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Abstract. High-throughput molecular interaction data have been used effectively
to prioritize candidate genes that are linked to a disease, based on the notion that
the products of genes associated with similar diseases are likely to interact with
each other heavily in a network of protein-protein interactions (PPIs). An impor-
tant challenge for these applications, however, is the incomplete and noisy nature
of PPI data. Random walk and network propagation based methods alleviate these
problems to a certain extent, by considering indirect interactions and multiplic-
ity of paths. However, as we demonstrate in this paper, such methods are likely
to favor highly connected genes, making prioritization sensitive to the skewed
degree distribution of PPI networks, as well as ascertainment bias in available
interaction and disease association data. Here, we propose several statistical cor-
rection schemes that aim to account for the degree distribution of known disease
and candidate genes. We show that, while the proposed schemes are very ef-
fective in detecting loosely connected disease genes that are missed by existing
approaches, this improvement might come at the price of more false negatives
for highly connected genes. Motivated by these results, we develop uniform pri-
oritization methods that effectively integrate existing methods with the proposed
statistical correction schemes. Comprehensive experimental results on the Online
Mendelian Inheritance in Man (OMIM) database show that the resulting hybrid
schemes outperform existing methods in prioritizing candidate disease genes.

1 Introduction
Identification of disease-associated genes is an important step toward enhancing our
understanding of the cellular mechanisms that drive human diseases, with profound ap-
plications in modeling, diagnosis, prognosis, and therapeutic intervention [1]. Genome-
wide linkage and association studies in healthy and affected populations provide chro-
mosomal regions containing up to 300 candidate genes possibly associated with genetic
diseases [2]. Investigation of these candidates based on sequencing is an expensive task,
thus not always a feasible option. Consequently, computational methods are primarily
used to prioritize and identify the most likely disease-associated genes by utilizing a
variety of data sources such as gene expression [3], functional annotations [4, 5], and
protein-protein interactions (PPIs) [3,6–11]. However, the scope of methods that rely on
functional annotations is limited because only a small fraction of genes in the genome
are currently annotated.

In recent years, several algorithms are proposed to incorporate topological prop-
erties of PPI networks in understanding genetic diseases [3, 6, 10]. These algorithms
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mostly focus on prioritization of candidate genes and mainly exploit the notion that the
products of genes associated with similar diseases are likely to be close to each other
and interact heavily in a network of PPIs. However, an important challenge for these
applications is the incomplete and noisy nature of the PPI data [12]. Vast amounts of
missing interactions and false positives effect the accuracy of methods based on lo-
cal network information such as direct interactions and shortest distances. Few global
methods based on simulation of random walks [6, 10] and network propagation [11]
get around this problem to a certain extent by considering multiple alternate paths and
whole topology of PPI networks. Nevertheless, as we demonstrate in this paper, these
methods favor genes whose products are highly connected in the network and perform
poorly in identifying loosely connected disease genes.

Motivated by this observation, we here propose novel statistical correction methods
for network-based disease gene prioritization. These methods aim to assess the signif-
icance of the connectivity of a candidate gene to known disease genes with respect to
a reference model that takes into account the degree distribution of the PPI network.
We show that the proposed correction schemes are very effective in detecting loosely
connected disease genes which are generally less studied, thus potentially more interest-
ing for many applications in terms of generating novel biological knowledge. However,
we observe that these schemes might perform less favorably in identifying highly con-
nected disease genes. Consequently, we develop several uniform prioritization methods
that effectively integrate existing algorithms with the proposed statistical adjustment
schemes, with a view to delivering high accuracy irrespective of the network central-
ity of target disease genes. Comprehensive experimental results show that the resulting
hybrid prioritization schemes outperform existing approaches in identifying disease-
associated genes.

