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ABSTRACT

Motivation: Co-evolution is a powerful mechanism for understanding

protein function. Prior work in this area has shown that co-evolving

proteins are more likely to share the same function than those that

do not because of functional constraints. Many of the efforts founded

on this observation, however, are at the level of entire sequences,

implicitly assuming that the complete protein sequence follows a single

evolutionary trajectory. Since it is well known that a domain can exist in

various contexts, this assumption is not valid for numerous multi-

domain proteins. Motivated by these observations, we introduce a

novel technique called Coevolutionary-Matrix that captures co-

evolution between regions of two proteins. Instead of using existing

domain information, the method exploits residue-level conservation

to identify co-evolving regions that might correspond to domains.

Results: We show that the Coevolutionary-Matrix method can detect

greaternumberof known functionalassociations for theEscherichia coli

proteins when compared with earlier implementations of phylogenetic

profiles. Furthermore, co-evolving regions of proteins detected by our

method enable us to make hypotheses about their specific functions,

many of which are supported by existing biochemical studies.

Contact: shankar@sdsc.edu

1 INTRODUCTION

Identifying interacting pairs of proteins encoded in a genome is an

important step towards understanding how a cell works. Towards

this eventual goal, several computational and experimental tech-

niques have been developed in recent years. For instance, recent

developments in high-throughput experiments yielded protein inter-

action data on a very large scale (Uetz et al., 2000; Ito et al., 2001;
Gavin et al., 2002; Ho et al., 2002; Giot et al., 2003). High-

throughput methods, however, are prone to errors in terms of

both false negatives and positives (von Mering et al., 2002).

Hence, computational methods must be developed in parallel

to complement experimental techniques. Indeed, integrating

in silico analysis with experimental information provides more

comprehensive and reliable understanding of functional association

between proteins (Lee et al., 2004).
Computational methods that predict protein interactions have

gained impetus from recently available databases of complete

genome sequences. Using genome data, researchers have inferred

functions of numerous proteins by comparing genomes across

species (Dandekar et al., 1998; Pellegrini et al., 1999; Overbeek
et al., 1999; Enright et al., 1999). One way of exploiting evolu-

tionary pressure to understand function is quantifying the conser-

vation of gene neighborhoods across genomes, which has been

shown to correlate with their function (Dandekar et al., 1998;

Overbeek et al., 1999). Another approach is comparing protein

phylogenetic profiles, where each profile is a vector indicating

presence or absence of a protein across genomes (Pellegrini

et al., 1999). The similarity of two phylogenetic profiles, which

captures the degree of co-evolution between the two corresponding

proteins, has been shown to correlate with their functions (Pellegrini

et al., 1999). Subsequent work has shown that many of the known

pathways can be reconstructed using such methods (von Mering

et al., 2003; Date and Marcotte 2003).

In earlier work, we presented a simple extension to a method

based on protein phylogenetic profiles (Kim and Subramaniam,

2005). By taking into account the multi-domain nature of proteins,

our method detected several known interactions missed by earlier

methods. This extension, referred to as the Multiple-Profile method,

simply partitioned a protein sequence into overlapping segments

(e.g. 30 residues) of fixed length (e.g. 120 residues) and constructed

separate phylogenetic profiles for each of these segments. Because

large and fixed-length segments are used, boundaries of domains

with different evolutionary histories cannot be cleanly resolved.

Consequently it is difficult to assess whether these co-evolving

segments correspond to true domains. In addition, there exists a

possibility of introducing false phylogenetic profiles as artifacts of

segmentation. This may occur when one of the segments covers two

domains having different evolutionary histories.

This paper improves on existing techniques by using a novel

method for identifying co-evolving regions precisely, thus reducing

the number of false phylogenetic profiles. With this new tool, we

show a number of examples from the Escherichia coli proteome�To whom correspondence should be addressed.
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where the identified co-evolving regions correspond to biochemic-

ally characterized and functionally associated domains.

