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ABSTRACT

GenomeWide Association Studies (GWAS) comprehensively
compare common genetic variants in affected and control
populations to identify variants that are potentially asso-
ciated with diseases. In recent years, GWAS successfully
identified susceptible genes for many diseases. However,
limitations of GWAS in uncovering the cellular mechanisms
of complex diseases have been increasingly pronounced. In
particular, GWAS analyze disease associations at the single
variant level (e.g., single nucleotide polymorphism – SNP),
however the functional links between these variants and the
disease manifest at the level of genes, their products, and
interactions. Since many genes are associated with multiple
SNPs (within their coding and regulatory regions, i.e., re-
gions of interest), it is not straightforward to characterize the
association of individual genes with diseases based on SNP-
level genotype data. Many of the existing studies that study
functional implications of GWAS assess disease-gene associ-
ation by simply taking the most statistically significant SNP
in the gene’s region of interest. Recently, some alternate ap-
proaches have been proposed to integrate the genotypes of
all SNPs within the region of interest. In this study, we
take an algorithmic approach to the problem and identify
the optimal subset of SNPs that provide the maximum dis-
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ease association score within each region of interest. The
proposed algorithms represent the “genotype” of a gene as a
combination of a subset of SNPs within its region of interest
and search for the subset that maximizes the test statistic
comparing this representative genotype in case and control
samples. In order to handle the multiple testing problem,
we compute the statistical significance of these scores by us-
ing permutation tests and using a background population
that takes into account the number of variants lying in the
region of interest (gene). We apply the proposed algorithms
on a GWAS dataset for Type 2 Diabetes (T2D). To assess
the performance of different algorithms, we use a manually
curated set of genes known to be associated with T2D and
compare different algorithms using ROC curves. Our experi-
mental results show that the proposed algorithms are able to
identify disease genes missed by other methods, with better
sensitivity against the false positive rate.
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1. INTRODUCTION
One of the most common type of genomic variations among

humans are Single Nucleotide Polymorphisms (SNP). With
the emerging sequencing technologies, it is possible to geno-
type up to a million SNPs in parallel [4, 19]. Studying
SNP patterns among populations are of great interest to re-
searchers as they reveal associations between genotype and
phenotype effectively. Genome Wide Association Studies
(GWAS) commonly use statistical tests on case and con-
trol populations to discover SNPs that are associated with



diseases [16]. The main objective in many genome wide
association studies is to compare the allelic frequency dif-
ferences across affected and unaffected samples in similar
populations [10].

Although recent studies revealed hundreds of robustly repli-
cated significant disease loci associations [6], GWAS are
recently criticised due to several limitations they possess.
These limitations include the following:

• The number of SNPs monitored is usually in the order
of millions and rare variants with small effect are un-
likely to be detected [21]. Existence of huge number of
SNPs also bring computational challenges to multiple
hypothesis testing [15].

• Most of the SNPs identified by GWAS do not show
significant association with diseases, thus do not have
clear functional implications [6].

• Individual SNPs identified to be associated with dis-
eases show very limited success when used in classifi-
cation of samples [16, 24].

• GWAS analyze associations at the SNP level, however
the underlying functional mechanisms are best under-
stood by analysis at the level of genes (and their prod-
ucts) [11].

As a result of these limitations, approaches that charac-
terize disease progression based solely on genomic level are
quite limited. Consequently, integrating genomic data with
other sources of biological data such as PPI networks is cru-
cial in complementing the GWAS and effectively utilizing
genomic data. In order to achieve this, a necessary step is
to move from SNP to gene level, by effectively combining
the association scores of SNPs lying on a gene. The most
common approach for this task is to directly use the asso-
ciation level of the most significant SNP [23, 7, 5]. Other
simple approaches include taking mean of the χ2 statistic of
all SNPs in the region of interest [14], or considering only
the top quartile of the variants. A recent survey compares
the performances of these three basic summary statistics [11]
and proposes a method of computing empirical p-values for
these approaches.