2 Background and Motivation
There exists a wide range of methods based on the analysis of the topological properties
of PPI networks. These methods commonly rely on the expectation that the products of
genes that are associated with similar diseases interact heavily with each other. It is
important to note that the purpose here is to infer functional associations between genes
from functional and physical interactions between their products. For this reason, any
reference to interactions between genes in this paper refers to the interactions between
their products. Existing methods can be classified into two main categories; (i) localized
methods, i.e., methods based on direct interactions and shortest paths between known
disease genes and candidate genes [3,7,13], (ii) global methods, i.e., methods that model
the information flow in the cell to assess the proximity and connectivity between known
disease genes and candidate genes. Several studies show that global approaches, such
as random walk and network propagation, clearly outperform local approaches [10,11].
For this reason, we focus on global methods in this paper.

Network-based candidate disease gene prioritization. For a given disease of interest
D, the input to the candidate disease gene prioritization problem consists of two sets of
genes, seed set S and candidate set C. The seed set S specifies prior knowledge on the
disease, i.e., it is the set of genes known to be associated with D and diseases similar
to D. Each gene v ∈ S is also associated with a similarity score σ(v, D), indicating
the known degree of association between v and D. The similarity score for gene v is
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computed as the maximum similarity between D and any other disease associated with
v (a detailed discussion on computation of similarity scores can be found in [14]). The
candidate set C specifies the genes, one or more of which are potentially associated
with disease D (e.g., these genes might lie within a linkage interval that is identified by
association studies). The overall objective of network based disease prioritization is to
use a human PPI network G = (V , E), to compute a score α(v, D) for each gene v ∈ C
that represents the likelihood of v to be associated with D.

The PPI network G = (V , E) consists of a set of gene products V and a set of
undirected interactions E between these gene products where uv ∈ E represents an
interaction between u ∈ V and v ∈ V . In this network, the set of interacting partners of
a gene product v ∈ V is defined as N(v) = {u ∈ V : uv ∈ E}. Global prioritization
schemes use this network information to compute α by propagating σ over G. Candidate
proteins are then ranked according to α and novel genes that are potentially associated
with the disease of interest are identified based on this ranking.

Random walk with restarts. This method simulates a random walk on the network
to compute the proximity between two nodes by exploiting the global structure of the
network [15, 16]. It is used in a wide range of applications, including identification of
functional modules [17] and modeling the evolution of social networks [18]. Recently,
random walk with restarts has also been applied to candidate disease gene prioritiza-
tion [6, 10].

In the context of disease gene prioritization, random walk with restarts is applied as
follows. A random walk starts at one of the nodes in S. At each step, the random walk
either moves to a randomly chosen neighbor u ∈ N of the current gene v or it restarts at
one of the genes in the seed set S. The probability of restarting at a given time step is a
fixed parameter denoted by r. For each restart, the probability of restarting at v ∈ S is a
function of σ(v, D), i.e., the degree of association between v and the disease of interest.
After a sufficiently long time, the probability of being at node v at a random time step
provides a measure of the functional association between v and the genes known to be
associated with D [6, 10]. Algorithmically, random-walk based association scores can
be computed iteratively as follows:

xt+1 = (1 − r)PRWxt + rρ. (1)

Here, ρ denotes the restart vector with ρ(u) = σ(u, D)/
∑

v∈S σ(v, D) for u ∈ S
and 0 otherwise. PRW denotes the stochastic matrix derived from G, i.e., PRW(u, v) =
1/|N(v)| for vu ∈ E and 0 otherwise. For each v ∈ V , xt(v) denotes the probability
that the random walk will be at v at time t, where x0 = ρ. For each gene v, the resulting
random-walk based association score is defined as αRW(v, D) = limt→∞ xt(v).

Network propagation. Propagation based models have been previously shown to be ef-
fective in network based functional annotation of proteins [19]. In recent work, Vanunu
and Sharan [11] propose a network propagation algorithm to compute the association
between candidate proteins and known disease genes. They define a prioritization func-
tion which models simulation of an information pump that originates at the seed sets.
This idea is very similar to that of random walk with restarts, with one key difference.
Namely, in network propagation, the flow of information is normalized by not only the
total outgoing flow from each node, but also the total incoming flow into each node. In
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other words, the matrix PRW is replaced my a matrix PNP, in which each entry is nor-
malized with respect to row and column sums. The resulting propagation based model
can also be simulated iteratively as follows:

yt+1 = (1 − r)PNPyt + rρ. (2)