2 COMPUTATIONAL METHODS AND
ALGORITHMS

Our method, Coevolutionary-Matrix, is designed to assign phylogenetic

similarity scores to each pair of proteins under consideration (e.g. all

E.coli proteins) to predict functional associations between these proteins.

Similar to other phylogenetic-profile-based interaction prediction methods,

our method uses the amino acid sequences of proteins and a set of completely

sequenced genomes belonging to different species. The method consists of

three major steps:

(1) constructing detailed phylogenetic profiles for all proteins,

(2) using these profiles, constructing coevolutionary matrices for all

protein pairs and

(3) assigning phylogenetic similarity scores to all protein pairs based on

these matrices.

The following sections describe each of these steps in detail.

2.1 Constructing phylogenetic profiles

2.1.1 Protein phylogenetic profiles A phylogenetic profile of a pro-

tein is a vector, where each entry quantifies the existence of the protein in a

genome. An example for phylogenetic profiles is shown in Figure 1. In this

example, closed and open circles are used to indicate the presence or absence

of a protein in a genome, respectively. Each row in the figure is the binary

phylogenetic profile of the respective protein. Observe that the proteins

P1 and P3 in the figure are likely to share a particular function as their

phylogenetic profiles suggest that they have followed a similar evolutionary

trajectory.

Conventional methods (Pellegrini et al., 1999; Date and Marcotte, 2003),

hereon referred to as Single-Profile methods, rely on a single phylogenetic

profile associated with each protein. Given a set of proteins P¼ {P1, P2, . . . ,

Pn} and genomes G ¼ {G1, G2, . . . , Gm}, the phylogenetic profile ci for

protein Pi is a vector defined as

ci jð Þ ¼
� 1

log Eij

� � ‚ 1 � j � m‚ ð1Þ

where Eij is the minimum (i.e. most significant) BLAST (Altschul et al.,

1997) E-value of local alignments between Pi andGj. Each profile element is

thus a real value that quantifies our confidence of knowing whether a protein

exists in a genome. To avoid the logarithm-induced artifacts, the maximum

value that a phylogenetic profile element can take is set to 1, indicating the

absence of the protein in the corresponding genome. This corresponds to an

E-value cutoff of 0.5 if log2 is used. This threshold was used to faithfully

replicate the method of Date and Marcotte (2003) so that our method can be

compared with a well-known implementation of the Single-Profile method.

As was noted in the same study, using real values instead of booleans for

profile elements offers the advantage of capturing degrees of sequence

divergence, providing greater information than booleans.

For assessing the similarity between two phylogenetic profiles, mutual

information provides a useful measure that takes into account co-existence

and co-absence of proteins together. Indeed, it has been shown to be reliable

and used successfully for predicting protein interactions (Date and Marcotte,

2003). The mutual information I(X, Y) of a pair of random variables X and Y

is defined as follows:

I X‚Yð Þ ¼ H Xð Þ þ H Yð Þ � H X‚Yð Þ‚ ð2Þ

where H(X) is the Shannon entropy of X, which is defined as

H Xð Þ ¼
X
x2X

pxlog pxð Þ: ð3Þ

Here, X is the set of possible values taken by X and px ¼ Pr{X ¼ x}.
Similarly, H(X, Y) is the joint entropy of X and Y.

A probability distribution for a phylogenetic profile ci is computed by

quantizing profile elements into a certain number of bins and estimating the

relative frequency of each bin. Then, the phylogenetic similarity between ci

and cj is computed as

mS Pi‚Pj

� �
¼ I ci‚cj

� �
ð4Þ

by the Single-Profile method. In the example of Figure 1, the mutual

information between the profiles of P1 and P3 is 1, while it is 0 between

P1 and P2. Intuitively, as P2 exists in all genomes, its co-existence with P1 in

some genomes does not provide any information on the functional associ-

ation of these proteins.