Since the effect of individual variants might be very low
(especially if they have low minor allele frequency), and the
standard statistical methods such as logistic regression and
Cochrane-Armitage trend tests are not applicable for those
rare variants [3], scientists are often interested in pooling the
scores of multiple SNPs within a genomic region. Moreover,
Bansal et al. previously discussed the reasons to believe that
multiple less common variants (either both on the same or
different genes) collectively contribute to disease suscepti-
bility in humans [1]. Collapsing is one such strategy for
combining the effect of variants, where the variants gener-
ally with a low minor allele frequency (MAF) are pooled [12,
20, 17, 2]. Collapsing all variants naturally causes variants
that are not associated with the disease to be included in
the computations, thus they might hide the effect of asso-
ciation of actual variants with the phenotype of interest.
Consequently, more advanced collapsing algorithms are pro-
posed. The Combined Multivariate and Collapsing (CMC)
method groups SNPs based on some criteria (such as MAF)
and applies a multivariate test (such as Hotelling’s T 2) on
the resulting collapsed sets of SNPs [12]. Dai et al. propose
a greedy approach that first chooses the most significant

common SNP within the region and greedily adds relatively
rare SNPs, by choosing SNPs that provide the highest im-
provement of the association score, until there is no more
improvement with the remaining rare SNPs [2]. Association
levels of the collapsed variants are then computed using a
univariate test.

Weighted Sum Statistic (WSS) proposed by Madsen and
Browning computes an association score for each individ-
ual by assigning weights to each variant and aggregating
them [15]. Scores for all case and control samples are then
sorted and WSS is computed as the sum of the rank of af-
fected samples. P -values of these scores are then estimated
by permuting the disease status among samples 1000 times
and computing standardized score using this background
distribution. Similarly, Zawistowski et al. propose a pool-
ing strategy called cumulative minor-allele test (CMAT),
which utilizes aggregate allele counts of SNPs rather than
collapsing them [25]. In this approach, rare allele counts
are assigned weights and the weighted sum is computed for
case and control samples separately. The weighting factor
enables filtering out some variants or emphasizing some vari-
ants that are known to be functionally related to the trait,
by assigning higher weights. Association level is later com-
puted by a test analogous to Pearson’s χ2 statistic.

In this study, we propose two novel algorithms for effec-
tively choosing a set of SNPs to be collapsed, to achieve a
combined association score of the gene with the disease of
interest. Our algorithms are based on the idea that, dif-
ferent variants might be responsible for the phenotype for
different samples, i.e. they might complement each other in
explaining genotypic variability in the affected population.
First, we propose an adaptive collapsing algorithm, in which
a set of SNPs are greedily chosen and added to the collapsed
set, based on their improvement of the test statistic with re-
spect to the phenotype. This algorithm is similar to the one
proposed by Dai et al. [2], but there is no such restriction as
collapsing rare SNPs on top of a common SNP. All SNPs,
possibly after applying a MAF threshold filter, are treated
equally during the search. We further improve upon this
approach by developing a set–cover based algorithm that
aims to explicitly optimize the complementarity of chosen
SNPs in explaining the genotypic variability in case samples.
Namely, the set–cover based algorithm chooses the represen-
tative set of SNPs based on how they present the relatively
rare genotype in the case and control samples. This way, in-
formation about SNPs that are not strongly associated with
the disease individually is also incorporated to the compu-
tations. Our algorithms do not necessarily focus on rare
variants. After possibly filtering out very common variants
(with a MAF above a user-defined threshold), we work on a
set of relatively less frequent SNPs.

We start our discussion in the next section by introduc-
ing the genetic model used in this study. Subsequently, the
formal definitions of the proposed algorithms are presented
as well as the proposed approach for assessing the statistical
significance of the scores calculated with these algorithms.
We then present experimental results obtained by apply-
ing these methods on a GWAS dataset for Type 2 Diabetes
(T2D) and a manually curated set of genes associated with
T2D, to compare different algorithms using ROC curves.
We discuss the results achieved and conclude the work in
the Conclusion section.