Here, the propagation matrix PNP is computed as PNP(u, v) = 1/
√|N(u)||N(v)| for

uv ∈ E , 0 otherwise. For each v ∈ V , yt(v) denotes the amount of disease association
information at node v at step t, where y0 = ρ. For each gene v, the resulting network
propagation based association score is defined as αNP(v, D) = limt→∞ yt(v). In this
model, 0 ≤ r ≤ 1 is also a user-defined parameter that is used to adjust the relative
importance of prior knowledge and network topology.

Role of network centrality. In order to motivate our approach, we evaluate here the
performance of random walk with restarts and network propagation with respect to the
network degree (number of known interactions) of candidate genes. As shown in Fig-
ure 1(a), these methods are clearly biased toward scoring highly connected proteins
higher. In this figure, the performance measure is the average rank of the true candi-
date protein among other 99 proteins in the same linkage interval. As evident in the
figure, existing global methods work very well in predicting highly connected proteins,
whereas they perform quite poorly for loosely connected proteins, especially for those
with degree less than 6. Furthermore, as seen in Figure 1(b), the degree distribution of
known disease genes is slightly biased toward highly connected genes, however there
exist many disease genes that are loosely connected as well. For this reason, it is at least
as important to correctly identify loosely connected disease genes as to identify those
that are highly connected, in order to remove the effect of ascertainment bias in PPI
data and known disease associations.

The dependency of performance on network degree can be understood by carefully
inspecting the formulation of random walk and network propagation models. Random
walk with restarts is actually a generalization of Google’s well-known page-rank algo-
rithm [20], such that for r = 0, α is solely a measure of network centrality. Therefore,
for any r > 0 (in our experiments, we observe that r = 0.3 is optimal for the per-
formance of both algorithms after running the algorithms with small increments of r
values; this is also the setting used in Figure 1), α(v, D) contains a component that rep-
resents the network centrality of v, in addition to its association with D. Network prop-
agation alleviates this problem by normalizing the incoming flow into a gene, therefore
provides a slightly more balanced performance compared to random walk with restarts.
However, as evident in the figure, its performance is still influenced heavily by node
degrees. Motivated by these insights, we argue that the association scores computed by
these algorithms have to be statistically adjusted with respect to reference models that
take into account the degree distribution of the network.

3 Methods
In this section, we propose several reference models for assessing the significance of
network-based disease association scores. Subsequently, we discuss how these mod-
els can be used in conjunction with existing methods to obtain uniform prioritization
schemes that can deliver high accuracy regardless of centrality of candidate genes.
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Fig. 1. (a) The effect of degree to the performance of existing global approaches. x-axis is the
degree range while y-axis represents the average rank for the true disease genes. (b) Histogram
of the degrees of disease genes and all genes in the network.

3.1 Reference Models for Statistical Adjustment
Here, we consider three alternate reference models for assessing the significance of dis-
ease association scores obtained by random walk with restarts or network propagation:
(i) a model that generates a separate background population for each candidate gene
based on the degree distribution of the seed set, (ii) a model that generates a back-
ground population for each group of candidates with similar degree for a fixed seed set,
(iii) a model that assesses the log-likelihood of the association of a gene with the seed
set with respect to its network centrality. Here, for the sake of clarity, we describe each
model assuming that random walk based restarts is used to compute raw association
scores (we also drop the subscript RW from our notation for simplicity).

Reference model based on seed degrees. The objective here is to generate a reference
model that captures the degree distribution of seed proteins accurately. To this end, we
compare the association score α(v, D) for each protein with scores computed using
random seed sets (by preserving the degree distribution of the seed genes). The expec-
tation here is that false positives that correspond to centralized and highly connected
proteins will have high association scores even with respect to these randomly gener-
ated seed sets. Furthermore, this model aims to balance the effect of highly connected
known disease genes with that of loosely connected ones.