2.1.2 Segment phylogenetic profiles While providing a useful com-

putational method for predicting interactions between proteins, Single-

Profile methods may miss many existing interactions. This is because

domains within a single protein may have followed very different evolu-

tionary trajectories. Since there are numerous multi-domain proteins in

both prokaryotes and eukaryotes, such occurrence may be quite frequent.

This point is illustrated by a simple example in Figure 2a. To capture

Fig. 1. An example illustrating binary phylogenetic profiles. Closed and open

circles indicate presence and absence, respectively, of a protein in a genome.

Fig. 2. (a) An example illustrating that the Single-Profile method does

not capture domain-level evolutionary histories. Protein P2 contains two

domains, shown by thick lines on its sequence. While domain D1
2 on

protein P2 follows an evolutionary trajectory similar to that of proteins

P1 and P3 of Figure 1, the phylogenetic profile of P2 does not reveal this

information as it combines the independent evolutionary histories of

D2
1 and D2

2. (b) Dividing P2 into fixed-size segments, we can capture

the phylogenetic similarity between proteins P1 and P2 since

mM P1‚P2ð Þ ¼ maxsI c1‚c
s
2

� �
¼ I c1‚c

1
2

� �
¼ 1.
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domain-level co-evolution, the Multiple-Profile method (Kim and

Subramaniam, 2005) chops each protein Pi into overlapping segments

S1i ‚S
2
i ‚ . . . ‚S

k
i of fixed size and computes the phylogenetic similarity

between two proteins as

mM Pi‚Pj

� �
¼ max

s‚ t
I cs

i ‚c
t
j

� �
‚ ð5Þ

where cs
idenotes the phylogenetic profile for segment Ssi of a protein Pi. The

Multiple-Profile method, illustrated in Figure 2b, is shown to perform better

than the Single-Profile method in identifying functional associations

between proteins accurately.

2.1.3 Residue phylogenetic profiles While the Multiple-Profile

method can detect known interactions missed by the Single-Profile methods

by emphasizing on domain-level co-evolution, it still has flaws in capturing

the underlying domain information. A scenario where the Multiple-Profile

method fails to accurately identify co-evolving domains is shown in Figure 3.

The figure illustrates that the Multiple-Profile method may miss potentially

informative domains because segments have fixed lengths and their place-

ments are pre-determined.

In this study, to capture the underlying domain information accurately, we

further extend the phylogenetic profile-based methods by computing residue

phylogenetic profiles for each protein. Our approach relies on the fact that a

significant local alignment between two proteins corresponds to the unusual

similarity between two contiguous portions of the two proteins rather than

entire sequences. Therefore, while aligning a protein with a genome, instead

of regarding a significant local alignment as the indicator of existence of the

entire protein, we attribute this existence to the residues that are covered in

the alignment. This allows fine-grain analysis of sequence conservation at

the domain level.

LetA(Pi,Gj) be the set of significant local alignments between a protein Pi

and a genome Gj. Each alignment A 2 A(Pi, Gj) is associated with a con-

tiguous interval T(A)¼ [rb, re] of residues on Pi and a BLAST E-value E(A).
Then, for each amino acid residue r on Pi, we define phylogenetic profile c

r
i

as follows:

cr
i jð Þ ¼ min

A2Ar

� 1

log E Að Þð Þ ‚ 1 � j � m: ð6Þ

Here, Ar ¼ {A 2 A(Pi, Gj): r 2 T(A)} is the set of local alignments that

contain r. In Equation (6), the most significant of E-values for a residue was

chosen because we want to knowwhether the region of a protein covering the

residue is present in a genome. Choosing less significant E-values would

mean dampening the signals needed to detect the presence of this region of a

protein.

Note that the phylogenetic profile of a single residue does not correspond

to its conservation since the alignment can contain mismatches and gaps.

