3 Normalized Hamming distance
Given two binary vectors z and y, the normalized Hamming
distance between z and y is defined as:

. zle +yTy — 227y
h(m,y) = n )
where ||z|| = ||z||3 = ||z||1 is the number of nonzeros in

an n-dimensional binary vector z.

Normalized Hamming distance measures the fraction of un-
matched nonzeros between z and y among all nonzeros of
z and y. Note that 0 < A(z,y) < 1. The normalized Ham-
ming distance between a row of the matrix and a pattern
vector measures the fraction of the row that is not repre-
sented by the pattern as well as the fraction of the pattern
that does not exist in the row. Thus, the normalized Ham-
ming distance provides a measure for detecting mismatched
patterns as well as underrepresentation of a row by the un-
derlying pattern.

Definition 3.4 Normalized Hamming radius

Given a set of binary vectors X = {z1,22,...,2,} and
a binary vector y, the normalized Hamming radius of X
centered around y is defined as:

H(X,y) = max h(z,y).

We use the normalized Hamming radius as the major
stopping criterion for the algorithm to determine when a
group of regulation patterns is sufficiently correlated. The
recursive algorithm does not partition subgroup A; further
if one of the following two conditions holds for the rank-one
approximation 4; =~ z;yl .

e 7(A;1,y;) < € where € is the prescribed bound on the
normalized Hamming radius of identified clusters.

e x;(j) = 1Vyj, i.e., all the rows of A; are presentin A;;.

If one of the above conditions holds, the pattern vector y; is
identified as a dominant regulation pattern of group A.

3.3. Initialization of Iterative Process

While finding a rank-one approximation, initialization is
crucial for not only the rate of convergence but also the qual-
ity of the solutions since a wrong choice can result in poor
local minima. In order to find a feasible solution, the initial
pattern vector should have magnitude greater than zero, i.e.,
at least one of the entries in the initial pattern vector should

be equal to one. One possible initialization scheme is to
select a separator column and to identify rows that have a
nonzero on that column. We then initialize the pattern vec-
tor to the centroid of these rows. In our implementation, we
select the dimension that yields the most balanced partition
in order to increase the probability of partitioning along a
significant dimension.

4. Experimental Results

We demonstrate the use of PROXIMUS in the context of
analysis of microarray data. Conventional analysis tech-
niques have focused on clustering techniques for building
dendrograms for gene expression data. While this is useful
for grouping gene expression based on gross behavior over
the experiment, our objective is to examine co-regulation
(up- and down-regulation) in groups of genes. With this
goal, we convert expression data for each gene into a binary
vector of length equal to number of samples. Each compo-
nent of the vector is assigned a value 0 if expression was
down-regulated during the period (w.r.t. previous period)
and 1 otherwise. We then apply PRoxIMUS to this set of
discrete-valued vectors to determine a suitable set of rep-
resentative patterns along with a partitioning (and assign-
ment) of the genes to these patterns. Each partition repre-
sents a set of genes that are co-regulated to within specified
tolerance. This partitioning can then be used to identify mo-
tifs in genes that control regulation.

Experiment  No. of patterns  # samplesin each pattern

apha 13 [200, 46, 41, 54, 41, 48, 50,
52, 32, 111, 60, 30, 34]

cdcl5 10 [174, 58, 69, 35, 58, 65, 73,
134, 80, 53]

cdc28 8 [322, 29, 257, 24, 88, 36,
31, 12

elu 7 [433, 173, 104, 32, 31, 14,
12

Table 1. Summary of regulation patterns dis-
covered by PROXIMUS in each experiment.

We apply our method to microarray data from four
experiments on yeast cultures synchronized by the fol-
lowing methods: «-factor arrest (dataset Alpha), elutri-
ation (dataset Elu), and arrest of cdc15/cdc28 (datasets
cdc15/cdc28) temperature-sensitive mutants (Spellman et
al. [7], Cho et al. [2]). Dataset Alpha corresponds to sam-
ples taken at 7-minute intervals for 140 minutes, dataset
cdc15 contains samples taken every 10 minutes for 300 min-
utes, dataset cdc28 contains samples taken every 10 minutes
for 160 minutes, and dataset Elu contains samples taken ev-
ery 30 minutes for 330 minutes.

