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ABSTRACT

Genome-wide linkage and association studies have demonstrated promise in identifying ge-
netic factors that influence health and disease. An important challenge is to narrow down the
set of candidate genes that are implicated by these analyses. Protein-protein interaction (PPI)
networks are useful in extracting the functional relationships between known disease and
candidate genes, based on the principle that products of genes implicated in similar diseases
are likely to exhibit significant connectivity/proximity. Information flow–based methods are
shown to be very effective in prioritizing candidate disease genes. In this article, we utilize the
topology of PPI networks to infer functional information in the context of disease association.
Our approach is based on the assumption that PPI networks are organized into recurrent
schemes that underlie the mechanisms of cooperation among different proteins. We hypoth-
esize that proteins associated with similar diseases would exhibit similar topological charac-
teristics in PPI networks. Utilizing the location of a protein in the network with respect to
other proteins (i.e., the ‘‘topological profile’’ of the proteins), we develop a novel measure
to assess the topological similarity of proteins in a PPI network. We then use this measure to
prioritize candidate disease genes based on the topological similarity of their products and the
products of known disease genes. We test the resulting algorithm, Vavien, via systematic
experimental studies using an integrated human PPI network and the Online Mendelian
Inheritance in Man (OMIM) database. Vavien outperforms other network-based prioriti-
zation algorithms as shown in the results and is available at www.diseasegenes.org.
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1. INTRODUCTION

Characterization of disease-associated variants in human genome is an important step toward

enhancing our understanding of the cellular mechanisms that drive complex diseases, with profound

applications in modeling, diagnosis, prognosis, and therapeutic intervention (Brunner and van Driel, 2004).
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Genome-wide linkage and association studies in healthy and affected populations provide chromosomal

regions containing hundreds of polymorphisms that are potentially associated with certain genetic diseases

(Glazier et al., 2002). These polymorphisms often implicate up to 300 genes, only a few of which may have

a role in the manifestation of the disease. Investigation of that many candidates via sequencing is clearly an

expensive task and thus not always a feasible option. Consequently, computational methods are primarily

used to prioritize and identify the most likely disease-associated genes by utilizing a variety of data sources

such as gene expression (Lage et al., 2007; Nica and Dermitzakis, 2008) and functional annotations (Adie

et al., 2006; Chen et al., 2009b; Turner et al., 2003). However, the scope of methods that rely on functional

annotations is limited because only a small fraction of genes in the human genome are currently annotated.

Moreover, signals inferred from gene expression profiles are not easily utilized especially for diseases

caused by multiple genes, where the impact of each contributor gene can be minimal. Protein-protein

interactions (PPIs) provide an invaluable resource in this regard, since they provide functional information

in a network context and can be obtained at a large scale via high-throughput screening (Ewing et al.,

2007).

Despite their differences, all network-based disease gene prioritization algorithms are based on a unique

principle: the association between proteins is correlated with their connectivity/proximity in the PPI net-

work. However, recent research also reveals that networks are organized into recurrent network schemes

that underlie the interaction patterns among proteins with different function (Pandey et al., 2007; Bebek and

Yang, 2007). Based on this observation, we propose a topological similarity-based disease gene prioriti-

zation scheme in this article. For this purpose, we develop a measure of topological similarity among pairs

of proteins in a PPI network and use the network similarity between seed and candidate proteins to infer the

likelihood of disease association for the candidates.

We first discuss existing network-based disease gene prioritization approaches in Section 2. In Section 3,

we present the algorithmic details of the proposed methods. Systematic experimental studies using an

integrated human PPI network and the Online Mendelian Inheritance in Man (OMIM) database are pre-

sented in Section 4. These results show that the proposed algorithm, Vavien,1 clearly outperforms state-of-

the-art network-based prioritization algorithms. We conclude our discussion in Section 5.

2. BACKGROUND

In the last few years, many algorithms have been developed to utilize PPI networks in disease gene

prioritization (Navlakha and Kingsford, 2010; Franke et al., 2006; Ideker and Sharan, 2008; Karni et al.,

2009; Oti et al., 2006; Chen et al., 2009a; Köhler et al., 2008; Vanunu et al. 2010; Zhang et al., 2010; Wu

et al., 2008; Missiuro et al., 2009; Aerts et al., 2006). These algorithms take as input a set of seed proteins

(coded by genes known to be associated with the disease of interest or similar diseases), candidate proteins

(coded by genes in the linkage interval for the disease of interest), and a network of interactions among

human proteins. Subsequently, they use PPIs to infer the relationship between seed and candidate proteins

and rank the candidate proteins according to these inferred relationships. The key ideas in network-based

prioritization of disease genes are illustrated in Figure 1.