2. METHODS



Figure 1: Illustration of the concept of covering SNPs. In this figure, each row represents the coverage of
samples with those 6 SNPs across 13 samples. Red color indicates the existence of the minor allele, which
means that sample is covered by the corresponding SNP. SNPs 1,2 and 3 collectively cover all case samples.
In order to identify these covering variants, set–cover based algorithm would first add the SNP with highest
coverage score(D) to the covering set and search greedily for other SNPs that maximally increase D.

In this section, we first introduce the genetic model used
in this study. Next, we present the two algorithms pro-
posed, namely, adaptive collapsing and the set–cover based
algorithms for combining the genotypes of SNPs that are
within the region of interest of a gene. As mentioned previ-
ously, the proposed algorithms depend on the idea that SNPs
might be complementary, in that different SNPs within the
same genomic region might be associated with the pheno-
type of different subsets of samples. We use these algorithms
to compute a representative genotype for each gene in the
genome and compute test statistics for each gene using this
representative genotype. Finally, we discuss how we com-
pute the empirical p-values, from the gene-level test statis-
tics computed using the proposed approaches.

2.1 Genetic Model
Consider a GWAS in which m SNPs are genotyped across

na case and nu control samples with na + nu = n. In the
simplest case, the genotype of the ith locus on the jth sam-
ple can take three values, AA, Aa and aa, where A and a
denote alleles harbored on that locus in the population. Let
Xi(j) ∈ {0, 1} indicate the existence of the minor allele on
ith locus of jth sample, i.e. Xi(j) = 1 if the minor allele is
present and Xi(j) = 0 otherwise. Also let P (j) denote the
phenotype of the jth sample, such that P (j) = 1 if the sam-
ple is affected and P (j) = 0 if this sample belongs to the
control population (assuming a dichotomous trait for the
sake of simplicity). The association of a single SNP with
the phenotype of interest is commonly calculated by com-
paring the frequency of the minor allele across the case and
control populations, using Pearson’s χ2 statistics.

2.1.1 Collapsing Variants

As mentioned previously, effects of individual variants ly-
ing within a genomic region are often combined using various

techniques. One such pooling strategy is collapsing. Let L
denote a set of genomic variants, e.g. a subset of the SNPs
within a region of interest. Also let CL denote the indicator
vector of the collapsed variants L, lying within the genomic
region. Formally for sample j,

CL(j) =

{

1 if ∃ri ∈ L : Xi(j) = 1,
0 otherwise.

(1)

This formula simply indicates whether a minor allele is
present in one of the collapsed variants or not for the sample
of interest. Pearson’s χ2 statistic (1df) can then be applied
on the collapsed vector.

2.2 Adaptive Collapsing Method
Collapsing all variants in a genomic region might result

in inclusion of many false variants, thus hiding the effect
of SNPs that are actually associated with the phenotype.
Consequently, choosing a representative subset of SNPs that
capture the effect of the phenotype among the population
might provide a better representation of the variants in that
genomic region. Since enumeration of all possible combina-
tions of variants assigned to a gene is intractable, we here
propose a greedy algorithm for finding such set of variants.
Let K denote the set of SNPs lying within the gene of inter-
est. Since we are often interested in identifying combinations
of SNPs with a low MAF instead of the very common ones,
the first step is to filter the variants with a user defined MAF
threshold(δ). Complete list of the steps of the algorithm is
presented below:

1. Initialize the candidate set Y of SNPs to be collapsed:
Y ← {ri ∈ K : MAF (ri) < δ}, where δ is a threshold
on MAF, for filtering common variants.

2. Initialize the set of SNPs to be collapsed: L ← ∅.

3. For all SNPs ri in Y, compute the χ2 statistic of CL∪{ri}.



4. Add SNP ri that provides highest improvement of χ2

in previous step, to the collapsed set: L ← L ∪ {ri}.