The first step in our analysis is the determination of ap-
propriate threshold (error with respect to representative pat-



(a) Dataset Alpha. (b) Dataset Elu.
Figure 1. Up-regulation and down-regulation
patterns extracted from four datasets. The
shaded regions indicate clusters that are up-
regulated and empty regions indicate down-
regulation. Each of these patterns corre-
spond to clusters of genes that exhibit this
behavior. Some of these clusters along with
individual up- and down-regulation are illus-
trated in Figures 2 and 3.

tern) for partitioning data into correlated sets. The number
of partitions, along with the number of samples in each par-
tition is illustrated in Table 1. For example, dataset alpha is
partitioned into 13 groups, with groups containing 200, 46,
...., samples, respectively. The selection of appropriate er-
ror threshold is important because a low threshold results in
each sample being identified as a pattern, itself. Conversely,
a high threshold results in poor patterns.

In Figure 1, we illustrate the patterns extracted from the
four datasets (8, 10, 13, and 7 patterns from cdc28, cdc15,
alpha, and elu, respectively). The dark (blue) regions rep-
resent periods of up-regulation and unshaded regions rep-
resent periods of down-regulation. In Figures 2 and 3, we
select some of the patterns from each dataset and demon-
strate the excellent clustering properties of PROXIMUS. For
example, in the top panel of Figure 2, we illustrate 3 pat-
terns from dataset cdc28. The top pattern in each case is
the representative pattern and the following five rows corre-
spond to five randomly chosen samples from the data. The
left panel illustrates the pattern in comparison to actual up-
and down-regulation data (0/1 discretized expression data)
and the right panel illustrates the pattern along with actual
regulation data. It is evident that with very high accuracy,
PROXIMUS captures patterns in up- and down-regulation of
expression. This is reflected both in the discretized data, as
well as continuous sampled data.

We illustrate three randomly selected patterns along with
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Clusters 1, 3, 7 of dataset CDC28.

Clusters 1, 5, 7 of dataset CDC15.

Figure 2. Selected clusters from datasets
CDC28 and CDC15, the representative pat-
terns of these clusters and some mem-
bers of the clusters illustrating excellent co-
regulation properties. The left column shows
up/down regulation and right column illus-
trates individual values. In each case, the first
row is the representative pattern computed by
PrRoxIMUS and subsequent rows correspond
to experimental data input to PROXIMUS.



Clusters 4, 10, 13 of dataset Alpha.
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Figure 3. (Figure 2 Continued) Selected clus-
ters from datasets Alpha and Elu, the repre-
sentative patterns of these clusters and some
members of the clusters illustrating excel-
lent co-regulation properties. The left column
shows up/down regulation and right column
illustrates individual values. In each case, the
first row is the representative pattern com-
puted by PROXIMUS and subsequent rows cor-
respond to experimental data input to PROX-
IMUS.

five samples corresponding to each of these three patterns
(along with the actual sample data in right panel) for all four
experiments in Figures 2 and 3. In each case the correlation
within each cluster with respect to up- and down- regula-
tion is observed to be very strong. We are currently in the
process of identifying motifs in all of these samples and to
correlate maotifs in clusters to their up- and down-regulation
behavior. We expect to present this data in the final version
of this paper.

5. Conclusions and Ongoing Work

In this paper, we have presented and used a novel
technique, PrRoxiMus, for analyzing discrete attributed
data. We use this technique to identify co-regulated
samples in microarray experiments and demonstrated
excellent results. We are currently in the process of
identifying motifs in clusters induced by PROXIMUS
and to relate these motifs to underlying regulatory
mechanisms. PROXIMUS is available for free download at
http://ww. cs. purdue. edu/ honmes/ koyut ur k/
pr oxi nus/ .
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