Network connectivity is useful in disease gene prioritization. Network-based analyses of diverse

phenotypes demonstrate that products of genes that are implicated in similar diseases are clustered together

into highly connected subnetworks in PPI networks (Goh et al., 2007; Rhodes and Chinnaiyan, 2005).

Motivated by these observations, many studies search the PPI networks for interacting partners of known

disease genes to narrow down the set of candidate genes implicated by genome-wide linkage analyses

(Franke et al., 2006; Ideker and Sharan, 2008; Karni et al., 2009; Oti et al., 2006) (Fig. 1a). In one of the

pioneering studies on network-based disease gene prioritization, Oti et al. (2006) identify potential disease

genes by qualitatively investigating the interacting partners of the genes that are known to be associated

with the disease of interest. Frank et al. (2006) extend this idea in a quantitative framework to score

candidate genes based on the number of interactions between each candidate disease gene and known

disease genes. These algorithms are also extended to take into account the information provided by the

1From va-et-vient (Fr.); an electrical circuit in which multiple switches in different locations perform identical tasks
(e.g., control lighting in a stairwell from either end).
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genes implicated in diseases similar to the disease of interest (Lage et al., 2007). Here, the similarity

between diseases refers to the similarity in clinical classification of diseases.

Information flow based methods take into account indirect interactions. Methods that consider

direct interactions between seed and candidate proteins do not utilize knowledge of PPIs to their full potential.

In particular, they do not consider interactions among proteins that are not among the seed or candidate

proteins, which might also indicate indirect functional relationships between candidate and seed proteins. For

this reason, connectivity-based (‘‘local’’) methods are vulnerable to false negative and positive interactions

(Pandey et al., 2010). Information flow–based (‘‘global’’) methods ground themselves on the notion that

products of genes that have an important role in a disease are expected to exhibit significant network crosstalk

to each other in terms of the aggregate strength of paths that connect the corresponding proteins (Fig. 1b).

This approach is motivated by the following two observations: (i) multiple alternate paths between func-

tionally associated proteins are often conserved through evolution, owing to their contribution to robustness

against perturbations, as well as amplification of signals (Kelley and Ideker, 2005; Li et al., 2006); and (ii)

consideration of alternate paths accounts for missing data and noise in PPI networks (Kelley et al., 2003;

Koyutürk et al., 2006). Indeed, information flow–based models are also shown to be very effective in

network-based functional annotation of proteins (Nabieva et al., 2005) and coexpression-based prioritization

of proteomic targets (Bebek et al., 2010). These methods include random walk with restarts (Chen et al.,

2009a; Köhler et al., 2008) and network propagation (Vanunu et al., 2010; Zhang et al., 2010), which

significantly outperform connectivity-based methods (Navlakha and Kingsford, 2010).

Topological similarity indicates functional association. Recent research reveals that networks are

organized into recurrent network schemas that underlie the interaction patterns among proteins with dif-

ferent function (Pandey et al., 2007; Bebek and Yang, 2007). A well-known network schema, for example,

is a chain of membrane-bound receptors, protein kinases, and transcription factors, which serves as a high-

level description of the backbone of cellular signaling. Dedicated mining algorithms identify more specific

network schemes at a higher resolution, indicating that similar principles are used recurrently in interaction

networks (Banks et al., 2008; Kirac and Özsoyoglu, 2008). Motivated by these observations, a new

generation of network-based functional annotation algorithms exploit the topological similarity among

proteins in the PPI network, based on the principle that proteins that interact with proteins of similar

function are also likely to have similar functions (Bogdanov and Singh, 2010; Kirac et al., 2006; Kirac and

Özsoyoglu, 2008). These algorithms are shown to outperform connectivity and information flow–based

algorithms in annotation of biological function (Bogdanov and Singh, 2010; Kirac and Özsoyoglu, 2008).

Inspired by these results, in this article, we develop a network-based disease gene prioritization algorithm

that uses topological similarity to infer the relationship between seed and candidate proteins (Fig. 1c).

Below, we further motivate this approach with an example from the systems biology of cancer.