However, analyzing residue-level phylogenetic profiles defined in this way

provides information on the conservation of a particular portion of the

protein. Specifically, if the phylogenetic profiles of a contiguous group of

residues are similar, this group might indeed correspond to a conserved

domain on the protein. In terms of the co-evolution of two proteins, this

corresponds to the co-evolution of such contiguous regions on each protein.

In the following sections, we discuss how residue profiles can be used to

identify these co-evolved regions.

2.2 Computing coevolutionary matrices

To capture the co-evolution of proteins at the domain level, we construct a

co-evolutionary matrix for each pair of proteins. For a pair of proteins Pi and

Pj let li and lj denote their respective lengths. The co-evolutionary matrixMij

of Pi and Pj is an li · lj rectangular matrix, where each entry corresponds to

the mutual information score between a pair of residues each from one

protein, i.e.

Mij r‚sð Þ ¼ I c r
i ‚c

s
j

� �
‚ ð7Þ

for 1 � r � li and 1 � s � lj. Each entry of the matrix quantifies the residue-

level co-evolution between the two proteins. If the proteins contain a co-

evolved domain, this appears as a contiguous block of high mutual informa-

tion scores. Sample co-evolutionary matrices for the E.coli proteins that are

shown in Figures 8 and 9 illustrate this point.

Note that the computation of full co-evolutionary matrices might be

infeasible in practice. Given a set of n proteins and m genomes, it is neces-

sary to compute O(n2) matrices. If the longest protein consists of l residues,

the overall time complexity isO(ml2 n2). Since conserved regions are usually

fairly long, considering all pairs of residues on them is redundant. Therefore,

by downsampling the co-evolutionary matrix, we can avoid the complexity

penalty without significantly impacting the sensitivity of the algorithm.

Using a downsampling factor of f, the size of the largest co-evolutionary

matrix is reduced to l2/f2. In general, f can set to be large enough so that l/f
is bounded by a constant. Note that the complexity of an algorithm that does

not consider individual residues is O(mn2). In this manner, the simplification

reduces the overhead of residue-profile-based algorithm to a constant

factor, l2/f2.

2.3 Deriving phylogenetic similarity scores

A co-evolutionary matrix contains information about which regions from

two proteins have co-evolved. It is important to note that there might be

spurious (large) entries in the matrix due to artifacts created while compiling

BLAST outputs. To identify co-evolved regions accurately, we use a filtering

scheme. Our algorithm is based on the intuition that co-evolved regions of

the two proteins must be sufficiently large to be considered as significant

ones. In terms of the co-evolutionary matrix, there must be a sufficiently

large submatrix such that all entries in that submatrix are consistently high.

Clearly, the submatrix with the maximum consistently high mutual informa-

tion score provides the degree of co-evolution between the two proteins.

Hence, we formulate the phylogenetic similarity between proteins Pi and Pj

as follows:

mC Pi‚Pj

� �
¼ max

1 � r � li
1 � s � lj

min
r � a < r þW
s � b < sþW

Mij a‚bð Þ: ð8Þ

Here,W is the window parameter that quantifies the sufficiency of the size of

a region on a protein to be considered as a conserved domain. The overall

algorithm for computing the co-evolutionary-matrix-based phylogenetic

similarity between each pair of proteins is shown in Figure 4.

3 RESULTS

We implemented the proposed method and tested on 4311 E.coli
proteins. We used 152 genomes to construct phylogenetic profiles.

Fig. 3. A scenario where the Multiple-Profile method fails to identify

domain-level co-evolution. Since the two separate domains D1
2 and D2

2 are

covered together by segment S22, their individual phylogenetic profiles do not

appear in the segment phylogenetic profiles. As no a priori information is

available on the size and location of the domains, it is not possible to avoid

such situations using fixed-size segments.