5. Update the candidate set of SNPs: Y ← Y \ {ri}.

6. If Y = ∅ or none of the SNPs in Y provide an increase
in χ2 of the collapsed vector C, return C; otherwise, go
to step 3.

This algorithm terminates when there are no more SNPs
exist that improve the score of the collapsed vector.

2.3 Set-Cover Based Method
Here, instead of optimizing the statistical test score (χ2)

at each step, we propose the set–cover based algorithm that
maximizes the difference between the frequency of case and
control samples that harbor the minor allele. For this pur-
pose, we first identify the set of samples that are “covered”
by a SNP as follows. A SNP ri ∈ K is said to cover a sample
sj if Xi(j) = 1. In other words, a SNP covers all samples
in which the minor allele is present. We define Ai and Ui as
the set of samples covered in case and control populations
respectively, with ri. We can generalize this definition di-
rectly to a set of SNPs: V ⊂ K is said to cover a sample sj
if ∃ri ∈ V : Xi(j) = 1, i.e. the set of samples covered by a
set of SNPs is equal to the union of the samples covered by
each SNP. Observe that the cover of a given set of SNPs can
be computed by collapsing them. The idea of SNP cover is
illustrated in Figure 1.

We define the cover-based score DV of a set of variants
as the difference of the fraction of covered case and control
samples, i.e. DV = |AV |/na − |UV |/nu. The set–cover based
algorithm iteratively adds the SNP that provides the maxi-
mal increase to the cover-based score to the covering set of
SNPs.

1. Initialize the candidate set Y of SNPs to be collapsed:
Y ← {ri ∈ K : MAF (ri) < δ}.

2. Initialize the covering set of SNPs: V ← ∅.

3. For all SNPs ri in Y, compute the cover-based score of
the covering set of SNPs after adding ri to V, i.e. let
V′ = V ∪ {ri}, then DV′ = |AV′|/na − |UV′|/nu.

4. Add SNP rk that provides the highest increase to the
cover-based score D calculated in the previous step to
the covering set of SNPs: V ← V ∪ {rk}.

5. Update the candidate set of SNPs: Y ← Y \ {rk}.

6. If Y = ∅ or none of the SNPs in Y provide an increase
to the cover-based score D in step 3, return V; other-
wise, go to step 3. The score of the final covering set is
computed by using χ2 statistic of the collapsed vector
as in the adaptive collapsing algorithm.

This algorithm is based on the hypothesis that the cover-
based score is an indicator of the separation between case
and control samples. In order to validate this hypothesis,
we first identify the covering set of SNPs for all genes using
the set–cover based algorithm (see Section 3.1.1 for detailed
information about the gene and GWAS datasets used). We
then plot the cover-based score versus the association score
(test statistic) of the covering set of SNPs for all genes in
Figure 2 (association score is calculated on the collapsed
set of covering SNPs). The relationship between the asso-
ciation and the cover-based scores supports the hypothesis

that the cover-based score identifies the separation between
case and control samples effectively. However, the relation-
ship between the cover-based score and association score is
not linear; therefore we expect that greedily maximizing the
cover-based score (as opposed to maximizing the association
score) may provide global awareness for the algorithm.
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Figure 2: In this figure, each curve represents a dif-
ferent range of the fraction of covered control sam-
ples. Cover-based score of each gene is sorted and
split into bins with equal number of genes. x and y-
axes respectively represent the average cover-based
score and the association score (test statistic) of all
genes fall that into the corresponding bins.

2.4 Deriving Empirical P-values
In order to assess the statistical significance of the scores

computed using any of the proposed algorithms, we apply
permutation tests. For this purpose, we generate a large
number of random datasets by permuting the disease sta-
tus of the samples. Next, we run the proposed algorithms
on each gene in the same way with the original dataset to
get a background distribution of achievable disease associ-
ation scores. We then compute the statistical significance
of the original association scores by comparing them to this
background distribution, as described below.