Motivating example. While the APC gene has been identified to be one of the most important genes that

play a role in the development of colorectal cancer, there are multiple proteins that work in parallel with Apc

to create these cancers (Sjöblom et al., 2006; Wood et al., 2007). Although the actual mechanisms of selection

are not clear, it is known that proteins which are not directly interacting with APC, and have similar functions

in a cell—such as tumor suppressor genes PTEN (Marsh et al., 2008), TRP53 (Halberg et al., 2008), and p21

FIG. 1. Key principles in net-

work-based disease gene prioritiza-

tion. Nodes and edges respectively

represent proteins and interactions.

Seed proteins (proteins known to be

associated with the disease of in-

terest) are shown in light blue, pro-

teins that are implicated to be

associated with the same disease by

the respective principle are shown

in dark red, other proteins are shown in white. (a) Network Connectivity infers association of the red protein with the

seed proteins because it interacts heavily with them. (b) Information Flow infers association of the red protein with seed

proteins because it exhibits crosstalk to them via indirect interactions through other proteins. (c) Topological Similarity,

proposed in this article infers association of the red protein with the seed proteins because it (indirectly) interacts with a

hub protein in a way topologically similar to them.
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(Patel et al., 2010)—when mutated with APC, increase the tumor burden. In a recent study, Bebek et al.,

(2010) present a pipeline where bimodality of coexpresssion is used to prioritize proteomics targets identified

in a mouse model of colorectal cancer. Some of the significant proteins identified are shown in Figure 2 in a

PPI network. The identified targets HAPLN1, P2RX7 (colored purple in the figure) are linked to growth factor

receptors (GFRs) (EGFR, TGFR1, FGFR1; colored blue in the figure), but not connected to each other. As

seen in Figure 2, similarities of these two proteomic targets in their function and role in disease are also

reflected in their relative topology with respect to APC and growth factors.

3. METHODS

In this section, we first describe the disease gene prioritization problem within a formal framework.

Subsequently, we formulate the concept of topological similarity of pairs of proteins in terms of their

proximity to other proteins in the network. Finally, we discuss how topological similarity of proteins is used

to prioritize candidate disease genes.

3.1. Disease gene prioritization problem

Let D denote a disease of interest, which is potentially associated with various genetic factors (e.g., sleep

apnea, Alzhemier’s disease, autism). Assume that a genome-wide association study (GWAS) using samples

from control and affected populations is conducted, revealing a linkage interval that is significantly as-

sociated with D. Potentially, such a linkage interval will contain multiple genes, which are all candidates

for being mechanistically associated with D (i.e., the mutation in a gene in the linkage interval might have a

role in the manifestation of disease). This set of candidate genes, denoted C, forms the input to the disease

gene prioritization problem.

The aim of disease gene prioritization is to rank the genes in C based on their potential mechanistic

association with D. For this purpose, a set of genes that are already known to be associated with D or

diseases similar to D is used (where similarity between diseases is defined phenotypically—e.g., based on

the clinical description of diseases). The idea here is that genes in C that are mechanistically associated with

D are likely to exhibit patterns of association with such genes in a network of PPIs. This set of genes is

referred to as the seed set and denoted S. Each gene v 2 S is assigned a disease-association score

r(v‚ D) 2 (0‚ 1], representing the known level of association between v and D. The association score for v

and D is set to 1 if it is a known association listed in OMIM database. Otherwise, it is computed as the

maximum clinical similarity between D and any other disease associated with v (Erten and Koyutürk, 2010)

(a detailed discussion on computation of similarity scores can be found in van Driel et al. [2006]).

In order to capture the association of the genes in C with those in S, network-based prioritization algorithms

utilize a network of known interactions among human proteins. The human PPI network G¼ (V‚ E‚ w) consists

of a set of proteins V and a set of undirected interactions E between these proteins, where uv 2 E represents an

interaction between u 2 V and v 2 V. Since PPI networks are noisy and incomplete (Stumpf et al., 2008), each

interaction uv 2 E is also assigned a confidence score representing the reliability of the interaction between u

FIG. 2. Motivating example for

using topological similarity to pri-

oritize candidate disease genes.

Two PPI subnetworks connecting

key cancer driver genes, APC-

HAPLNI ( p < 0.0068) and APC-

P2RX7 ( p < 0.0212), were found

significant when bimodality of co-

expression with proteomic targets

were calculated. Darker nodes rep-

resent proteins coded by genes that

carry ‘‘driver mutations.’’ Blue

nodes represent growth factor re-

ceptors (GFRs). Although APC-HAPLNI and APC-P2RX7 do not directly interact or exhibit significant crosstalk with

growth factors and products of driver genes, their relative locations with respect to these proteins exhibit similarities.
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and v (Sharan et al., 2005; Suthram et al., 2006; Bebek and Yang, 2007). Formally, there exists a function

w : E ! (0‚ 1], where w(uv) indicates the reliability of interaction uv 2 E.