Y.Kim et al.
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Although some genomes are redundant in the sense that they share a

large fraction of their proteins, our collection of genomes is diverse

enough to cover the three branches of life (131 Bacteria, 17 Archaea

and 4 Eukaryota). The complete list of genomes is at http://genome.

ucsd.edu/CoevolutionaryMatrix/list-152.txt. Using a default setting,

we ran BLAST (i.e. blastp program) for each one of 4311 E.coli
proteins against each one of 152 genomes. For the Single-Profile,

only the most significant E-value was kept for each protein. For the

co-evolutionary matrix, the same BLAST run was carried out except

that all matched region information and corresponding E-values
meeting the threshold were kept.

To reduce the time and memory requirements associated with the

filtering algorithm, we downsampled the co-evolutionary matrix by

a factor of f¼ 30. For two proteins with li and lj amino acid residues,

the dimensions of their co-evolutionary matrix is (li/30) · (lj/30).
In addition, the parameter W ¼ 2 was chosen. The use of the

downsampling factor f of 30 and W of 2 translate to dividing pro-

teins into overlapping segments that are 60 residues long. Since an

average domain size is around 100 residues, current values for the f
and W are reasonable.

Using this implementation of the Coevolutionary-Matrix method

and an implementation of the Single-Profile method proposed by

Date and Marcotte (2003), we compared their performances. Since

homologous proteins should have similar phylogenetic profiles and

thus have high mutual information scores, we excluded them from

our analysis. To compare mutual information scores under the two

methods, we converted them into p-values. Here, the p-value of a

protein pair is defined as the fraction of non-homologous protein

pairs in E.coli that have higher mutual information score than the

one in question. In other words,

p m Pi‚Pj

� �� �
¼

jf Pa‚Pbð Þ 2 N : m Pa‚Pbð Þ > m Pi‚Pj

� �
gj

jNj ‚ ð9Þ

where N is the set of all non-homologous protein pairs. Here,

m denotes the phylogenetic similarity score assigned by the

Single-Profile (mS) or Coevolutionary-Matrix (mC) method.

We used a set of reference protein interactions that we derived

from the KEGG database (Kanehisa et al., 2004) to test and compare

the Single-Profile and Coevolutionary-Matrix methods. We use the

term ‘interactions between proteins’ to imply a broad range of

interactions, from physical binding to functional association. In

this respect, proteins participating in different steps of a biochemical

pathway are considered interacting. Consequently, we define a ref-

erence interaction as a pair of proteins that share a KEGG pathway

assignment. To generate this set of reference interactions, for each

E.coli pathway retrieved from KEGG, we formed a ‘clique’ of

proteins that participate in the corresponding pathway. The final

reference set consists of 1282 proteins and 43 331 interacting pro-

tein pairs derived from these proteins after excluding homologous

pairs (BLAST E-value <1.0).

3.1 Comparison of Coevolutionary-Matrix and

Single-Profile methods

Both the Coevolutionary-Matrix and Single-Profile methods are

used to predict interactions between E.coli proteins by setting a

threshold on the phylogenetic similarity score. In other words,

proteins Pi and Pj are predicted as interacting partners if

m(Pi, Pj) > m�. For each value of m�, coverage is defined as the

sum of true positives (TP) and false positives (FP). Both are

numbers of protein pairs that meet the threshold. Furthermore,

proteins in each pair are represented in the KEGG dataset. The

difference is that TP protein pairs are interacting in the KEGG

dataset but not FP pairs. In addition, positive predictive value

(PPV) is defined as TP/(TP + FP).

PPV versus coverage plots for the Coevolutionary-Matrix and

Single-Profile methods are shown in Figure 5. A similar plot for

the Multiple-Profile method is also shown for comparison. It is

evident from the figure that the Coevolutionary-matrix method

has about 1.5-fold greater coverage at PPV of 0.7 than that of

the Single-Profile method. ROC curves for the methods, which

plot sensitivity against (1 � specificity), also indicate that the

Coevolutionary-Matrix performs better than the Single-Profile,

although the difference is rather small (figure not shown).