Due to the nature of the proposed algorithms, computed
association scores depend on the number of SNPs that are
within the region of interest for the respective gene. In other
words, if we randomly assign SNPs to genes, we would ex-
pect genes with higher number of SNPs to have higher scores
for both algorithms. This is the case for most of the existing
algorithms as well [11]. We show the effect of the number
of SNPs to the gene scores calculated using the set–cover
based algorithm in Figure 3. A similar observation is made
on the scores computed using adaptive collapsing (data not
shown). Note that in this figure, we only consider those
SNPs that have a MAF< δ when computing the number of
variants within the genomic region (for our experiments, we
use δ = 0.1 as explained in the Results section.

Motivated by these observations, we assess the statistical
significance of the association scores by also taking into con-
sideration the number of variants that are mapped to the
gene of interest. More precisely, the empirical p-value of an
association score for a gene is calculated as the fraction of
higher scores for the genes with similar number of SNPs in
the background population. In our experiments, we permute



2 4 6 8 10
0

2000

4000

0

5

10

15

20

25
N
u
m
b
er

o
f
G
en

es

Cover-Based Score (D)

R
a
re

S
N
P

C
o
u
n
t

Figure 3: Effect of SNP count on the score com-
puted using set–cover based algorithm. The bars
show the histogram representing the distribution of
the cover-based scores The red curve shows the av-
erage number of SNPs (with a MAF lower than
a specific threshold) for the genes that are within
the corresponding score range. The relationship be-
tween the association score and average number of
SNPs mapped to the gene can be easily observed.

the disease status for 103 times and compute the association
scores for all ∼17000 genes (see the next section for details
of the gene set used) for each of the permuted dataset. This
provides ∼107 association scores in the background, for a
range of SNP counts. The empirical p-value for a gene is
then computed by comparing it to the 104 background scores
achieved with similar number of SNPs. Please note that, if
the algorithm utilizes variants with a low MAF (if there is a
filtering step of SNPs based on MAF threshold), we use the
number of SNPs that pass the filtering stage, instead of all
SNPs mapped to that gene, during the computation of the
significance scores.

3. RESULTS
In this section, we start by describing the dataset and

the experimental setup used for assessing the performance
of alternate approaches to the problem. We then present
and discuss in detail the results achieved with the proposed
algorithms, as well as existing approaches.

3.1 Experimental Setup

3.1.1 Datasets Used

We focus on analyzing the Type 2 Diabetes (T2D) sam-
ples (1999 samples), using the project samples from the 1958
British Birth Cohort (1504 samples) as control population.
This dataset is provided by Wellcome Trust Case-Control
Consortium (WTCCC) [22] and it contains ∼500000 SNPs
among the case and control populations. We define the re-
gion of interest for each gene as the region that extends 20kb
upstream or downstream of the coding region for a gene.
Thus, some SNPs might be mapped to multiple genes.

We use a manually curated database [13] to obtain a set of
genes known to be associated with T2D. After removing the
genes with only negative associations from this dataset, we
have 286 genes with at least 1 SNP mapped from the GWAS
data used. We use other 17119 human genes and that are
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values for SNPs mapped to all genes and SNPs
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Figure 5: Number of correctly identified T2D re-
lated genes using the set–cover based algorithm for
different values of the minor allele frequency thresh-
old (δ) is shown. Different curves refer to different
values of rank threshold used for a gene to be pre-
dicted as disease associated.

not known to be associated with T2D. This gene list and the
chromosomal location of each gene (used for mapping SNPs)
are from Human Genome Assembly [9] provided by UCSC
Genome Browser website (last access date: 02/02/2012) [8].
A total of 248252 SNPs are mapped to all genes tested,
where 10655 of them are mapped to those 286 T2D related
genes. Distribution of the MAF values of the SNPs used in
our experiments is shown in Figure 4.