In this article, the reliability score is derived through a logistic regression model where a positive

interaction dataset (MIPS Golden PPI interactions [Mewes et al., 2004]) and a negative interaction dataset

(Negatome [Smialowski et al., 2010]) are used to train a model with three variables: (1) co-expression

measurements for the corresponding genes derived from multiple sets of tissue microarray experiments

(normal human tissues measured in the Human Body Index Transcriptional Profiling [GEO accession no.

GSE7307] [Barrett et al., 2009]); (2) the proteins’ small world clustering coefficient; and (3) the protein

subcellular localization data of interacting partners (Sprenger et al., 2008). Co-expression values are used

since co-regulated genes are more likely to interact with each other than are others (Sharan et al., 2005;

Bebek and Yang, 2007). Alternatively, the network feature that we are extracting, the small world clus-

tering coefficient, is a measure of connectedness. This coefficient shows how likely the neighbors (inter-

acting peers) of a protein are neighbors of each other (Goldberg and Roth, 2003). We also incorporate the

protein subcellular localization data into the logistic model, since this would eliminate interactions among

proteins that are not biologically significant (Bebek and Yang, 2007). The logistic regression model is

trained on randomly selected 1000 positive and negative training data sets for 100 times, and regression

constants are determined to score each PPI.

Given S and G, network-based disease gene prioritization aims to compute a score a(v, D) for each v 2 C,
representing the potential association of v with disease D. For this purpose, we develop a novel meth-

od,Vavien, to rank candidate genes based on their topological similarity to the seed genes in G.

3.2. Topological similarity of proteins in a PPI network

Recent research shows that molecular networks are organized into functional interaction patterns that are

used recurrently in different cellular processes (Pandey et al., 2007; Banks et al., 2008). In other words,

proteins with similar function often interact with proteins that are also functionally similar to each other

(Kirac and Özsoyoglu, 2008). Motivated by this observation, Vavien aims to assess the functional simi-

larity between seed and candidate proteins based on their topological similarity, that is the similarity of

their relative location with respect to other proteins in the network. For this purpose, we first define the

topological profile of a protein in a PPI network.

Topological profile of a protein. For a given protein v 2 V and a PPI network G, the topological profile

bv of v is defined as a jVj-dimensional vector such that for each u 2 V‚ bv(u) represents the proximity of

protein v to protein u in G. Clearly, the proximity between two proteins can be computed in various ways. A

well-known measure of proximity is the shortest path (here, the most reliable path) between the two proteins;

however, this method is vulnerable to missing data and noise in PPI networks (Pandey et al., 2010). A reliable

measure of network proximity is effective conductance, which is based on a model that represents the

network as an electrical circuit. In this model, each edge is represented as a capacitor with capacitance

proportional to its reliability score. Effective conductance can be computed using the inverse of the Laplacian

matrix of the network; however, this computation is quite costly since it requires computation of the inverse

of a sparse matrix (Spielman and Srivastava, 2008). Fortunately, however, computation of effective con-

ductance and random walks in a network are known to be related (Tetali, 1991), and proximity scores based

on random walks can be computed efficiently using iterative methods.

Vavien computes the proximity between pairs of proteins using random walk with restarts (Lovász, 1996;

Tong et al., 2008). This method is used in a wide range of applications, including identification of functional

modules (Macropol et al., 2009) and modeling the evolution of social networks (Tong and Faloutsos, 2006). It

is also the first information flow–based method to be applied to disease gene prioritization (Köhler et al.,

2008; Chen et al., 2009a) and is shown to clearly outperform connectivity-based methods.