Sensitivity is defined as TP/(TP + FN), and Specificity is TN/

(FP + TN), where TN and FN are true negatives and false negatives,

respectively. Both TN and FN are numbers of protein pairs that do

not meet the threshold. In addition, proteins in each pair are rep-

resented in the KEGG dataset. Their difference is that TN protein

pairs are not interacting in the KEGG dataset while FN pairs are.

To have a closer look at the performances of the two methods, we

show PPV, specificity and sensitivity for the three different sets of

predicted pairs by each method in Table 1. At same number of

predicted pairs, the Coevolutionary-Matrix method is again

Fig. 4. Algorithm for computing Coevolutionary-Matrix.
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shown to perform better than the Single-Profile both in terms of PPV

and sensitivity. In Table 2, we also show PPV for both overlapping

and non-overlapping areas between the sets of predicted pairs in

Table 1. In section A in Table 2, percent overlap between the two

sets is 55% and the PPV for this overlap is 0.75, which is higher than

any one of the methods alone. Furthermore, PPV of the

Coevolutionary-Matrix method alone is higher than that of the

Single-Profile method alone (0.57 versus 0.33). Similar observa-

tions are made for the sections B and C in Table 2. These results

indicate that the Coevolutionary-Matrix method predicts a signific-

antly different set of interactions from those of the Single-Profile

with greater number of TP.

To determine which KEGG pathways are most represented in top-

scoring protein pairs using each method, we took top 2000 pairs out

of all non-homologous pairs for the E.coli proteome and counted the

number of those that belong to each pathway (data not shown).

Phylogenetic similarity score thresholds used to generate these

sets are 0.835 (p < 2.2 · 10�4) for the Single-Profile and 0.741

(p < 2.2 · 10�4) for the Coevolutionary-Matrix. These thresholds

are considered to be strict and hence should yield high-confidence

predictions.

Top-scoring protein pairs predicted by both methods are from a

wide range of pathways, whose rankings based on the number of

protein pairs falling into each are similar (36 pathways for the

Coevolutionary-Matrix and 29 for the Single-Profile method out

of a total of 131 KEGG pathways). Some of the highly populated

pathways shared by both methods include flagellar assembly, phos-

photransferase system, ABC transporters, oxidative phosphoryla-

tion, ubiquinone biosynthesis and histidine metabolism. In the set of

2000 pairs for the Single-Profile method, there are 339 pairs that

share at least a KEGG pathway. For the Coevolutionary-Matrix

method, there are 391 pairs with 281 of them overlapping with

those of the Single-Profile method. Despite this relatively high

number of shared pairs, the overall percent overlap between the

two sets of 2000 pairs is 61.5%.

In Figure 6, we show mutual information score distributions of

sets of interacting and random protein pairs calculated with each

method. At zero mutual information score, the Single-Profile

method shows a peak for the distribution of interacting protein

pairs while the Coevolutionary-Matrix method does not have this

peak. Based on this observation, it appears that a significant portion

of the interacting protein pairs with very low mutual information

scores under the Single-Profile gained higher (and potentially

meaningful) scores under the Coevolutionary-Matrix. To investig-

ate this further, Figure 7 shows how p-values of mutual information

scores of the interacting protein pairs are correlated between the two

methods. Although there is a rough correlation, there are many

outliers. Some of these have p-value differences as high as four

orders of magnitude. The presence of these outliers indicate that the

two methods can make very different predictions for some proteins.

3.2 Examples of domain co-evolution

In this section, we show three examples of domain-level co-

evolution from the E.coli cellular systems. We then hypothesize

how co-evolved domains detected by the coevolutionary-matrix

method fit with existing biochemical data. Finally, top interacting

partners predicted by the two methods for these proteins are

compared.