3.1.2 Performance Evaluation

In order to assess the performance, we compare the par-
tial ROC curves of different algorithms. More specifically,
we calculate the score for each gene using different algo-
rithms, and plot the true positive rate (sensitivity) against
false positive rate (1−specificity) with a varying rank thresh-
old among the set of all genes scored (rank threshold is var-
ied between 1%-10% of all genes). Sensitivity is defined as
the proportion of true disease genes that are ranked above
the particular threshold, whereas specificity is defined as the
percentage of genes not known to be associated with the dis-
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Figure 6: In (a), fraction of the true disease genes identified with varying threshold, for different algorithms
is shown. Genes are ranked based on the raw scores calculated using each method, thus not corrected
with the number of variants in the genomic region of interest. In order to monitor the amount of overlap
between identified disease genes using different algorithms, in (b), we show the number disease genes uniquely
identified with different approaches.

ease, that are ranked below the threshold. We also present
the number of disease related genes uniquely identified by
each method.

3.2 Effect of the Minor Allele Frequency Thresh-
old

Most of the existing algorithms for combining SNPs in a
region of interest, focus on variants with a low MAF (usu-
ally less than 5%). Thus, in this section, we investigate the
effect of the MAF threshold on the performance of the set–
cover based algorithm. This threshold (δ) is used for filtering
those SNPs with a high MAF in the first step of both of the
proposed algorithms, as explained in Methods section. The
number of identified true positives for different values of δ
using the set–cover based algorithm is shown in Figure 5.
In this figure, different curves refer to different values of
the rank threshold used for a gene to be predicted as being
disease associated. For all three rank thresholds (1%, 5%,
10%), δ = 0.1 provides the highest number of correctly iden-
tified T2D related genes. Consequently, we use this thresh-
old value for the rest of the experiments presented. Please
note that the performance of adaptive collapsing algorithm
yields a similar trend with varying δ (data not shown).

This result can be interpreted as follows: Using a very low
threshold for δ causes many of the variants to be filtered out,
thus resulting with too few information to be used. Allowing
most of the SNPs on the other hand (using a high threshold,
or no threshold) causes inclusion of false variants, adding
bias to the scoring. Consequently, a threshold around 0.1
provides optimal results for the data in hand.

3.3 Performance Comparison of Different Al-
gorithms

We compare the proposed algorithms and our implemen-
tation of existing methods, by plotting the fraction of cor-
rectly identified“true disease genes” (sensitivity) against the
false positive rate (1−specificity) for each method tested.
In other words, after computing the association scores for
each gene and the statistical significance of these associa-

tion scores, we rank all genes according to these scores and
calculate the fraction of “true disease genes” that are ranked
above a certain threshold among all genes vs. the false pos-
itive rate. We report the fraction of known T2D genes that
are ranked in the top 1% to 10% by each algorithm.

First, we briefly explain our implementation of existing
algorithms. In the definitions below, SNPs with MAF <
δ and MAF ≥ δ are referred as rare and common SNPs
respectively.
• best SNP: Use directly the most significant SNP as the

association score of the gene.

• mean of all SNPs: Use the mean of the χ2 statistic of
all SNPs as the score of the gene.

• topQ: Sort all SNPs with respect to individual χ2 statis-
tic, then use the mean of the test statistic of SNPs in
the top quartile.

• collapse all rare SNPs: Collapse all rare SNPs and ap-
ply a univariate statistical test on the collapsed vector.

• one common rest rare SNPs: Choose the most signif-
icant common SNP and collapse greedily other rare
SNPs until the statistic of the collapsed vector does
not improve.

• CMAT: Calculate the weighted minor allele count for
case and control separately. Here, we follow the origi-
nal study [25] and use weight as a inclusion parameter
for rare SNPs and filter out common variants. We then
use the formula analogous to χ2 as introduced in [25]
to assess the association scores with disease.