Given a disease D, seed set S, and candidate set C, this reference model is imple-
mented as follows:

– We first compute network-based association scores α(v, D) for the original seed
set S, using the procedure described in Equation 1.

– Then, based on the original seed set S, we generate a random instance S (i) that
represents S in terms of degree distribution. S (i) is generated as follows:
• First, a bucket B(u) is created for each protein u ∈ S.
• Then, each protein v ∈ V is assigned to bucket B(u) if |N(v) − N(u)| <
|N(v) − N(u′)| for all u′ ∈ S, where ties are broken randomly.

• Subsequently, S (i) is generated by choosing a protein from each bucket uni-
formly at random. It can be observed that each protein in S is represented by
exactly one protein in S (i), thus the total degree of proteins in S (i) is expected
to be very close to that of S.
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– For 1 ≤ i ≤ n, the association scores α(i) for seed set S(i) are computed using
Equation 1. Here, n is a sufficiently large number that is used to obtain a represen-
tative sampling {α(1), α(2), α(3), ..., α(n)} of the population of association scores
for seed sets that match the size and degree distribution of S (we use n = 1000 in
our experiments).

– We then estimate the mean of this distribution as μS =
∑

1≤i≤n α(i)/n and the

standard deviation as σ2
S =

∑
1≤i≤n((α(i) − μS)(α(i) − μS)T )/(n − 1).

– Finally, we compute the seed degree adjusted association score for each gene v as
αSD(v, D) = (α(v, D) − μS)/σS .
Note that, since the multiple hypotheses being tested here are compared and ranked

against each other (as opposed to accepting/rejecting individual hypotheses), it is not
necessary to perform correction for multiple hypothesis testing.

Reference model based on candidate degree. This reference model aims to assess the
statistical significance of the association score α(v, D) of a gene v ∈ V with respect to
seed set S based on a population of association scores that belong to genes with degree
similar to that of v. This reference model is generated as follows:

– First, we compute the network-based association vector α with respect to the given
seed set S, again using Equation 1.

– Then, for each candidate gene v ∈ C, we select the n genes in the network with
smallest |N(v) − N(u)| to create a representative set M(v) that contains the n
genes most similar to v in terms of their degree (n = 1000 in our experiments).

– Subsequently, for each gene v ∈ C, we estimate the mean association score of its
representative population as μ(v) =

∑
u∈M(v) α(u)/|M(v)| and the standard de-

viation of association scores as σ2(v) =
∑

u∈M(v) (αS(u) − μ(v))/(|M(v)| − 1).
– Finally, we compute the candidate degree adjusted association score of each candi-

date gene v as αCD(v, D) = (αS(v, D) − μ(v))/σ(v).

Likelihood-ratio test using eigenvector centrality. Here, we assess the association
of a gene with the seed set using a likelihood-ratio test. More precisely, considering
αRW(v, D) as the likelihood of v being associated with the seed set S for disease D, we
compare this likelihood with the likelihood of v being associated with any other gene
product in the network. To compute the likelihood of v’s association with any other
gene in the network, we use eigenvector centrality [20], which is precisely equal to the
random walk based association score of v for zero restart probability (r = 0). Indeed,
setting r = 0 corresponds to the case where the seed set is empty, thereby making the
resulting association score a function of the gene’s network centrality. For each v ∈ C,
the eigenvector centrality based log-likelihood score is computed as:

αEC(v, D) = log
α(r>0)(v, D)
α(r=0)(v, D)

. (3)

3.2 Uniform Prioritization
As we demonstrate in the next section, the adjustment strategies presented improve
the performance of global prioritization algorithms in identifying loosely connected
disease genes. However, this comes at the price of increased number of false negatives
for highly connected disease genes. Motivated by this observation, we propose several
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hybrid scoring schemes that aim to take advantage of both raw and statistically adjusted
association scores. The idea here is to derive a uniform prioritization method that uses
the adjusted scores for loosely connected candidate genes, while using the raw scores
for highly connected candidate genes.