3.2.1 Phosphotransferase system The phosphotransferase sys-

tem (PTS) is the major pathway through which translocation of

sugars across the bacterial inner membrane is coupled with phos-

phorylation (Tchieu et al., 2001). The cytoplasmic protein IIAB

transfers a phosphoryl group from the cytoplasmic proteins I and

HPr to substrates through interactions with the membrane proteins

IIC and IID in the case of mannose-specific PTS (Tchieu et al.,
2001). The co-evolving region detected for the proteins IIAB and

IIC is shown in Figure 8.

Figure 8 clearly captures two different regions of IIAB. In fact,

these regions correspond to the domains IIA (residues 1–170) and

IIB (residues 170–320). Figure 8 also captures the notion that the

domain IIB co-evolved with IIC instead of the domain IIA. This can

be explained in light of how the task assigned to IIAB as a whole is

divided between IIA and IIB. Within the PTS, domain IIA has the

role of receiving the phosphoryl group from proteins I and HPr and

passing it to domain IIB. Domain IIB then passes the phosphoryl

group to membrane proteins (in this case, IIC and IID) and then to

sugars. Physical interaction between the domain IIB and protein IIC

Table 1. Number of predicted interactions at various mutual information

score thresholds

MIS No. of PP Covg. TP PPV Specificity Sensitivity

Single-Profile

0.68702 15340 1239 789 0.637 0.99942 0.01821

0.72673 8549 855 620 0.725 0.99970 0.01431

0.76461 4971 617 499 0.809 0.99985 0.01152

Coevolutionary-Matrix

0.60500 15339 1620 1091 0.673 0.99932 0.02518

0.64350 8548 1043 792 0.759 0.99968 0.01828

0.68200 4970 720 610 0.847 0.99986 0.01408

MIS, mutual information score threshold; no. of PP, number of predicted protein pairs;

Covg., coverage; TP, true positives; PPV, positive predictive value.
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Fig. 5. PPV versus coverage plots for the Single-Profile, Multiple-Profile,

and Coevolutionary-Matrix methods using the KEGG interaction dataset. As

mutual information score threshold is varied, coverage andPPVat that thresh-

old are plotted. Each dot represents such pair.
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likely drives their co-evolution. This is shown for the mannitol-

specific protein domains IIB and IIC, where domains IIA, IIB and

IIC are fused to form a single protein (Robillard and Boos, 1999).

Similar observation has been made by another group of researchers

based on a different study (R.D.Barabote and M.H.Saier,Jr unpub-

lished data).

In Table 3, top 20 predicted interacting partners of the protein

IIAB under the Single-Profile and Coevolutionary-Matrix methods

are shown. Although both methods pick out the proteins IIC (ManY)

and IID (ManZ) as their top-scoring proteins, those under the

Coevolutionary-Matrix show greater number of proteins that are

involved in PTS. Four PTS proteins (ManY, ManZ, AgaC and

AgaD) are found using the Single-Profile method and eight PTS

proteins (ManY, ManZ, AgaD, AgaC, AgaW, CelC, CelB and

CelA) are found with the Coevolutionary-Matrix method.

3.2.2 Chemotaxis Chemotaxis signaling pathway allows a bac-

terium to sense the state of its external environment and determine

its swimming behavior accordingly. CheA is a multi-domain protein

whose domains carry out different functions in this system (Falke

et al., 1997). A plot of the co-evolutionary matrix for CheA and

CheB, another chemotaxis component, is shown in Figure 9.

Figure 9 suggests that the N-terminus and C-terminus regions of

CheA (residues 1–200 and 540–670, respectively) co-evolved with

Table 2. Number of true interactions in the overlapping and non-overlapping sets of predicted interactions between the Single-Profile (SP) and Coevolutionary-

Matrix (CM) methods.