Random walk with restarts computes the proximity between a protein v and all other proteins in the

network as follows: A random walk starts at v. At each step, if the random walk is at protein u, it either

moves to an interacting partner t of u (i.e., ut 2 E) or it restarts the walk at v. The probability P(u, t) of

moving to a specific interacting partner t of u is proportional to the reliability of the interaction between u

and t, i.e., P(u, t) = w(ut)/W(u) where W(u)¼+
t0:t0u2Ew(ut0) is the weighted degree of u in the network. The

probability of restarting at a given time step is a fixed parameter denoted r. After a sufficiently long time,

the probability of being at node u at a random time step provides a measure of the proximity between v and

u, which can be computed iteratively as follows:
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x(k)
v ¼ (1� r)Px(k� 1)

v þ rev: (1)

Here x(k)
v denotes a probability vector such that x(k)

v (u) equals the probability of being at protein u at the kth

iteration of the random walk, x(0)
v ¼ ev, and ev is the restart vector such that ev(u) = 1 if u = v and 0

otherwise. For a given value of r, the topological profile of protein v is defined as bv¼ limk!1 x(k)
v .

Note that the concept of topological profile introduced here is not to be confused by the gene closeness

profile used by the CIPHER algorithm for disease gene prioritization (Wu et al., 2008). Here, topological

profile is constructed using the proximity of a protein of interest to every other protein in the network. It is

therefore a global signature of the location of the protein in the PPI network. In contrast, gene closeness

profile is based only on the proximity of a protein of interest to proteins coded by known disease genes.

Furthermore, the proposed algorithm is different from random walk–based prioritization algorithms in that

these algorithms score candidate proteins directly based on random walk proximity to seed proteins (Köhler

et al., 2008). In contrast, Vavien uses random walk proximity as a feature to assess the topological

similarity between seed and candidate proteins, which in turn is used to score candidate proteins. We now

describe this approach in detail.

Topological similarity of two proteins. Let u and v 2 V denote two proteins in the network. The

topological similarity of u and v is defined as

q(bu‚ bv)¼ corr(bu‚ bv)¼
+

t2V

�
bu(t)� 1

jVj

��
bv(t)� 1

jVj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+

t2V

�
bu(t)� 1

jVj

�2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

+
t2V

�
bv(t)� 1

jVj

�2
r ‚ (2)

where corr(X, Y) denotes the Pearson correlation coefficient of random variables X and Y. The idea behind

this approach is that, if two proteins interact with similar proteins, or lay on similar locations with respect to

hub proteins in the network, then their topological profiles will be correlated, which will be captured by

q(bu, bv).

3.3. Using topological similarity to prioritize candidate genes

The core idea behind the proposed algorithm is that candidate genes whose products are topologically

similar to the products of seed genes are likely to be associated with D. Based on this idea, we propose three

schemes to prioritize candidate genes based on their topological similarity with seed genes. All of these

schemes are implemented in Vavien.

Prioritization based on average topological similarity with seed genes (ATS). For each u 2 C, the

topological profile vector bu is computed using random walk with restarts. Similarly, topological profile

vectors bv of all genes v 2 S are computed separately. Subsequently, for each u 2 C, the association score

of u with D is computed as the weighted average of the topological similarity of u with the genes in S,

where the contribution of each seed gene is weighted by its association with D, i.e.:

aATS(u‚ D)
+

v2Sr(v‚ D)q(u‚ v)

+
v2Sr(v‚ D)

: (3)

Prioritization based on topological similarity with average profile of seed genes (TSA). Instead of

computing the topological similarity for each seed gene separately, this approach first computes an average

topological profile that is representative of the seed genes and computes the topological similarity of the

candidate gene and this average topological profile. More precisely, the association score of u 2 C with D is

computed as:

aTSA(u‚ D)¼ q(bu‚ �bS)‚ (4)

where

�bS ¼
+

v2Sr(v‚ D)bv

+
v2Sr(v‚ D)

: (5)

Prioritization based on topological similarity with representative profile of seed genes (TSR). The

random walk with restarts model can be easily extended to compute the proximity between a group of
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proteins and each protein in the network. This can be done by generalizing the random walk to one that

makes frequent restarts at any of the proteins in the group. This is indeed the idea of disease gene

prioritization using random walk with restarts (Köhler et al., 2008). This method is also useful for directly

computing a representative topological profile for S, instead of taking the average of the topological

profiles of the genes in S. More precisely, for given seed set S and association scores r for all genes in S,

the proximity of the products of genes in S to each protein in the network is computed by replacing the

restart vector in Equation 1 with vector eS where

eS(t)¼ r(t‚ D)

+
v2Sr(v‚ D)

‚ (6)

if t 2 S and eS(t)¼ 0 otherwise. Then, the topological profile bS of S is computed as bS ¼ limk!1 x(k). The

random walk–based approach to disease gene prioritization estimates the association of each candidate

gene with the disease as the proximity between the product of the candidate gene and S under this model

(i.e., it directly sets a¼ bS . In contrast, we compute the association of u 2 C with D as

aTSR(u)¼ q(bu‚ bS): (7)

Once a is computed using one of (3), (4), or (7), Vavien ranks the candidate genes in decreasing order of a.