For this purpose, we first sort the raw crosstalk scores (αRW or αNP ) of candidate
genes in descending order. Let RRAW(v) denote the rank of gene v ∈ C in this ordering.
Clearly, for u, v ∈ C, RRAW(v) < RRAW(u) indicates v is more likely to be associated
with the disease than u is. Similarly, we sort the statistically adjusted association scores
(αSD, αCD, or αEC) in descending order, to obtain a rank RADJ(v) for each gene v ∈
C. We propose three alternate strategies for merging these two rankings to obtain a
uniform ranking RUNI, where the objective is to have RUNI(v) < RUNI(u) if gene v is
associated with the disease, while gene u is not. Once RUNI(v) is obtained using one of
the following methods, we map it into the interval [1, |C|] in the obvious way.

Uniform prioritization based on the degree of candidate gene. This uniform prior-
itization scheme chooses the ranking of each candidate gene based on its own degree.
Namely, for a given user-defined threshold λ, we define R

(C)
UNI as:

R
(C)
UNI(v) =

{
RRAW(v) if |N(v)| > λ
RADJ(v) otherwise

(4)

for each v ∈ C. Thus the ranking of a highly-connected gene is based on its raw associa-
tion score, while that of a loosely-connected gene is based on the statistical significance
of its association score. Note that, with respect to this definition, the ranking of two
genes can be identical (but there cannot be more than two genes with identical rank-
ing). In this case, the tie is broken based on the unused ranking of each gene.

Optimistic uniform prioritization. This approach uses the best available ranking for
each candidate gene, based on the expectation that a true disease gene is more likely to
show itself in at least one of the rankings as compared to a candidate gene that is not
associated with the disease. Namely, we define R

(O)
UNI as:

R
(O)
UNI(v) =

{
RRAW(v) if RRAW(v) < RADJ(v)
RADJ(v) otherwise

(5)

for each v ∈ C. Again, ties are broken based on the unused rankings.

Uniform prioritization based on degree of known disease genes. Based on the notion
that some diseases are studied more in detail compared to other diseases, we expect
the degrees of genes associated with similar diseases to be somewhat close to each
other. Statistical tests on disease associations currently available in the OMIM (Online
Mendelian Inheritance in Man) database confirms this expectation (data not shown). We
take advantage of this observation to approximate the network degree of the unknown
disease gene in terms of the degrees of the known disease genes. This enables having a
global criterion for choosing the preferred ranking for all genes, as opposed to the gene-
specific (or “local”) criteria described above. For a given seed set S, we first compute
d(S) = (

∑
u∈S |N(u)|)/|S|. Subsequently, if d(S) > λ (where λ is defined as above),

we set R
(S)
UNI(v) = RRAW(v) for all v ∈ C, otherwise, we set R

(S)
UNI(v) = RADJ(v).
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4 Results
In this section, we comprehensively evaluate the performance of the methods presented
in the previous section.

4.1 Datasets
In our experiments, we use the human PPI data obtained from NCBI Entrez Gene
Database [21]. This database integrates interaction data from several other databases
available, such as HPRD, BioGrid and BIND. After the removal of nodes with no in-
teractions, the final PPI network contains 8959 proteins and 33528 distinct interactions
among these proteins.

We obtain disease information from Online Mendelian Inheritance in Man (OMIM)
database. OMIM provides a publicly accessible and comprehensive database of genotype-
phenotype relationship in humans. We map genes associated with diseases to our PPI
network and remove those diseases for which we are unable to map more than two as-
sociated genes. After this step, we have a total of 206 diseases with at least 3 associated
genes. Number of genes associated with these diseases ranges from 3 to 36, with the
average number of associations for each disease being approximately 6.

4.2 Experimental Setting
In order to evaluate the performance of different methods in terms of accurately priori-
tizing disease-associated genes, we apply leave-one-out cross-validation. For each gene
that is associated with a disease, we conduct the following experiment:

– We remove a gene from the set of genes associated with a particular disease.
– We generate an artificial linkage interval, containing this removed gene with other

99 genes located nearest in terms of the genomic distance. Note that, according to
our experiments, the size of candidate set does not have a significant effect on the
performance gap between different methods as long as it is greater than 20 (data
not shown).