Please note that, the original versions of these algorithms
might have some differences to our implementations. How-
ever, our aim in this study is to compare the core ideas
of algorithms combining SNPs. Thus, we ignore the minor
details and compare different ideas in a fair framework by
using the same dataset. MAF threshold parameter (δ) and
the method to calculate empirical p-values are similar for all
algorithms.
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Figure 7: Empirical p-values used in this ranking are corrected with respect to the number of variants in
the genomic region. This correction is done either using the number of all variants or only the rare ones,
depending on the algorithm. In (a), fraction of the true disease genes identified with varying threshold,
for different algorithms is shown. Again, in (b) we show the number disease genes uniquely identified with
different approaches.

We present the results for both the raw and corrected
scores with the number of SNPs assigned to the gene of inter-
est. In Figure 6(a), we compare different algorithms by plot-
ting the partial ROC curve with a varying rank threshold. In
order to check the overlap between the identified genes and
investigate the success of these algorithms in terms of iden-
tifying genes missed by other approaches, we also show the
number of unique disease associated genes correctly identi-
fied by each algorithm in Figure 6(b). In this experiment,
we use the raw association scores calculated by the corre-
sponding algorithms, without correcting with respect to the
background distribution of scores. Next, we rank the genes
using the statistical significance scores corrected with re-
spect to the number of variants (see Methods section for de-
tails). Results achieved using the corrected scores are shown
in Figures 7(a) and 7(b). Observe that the performance
of most of the different algorithms degrade with the correc-
tion. This is because the T2D associated genes have a higher
number of assigned SNPs in average, thus assigned higher
raw scores. This bias is partially removed with the correc-
tion with respect to the number of variants assigned to the
genes. Both corrected and uncorrected results show that, the
set–cover based algorithm is able to identify highest fraction
of disease related genes, compared to other algorithms. It
also performs better in terms of identifying (unique) disease
genes missed by other approaches.

3.4 Linkage Disequilibrium of Covering SNPs
It was previously argued that the Linkage Disequilibrium

(LD) between two variants with a low MAF is usually very
low (often negligible) [12]. Moreover, collapsing algorithms
are shown to be more robust in terms of power to the in-
clusion of variants in LD, compared to single-gene marker
methods [12]. In this section, we investigate the existence
of LD between the combined SNPs identified by the set–
cover based algorithm, although it wouldn’t affect the valid-
ity of the method. In Figure 8, we present the histogram
of LD scores (correlation scores not squared) for two SNP
pair set: (i) all SNP pairs lying on the same gene, and (ii)

the SNP pairs combined by the set–cover based algorithm.
LD scores for SNP pairs are calculated using PLINK [18]. It
can clearly be observed that there are very few negative LD
scores for the set (ii). This is because the LD score of two
variants with a low MAF is very unlikely to be negative as
LD here is calculated using correlations. Variants combined
with the proposed algorithm tend to have a lower fraction of
pairs with a high LD. We believe there are two reasons be-
hind this observation. First, combined pairs consist of SNPs
with a low MAF (less than 0.1 in our experiments) which
in general, causes a lower LD between variants. Second, the
set–cover based algorithm specifically chooses variants cov-
ering different groups of samples in case population, which
naturally results in lower LD.
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Figure 8: In this figure, histograms of LD scores for
all SNP pairs lying on the same gene, as well as the
SNP pairs combined by set–cover based algorithm
are shown.

4. CONCLUSION
In this study, we proposed two novel algorithms for com-

bining variants within a genomic region (usually a single



gene). We first presented a greedy algorithm that itera-
tively collapses SNPs based on the improvement they pro-
vide, in terms of the test statistic with respect to the phe-
notype. Second, we presented a set-cover based approach,
aiming to choose those SNPs that cover all samples in case
population, with as little control sample coverage as possi-
ble. For assessing statistical significance, we corrected the
combined scores with the number of variants lying on the
gene. As an application, we used the GWAS data provided
by WTCCC for T2D, and applied proposed algorithms to
identify genes associated with T2D. We showed that the
proposed algorithms provide better performance in terms of
identifying known T2D related genes, compared to existing
algorithms. set–cover based also outperforms all other ap-
proaches in terms of identifying T2D related genes, missed
by all other approaches.
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