4. RESULTS

In this section, we systematically evaluate the performance of Vavien in capturing true disease-gene

associations using a comprehensive database of known disease-gene associations. We start by describing

the datasets and experimental settings. Next, we analyze the performance of different schemes im-

plemented in Vavien and the effect of parameters. Subsequently, we compare the performance of Vavien

with four state-of-the-art network-based prioritization algorithms. Finally, we test the robustness of Vavien

against false positive and false negative PPI data by randomly deleting and resampling the network.

4.1. Datasets

We test and compare the proposed methods on a comprehensive set of disease association data, using an

integrated human PPI network in which interactions are associated with reliability scores. We describe

these datasets in detail below.

Disease association data. The OMIM database provides a publicly accessible and comprehensive da-

tabase of genotype-phenotype relationship in humans. We acquire disease-gene associations from OMIM

and map the gene products known to be associated with disease to our PPI network. The dataset contains

1931 diseases with number of gene associations ranging from 1 to 25, average being only 1.31. Each gene v

in the seed set S is associated with the similarity score r(v, D), indicating the known degree of association

between v and D as mentioned before.

Human PPI network. In our experiments, we use the human PPI data obtained from NCBI Entrez Gene

Database (Maglott et al., 2007). This database integrates interaction data from several other databases

available, such as HPRD, BioGrid, and BIND. After the removal of nodes with no interactions, the final PPI

network contains 8959 proteins and 33,528 interactions among these proteins. We assign reliability scores

to these interactions using the methodology described in Section 2.1.

4.2. Experimental setting

In order to evaluate the performance of different methods in prioritizing disease-associated genes, we use

leave-one-out cross-validation. For each gene u that is known to be associated with a disease D in our

dataset, we conduct the following experiment:

� We remove u from the set of genes known to be associated with D. We call u the target gene for that

experiment. The remaining set of genes associated with D becomes the seed set S.
� We generate an artificial linkage interval, containing the target gene u with other 99 genes located

nearest in terms of genomic distance. The genes in this artificial linkage interval (including u) compose

the candidate set C.
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� We apply each prioritization algorithm to obtain a ranking of the genes in C.
� We assess the quality of the ranking provided by each algorithm using the evaluation criteria described

below.

Evaluation criteria. We first plot ROC (precision versus recall) curves, by varying the threshold on

the rank of a gene to be considered a ‘‘predicted disease gene.’’ Precision is defined as the fraction of true

disease genes among all genes ranked above the particular threshold, whereas recall is defined as

the fraction of true disease genes identified (ranked above the threshold) among all known disease genes.

Note that, this is a conservative measure for this experimental set-up since there exists only one true

positive (the target gene) for each experiment. For this reason, we also compare these methods in terms of

the average rank of the target gene among 100 candidates, computed across all disease-gene pairs in our

experiments. Clearly, lower average rank indicates better performance. Finally, we report the percentage of

true disease genes that are ranked as one of the genes in the top 1% (practically, the top gene) and also in

the top 5% among all candidates.

4.3. Performance evaluation

Performance of methods implemented in Vavien and the effect of restart parameter. We

compare the three different algorithms (ATS, TSA, and TSR) implemented in Vavien in Figure 3. Since

the topological profile of a protein depends on the restart probability (the parameter r) in the random walk

with restarts, we also investigate the effect of this parameter on the performance of algorithms. In the

figure, the average rank of the target gene among 100 candidate genes is shown for each algorithm as a

function of restart probability. As seen in the figure, the three algorithms deliver comparable performance.

However, TSA, which makes use of the average profile of seed genes to compute the topological similarity

of the candidate gene to seed genes achieves the best performance. Furthermore, the performance of all

algorithms implemented in Vavien appears to be robust to the selection of parameter r, as long as it is in

the range [0.3–0.9]. In our experiments, we set r = 0.5 and use TSA as the representative algorithm since

this combination provides the best performance.