– Using each of the methods described in the previous section, we obtain a ranking
of candidate genes and use this ranking to predict disease genes. Note that, due to
space considerations, we only use random walk with restarts in conjunction with the
proposed statistical correction and uniform prioritization methods, however, these
methods can also be applied to network propagation straightforwardly.

In order to systematically compare the performance of different methods, we use
the following evaluation criteria:

Average rank. Average rank of the correct disease gene among all candidate genes,
computed across all disease. Clearly, a lower average rank indicates better performance.

ROC curves. We also plot ROC curves, i.e., sensitivity vs. 1-specificity, by thresholding
the rank to be considered a “predicted disease gene” from 1 to 100. Sensitivity (recall)
is defined as the percentage of true disease genes that are ranked above the particular
threshold, whereas specificity is defined as the percentage of all genes that are ranked
below the threshold. The area under ROC curve (AUC) is used as another measure to
assess the performance of different methods.

Percentage of the disease genes ranked in top 1% and 5%. Percentages of true dis-
ease genes that are ranked as one of the genes in the top 1% (practically, the top gene)
and also in the top 5% among all candidates are listed separately.
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Fig. 2. ROC curves of proposed statistical adjustment schemes and existing methods for (a) cases
in which true disease gene has degree at most five, (b) all disease genes. All of the proposed
adjustment schemes outperform existing methods.

4.3 Performance of Statistical Adjustment Schemes
As mentioned before, the performance of the global methods is highly biased with the
degree of the true candidate protein. The effect of the degree of true disease gene on the
performance of global methods is demonstrated in Figure 1. To investigate the effect of
the proposed statistical correction schemes on accurate ranking of low-degree proteins,
we first compare the ROC curves achieved by different methods by considering the true
disease genes with degree ≤ 5. These results are shown in Figure 2(a) and Table 1.
As seen in the figure, all of the three statistical adjustment schemes outperform existing
methods for these genes. Furthermore, as evident in Figure 2(b), when all genes are
considered, the statistical adjustment schemes still perform better than existing meth-
ods. However, as seen in the figure, the performance difference is minor because of the
relatively degraded performance of statistical adjustment schemes for highly connected
genes. Next, we investigate how the proposed uniform prioritization methods improve
the performance of these statistical adjustment schemes.

4.4 Performance of Uniform Prioritization
Here, we systematically investigate the performance of the proposed uniform prioriti-
zation methods, by considering the combination of each of these methods with each of
the three statistical adjustment methods (a total of nine combinations). In these exper-
iments, the degree threshold λ is set to 5. For convenience, we refer to each uniform
prioritization method using the corresponding ranking symbol introduced in the previ-
ous section (R(C)

UNI, R
(O)
UNI, or R

(S)
UNI).

Table 1. The effect of statistical adjustment on performance. Average Rank of the true disease
genes and AUC values are listed. To demonstrate the effect of connectivity, we also provide
separate results for the cases in which the degree of true disease gene is ≤ 5 and > 5.

All Genes Degrees≤ 5 Degrees> 5

Method Avg. Rank AUROC Avg. Rank AUROC Avg. Rank AUROC
Network Propagation 26.32 0.74 33.12 0.61 18.29 0.83

Random walk w/ restarts 28.02 0.73 37.73 0.62 17.56 0.84
Based on seed degree 25.55 0.75 26.10 0.73 24.43 0.78

Based on candidate degree 24.62 0.76 26.46 0.72 23.66 0.79
Based on centrality 24.55 0.76 26.27 0.73 23.16 0.79
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Table 2. Performance of all combinations of uniform prioritization methods.