Performance of Vavien compared to existing algorithms. We also evaluate the performance of

Vavien in comparison to state-of-the-art algorithms for network-based disease gene prioritization. These

algorithms are the following:

� Random walk with restarts: This algorithm prioritizes candidate genes based on their proximity to seed

genes, using a random walk with restarts model (i.e., a is set to bS) (Köhler et al., 2008).
� Network propagation: This algorithm is very similar to random walk with restarts, with one key

difference. In network propagation, the stochastic matrix in (1) is replaced with a flow matrix in which

both the incoming and outgoing flow to a protein is normalized (i.e., P(u‚ t)¼w(ut)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W(u)W(t)

p
in

network propagation) (Vanunu et al., 2010).

FIG. 3. The performance of the

three prioritization algorithms im-

plemented in Vavien as a function

of the restart probability used in

computing proximity via random

walk with restarts. The performance

here is measured in terms of the

average rank of the target gene

among 100 candidate genes, a lower

value indicating better performance.
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� Information flow with statistical correction: Based on the observation that the performance of infor-

mation flow–based algorithms (including random walk with restarts and network propagation) depend

on network degree, this algorithm applies statistical correction to the random walk–based association

scores based on a reference model that takes into account the degree distribution of the PPI network

(Erten and Koyutürk, 2010).
� Genomic Data Fusion (Endeavour): Endeavour is a comprehensive and flexible software package,

which is freely available. It prioritizes candidate genes based on their similarity to known disease

genes by integrating information from multiple data sources such as gene annotations, expression data,

sequence information, and PPIs. Endeavour generates separate scores for all candidates based on

each heterogeneous data source and obtains a global ranking by applying order statistics on these

separate rankings. In this article, we focus on comparing how different approaches utilize network data

for the task in hand; thus, we run Endeavour using the PPI data sources only.

While software implementing network propagation (Prince) (Vanunu et al., 2010) and statistical cor-

rection (DaDa) (Erten et al., 2011) are available, we here report results based on our implementation of

these two algorithms. We run all algorithms using identical settings for data integration and incorporation

of disease similarity scores, differing from each other only in how network information is utilized in

computing disease association scores. The objective of this approach is to provide a setting in which the

algorithmic ideas can be directly compared, by removing the influence of implementation details and

datasets used. It should be noted, however, that the performance of these algorithms could be better than the

performance reported here if available software and/or different PPI datasets are used.

The ROC curves for the four existing methods and Vavien are shown in Figure 4, demonstrating the

relationship between precision and recall for each algorithm. Other performance measures for all methods

are listed in Table 1. As seen in both the figure and the table, Vavien clearly outperforms all of the existing

algorithms in ranking candidate disease genes. In particular, it is able to rank 40% of true disease genes as

the top candidate among 100 candidates and it ranks 62% of true disease genes in the top 5% of all

candidates.

Effect of network degree. Information flow based algorithms are previously shown to be biased with

respect to the degree of the target genes (Erten and Koyutürk, 2010). In other words, these methods work

poorly in identifying loosely connected disease genes. Previous efforts reduce this bias to a certain extent

by introducing several statistical correction schemes (Erten and Koyutürk, 2010). Motivated by these

observations, we here investigate the effect of the bias introduced by degree distribution on the perfor-

mance of different algorithms. The results of these experiments are shown in Figure 5. In this figure, the

change on the performance (average rank of the target gene) of different methods is plotted with respect to

the degree of the target gene. As clearly seen, Vavien is the algorithm that is affected least by this bias and

it outperforms other methods in identifying loosely connected disease genes. It is particularly impressive

that Vavien’s performance is less affected by degree distribution as compared to Dada, since DaDa is

designed to remove the node degree bias in networks.
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Detailed comparison of specific disease genes identified by each algorithm. As argued in the

previous sections, information flow–based proximity and topological similarity capture different aspects of

the relationship between functional association and network topology. Consequently, we expect that the

proposed topological similarity and information flow–based algorithms will be successful in identifying

different disease-associated genes. In order to investigate whether this is the case, we compare target genes

that are correctly identified as the true disease gene by each algorithm. These results are shown by a Venn

diagram in Figure 6. In this figure, each value represents the number of true disease genes that are ranked

first among 100 candidates by the corresponding algorithm(s). Among 1,996 disease-gene associations,

Vavien is able to rank the true candidate first in 808 of the cases. Ninety-three of these genes are not

ranked as the top candidate by neither random walk with restarts nor network propagation. On the other

hand, the number of true candidates that are uniquely identified by each of the other two algorithms is lower

(15 for random walk with restarts, 25 for network propagation), demonstrating that Vavien is quite distinct

in its approach, and it is more powerful in extracting information that is missed by other algorithms.

Furthermore, the 93 candidates uniquely identified by Vavien mostly code for loosely connected proteins

(with 67 of them having £ 5 known interactions). This observation supports our claim that Vavien is

indeed less effected by the bias introduced by degree distribution, as compared to information flow–based

network proximity.

Effect of missing and noisy interaction data on the performance of Vavien. As a final test, we

investigate the effect of bias in the interaction data on the performance of Vavien. Here, we conduct two

different set of experiments: one by randomly deleting the interactions in the original PPI network and

another by resampling the interactions among proteins randomly while conserving the degree distribution

of proteins. We gradually increase the amount of noise introduced in the network by both perturbation

strategies and plot the change in performance for Vavien, as well as two other information flow algorithms.

These results are shown in Figure 7. In Figure 7a,c, the performance criteria is the average rank of the true

disease gene among 100 candidates. In Figure 7b,d, we look at the percentage of correctly predicted known

disease genes among 1,996 disease-gene association pairs. The results shown are the average of the

Table 1. Comparison of Vavien with Existing Algorithms for Network-Based

Disease Gene Prioritization

Method Average rank Ranked in top 1% Ranked in top 5%

Vavien 17.52 40.48 62.46

Random walk 18.58 38.42 59.01

Network propagation 18.28 37.97 57.96

Random walk with statistical correction 17.86 39.41 59.76

Endeavour (PPI only) 24.05 17.18 52.02

Vavien outperforms state-of-the-art information flow–based algorithms with respect to all performance criteria.

FIG. 5. Relation between the de-

gree of target disease gene and its

corresponding rank among 100

candidates for Vavien and existing

algorithms.
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FIG. 6. Venn diagram comparing

the true disease genes ranked by each

method as the most likely candidate.

The sets labeled RWR, NP, and

Vavien represent the set of true

disease genes that are ranked top by

random walk with restarts, network

propagation, and topological simi-

larity, respectively. Each number in

an area shows the number of true

candidates in that se e.g., 20 true

disease genes were ranked top by

network propagation and Vavien,

but not random walk with restarts).
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FIG. 7. The effect of noise and missing interaction data on the performance of different approaches. In (a,c), the

performance criteria is the average rank of the target disease gene among 100 candidates, whereas in (b,d), we

investigate the number of top ranked true disease-gene associations among 1996 such pairs. The decrease in the

performance for all three methods, are at tolerable levels for up to 50% of noise introduced.
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performance measures obtained by repeating these experiments five times at each noise level for each

approaches.

It is evident in the Figure 7 that all three methods are quite robust to false positives and false negatives in

interaction data, without a sharp decline in performance for up to 50% of artificial bias introduced. The

percentage of correct guesses decreases in all three methods for both of the tests. However, contrary to our

expectation, the average rank of target gene does not show significant change for random walk with restarts

and network propagation algorithms, as missing interactions are introduced (Fig. 7a). The underlying

reason for this behavior might actually be their tendency to favor highly connected genes. Recall that these

algorithms rank genes with high-degree very well, while they show relatively poor performance for low-

degree genes. Since removal of interactions disconnect the network, low-degree proteins, which are already

loosely connected, are affected more by missing interactions. Furthermore, the number of proteins with

degree 0 (singletons) goes up as more interactions are removed (since most of the proteins are loosely

connected in the original network). Consequently, if the target gene has a higher degree than most of the

other candidate genes in the original network, many false candidates have a proximity score of 0 after

removal of interactions. On the other hand, if the target gene is loosely connected, the performance of these

algorithms is not affected since they also perform less favorably on such genes. Consequently, the average

rank of the target gene does not increase as one would expect. However, this is not the case for rewiring

experiments. In those experiments, degree distribution is preserved, and disconnected subgraphs are much

less likely to be introduced in the network.

5. CONCLUSION

In this article, we present an algorithm, called Vavien, for harnessing the topological similarity of

proteins in a network of interactions to prioritize candidate disease-associated genes. After investigating the

performance of the three schemes implemented in Vavien with respect to the restart parameter, we conduct

a comprehensive set of experiments on OMIM data and show that Vavien outperforms existing infor-

mation flow–based models, as well as their statistically adjusted version, in terms of ranking the true

disease gene highest among other candidate genes. These results demonstrate that, in addition to the

connectivity patterns in PPI networks, topological patterns in these networks are also useful in generat-

ing novel insights into systems biology of complex diseases. Vavien is available online at www.
diseasegenes.org
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