Candidate deg. Seed deg. Centrality

R
(C)
UNI R

(O)
UNI R

(S)
UNI R

(C)
UNI R

(O)
UNI R

(S)
UNI R

(C)
UNI R

(O)
UNI R

(S)
UNI

Avg. Rank 23.22 24.33 23.30 25.01 25.29 25.42 24.95 24.92 24.02
AUROC 0.76 0.76 0.77 0.75 0.75 0.76 0.75 0.75 0.76

Perc. ranked in top 1% 21.7 19.4 14.7 18.4 18.5 19.3 20.0 20.5 21.3
Perc. ranked in top 5% 45.1 44.4 42.1 45.5 44.1 41.2 46.3 45.7 47.0

The average rank and AUC for the performance of the nine combinations of pro-
posed methods are listed in Table 2. As seen in the table, while all methods improve
upon the performance of raw statistical adjustment schemes, it is difficult to choose
between the proposed methods. We suggest that the hybrid method based on candidate
degree (R(C)

UNI), combined with statistical adjustment based on candidate degree, can be
considered the “winner”, since this approach provides the best accuracy in correctly
predicting the disease protein as the top candidate (21.7%) and it provides the lowest
average rank of the true candidate gene (23.22). We compare this combination of pro-
posed algorithms with existing global methods in Table 3 and Figure 3(a). These results
clearly show that our final uniform prioritization scheme outperforms existing methods
with respect to all performance criteria. Furthermore, careful inspection of average rank
with respect to the degree of true disease gene in Figure 3(b) shows that, this method al-
most matches the performance of the best performing algorithm for each degree regime.
Namely, if the target gene has low degree, our uniform prioritization method performs
close to statistical adjusted random walk, while it performs close to raw random walk
for high-degree target genes.

4.5 Case Example
Here, we provide a real example to demonstrate the power of the proposed method in
identifying loosely connected disease genes. We focus on Microphthalmia which is a
disease that has 3 genes directly associated with it in our PPI network, namely SIX6,
CHX10 and BCOR. In our experiments, we remove SIX6 and try to predict this gene
using the other two genes, as well genes associated with diseases similar to Microph-
thalmia. This experiment is illustrated in Figure 4. The figure shows the 2-neighborhood
of proteins SIX6, CHX10 and BCOR. As seen in the figure, the global methods fail be-
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Fig. 3. (a) ROC curves to compare the proposed method with existing global approaches. (b)The
effect of the degree of target gene on the performance of existing global approaches, adjusted
method based on candidate degrees as well as the our final uniform prioritization method.
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Fig. 4. Case example for the Microphthalmia disease. Products of genes associated with Microph-
thalmia or a similar disease are shown by green circles, where the intensity of green is propor-
tional to the degree of similarity. The target disease gene that is left out in the experiment and
correctly ranked first by our algorithm is represented by a red circle. The gene that is incorrectly
ranked first for both of the existing global approaches is shown by a diamond. Other candidate
genes that are prioritized are shown by yellow circles.

cause the product of SIX6 is not a centralized protein with a degree of only 1. Thus,
random walk with restarts model ranks this true gene as 26 th and network propagation
ranks it 16th among 100 candidates. On the other hand, our method is able to correctly
rank this gene as the 1st candidate. Both random walk and network propagation rank
the gene AKT1 top among all candidates, which, not surprisingly, is a high degree node
(78), also connected to other hub gene products.

5 Conclusion

In this paper, we have shown that approaches based on global network properties in
prioritizing disease-associated genes are highly biased by the degree of the candidate
gene, thus perform poorly in detecting loosely connected disease genes. We proposed
several statistical adjustment strategies that improve the performance, particularly in
identifying loosely connected disease genes. We have shown that, when these adjust-
ment schemes are used together with existing global methods, the resulting method
outperforms existing approaches significantly. These results clearly demonstrate that,
in order to avoid exacerbation of ascertainment bias and propagation of noise, network-

Table 3. Comparison of the proposed method with existing global approaches. The proposed
method outperforms others with respect to all performance criteria.

METHOD Avg. Rank AUROC Perc. Ranked in top 1% Perc. Ranked in top 5%
Proposed Hybrid Method 23.22 0.76 21.7 45.1

Network propagation 26.32 0.74 18.2 43.2
Random walk w/ restarts 28.02 0.73 20.7 43.9
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based biological inference methods have to be supported by statistical models that take
into account the degree distribution.
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