A B C

No. of PP Covg. TP PPV No. of PP Covg. TP PPV No. of PP Covg. TP PPV

SP L (�CM) 6932 340 111 0.33 3731 233 94 0.40 2073 160 83 0.52

CM L (�SP) 6931 721 413 0.57 3730 421 266 0.63 2072 263 194 0.74

SP L CM 8408 899 678 0.75 4818 622 526 0.85 2898 457 416 0.91

SymbolsL and� indicate ‘logical AND’ and ‘logical negation,’ respectively; no. of PP, number of predicted protein pairs; Covg, coverage; TP, true positives; PPV, positive predictive

value.
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Fig. 6. Mutual information score distributions under the Single-Profile and

Coevolutionary-Matrix methods. From the KEGG interaction set, 10 000

interacting proteins are randomly selected. Then another 10 000 protein pairs,

without requiring them to be interacting, are randomly selected from the

proteins present in the KEGG interaction set.
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the C-terminus region of CheB (residues 170–340). Although there

is a biochemical evidence that CheB binds to the N-terminus region

(Li et al., 1995), none exists for the binding of CheB to the

C-terminus region. However, it is known that CheW, a chemotaxis

component, binds to the C-terminus region (Gegner and Dahlquist,

1991). The sequence region from residues 200 to 350 of CheA,

which shows weaker co-evolution, corresponds to the dimerization

domain (Bilwes et al., 1999). Another region of CheA (residues

355–540) that does not seem to co-evolve with CheB corresponds to

the kinase domain. The co-evolving regions of CheA identified from

the matrix are essentially the same for Mcp’s, CheW, CheR and

CheB proteins.

In Table 4, top 20 predicted interacting partners of CheA using

each method are shown. Under the Single-Profile method, only

Mcp3 is known to participate in chemotaxis. In contrast, Mcp3,

Mcp2, CheW, Mcp4, CheR and CheB are known to participate

in chemotaxis under the Coevolutionary-Matrix method (Falke

et al., 1997). In the same list, Aer is involved in aerotaxis; and

FlgC, MotB, MotA, FlgF and FlgL are likely picked because the

chemotaxis signaling pathway is coupled to the flagellar motor

Table 3. Top 20 interacting partners predicted by the Single-Profile and Coevolutionary-Matrix methods for the E.coli mannose-specific IIAB. Predicted

interacting proteins are ranked based on their mutual information scores (MI) and shown here with their NCBI GenBank Identifiers (GI) and names. GI number

of mannose-specific IIAB is 16129771. Each entry represents a single protein and more than one name is provided if available. Known PTS components are

highlighted.

Rank Single-Profile Coevolutionary-Matrix

MI pValue GI Name MI pValue GI Name

1 0.728 0.0009 16129772 ManY;PtsP 0.984 7e�06 16129772 ManY;PtsP

2 0.690 0.0016 33347589 ManZ;PtsM 0.928 2e�05 33347589 ManZ;PtsM

3 0.652 0.0028 33347619 GatR 0.909 3e�05 16131032 AgaD

4 0.642 0.0033 16131031 AgaC 0.891 3e�05 16131031 AgaC

5 0.623 0.0045 16131032 AgaD 0.703 0.0003 16131026 AgaW

6 0.608 0.0058 16131023 AgaR 0.591 0.0022 16129064 AscF

7 0.598 0.0069 16131615 Kup;TrkD 0.591 0.0022 16129690 CelC

8 0.594 0.0072 16129529 DicA 0.591 0.0022 16129691 CelB

9 0.588 0.0080 16129863 SdiA 0.591 0.0022 16132125 SgcC

10 0.582 0.0089 16129245 YciT 0.572 0.0022 16129090 PepT

11 0.581 0.0091 16129943 YeeS 0.553 0.0030 16132233 NirC

12 0.574 0.0101 16130367 IntZ 0.534 0.0056 16129692 CelA

13 0.569 0.0109 16131277 HslR 0.534 0.0056 16129951 DacD

14 0.565 0.0115 16131724 YihW 0.534 0.0056 16131590 BglF

15 0.565 0.0116 16130614 SrlR;GutR 0.516 0.0056 16130343 NagE;PstN

16 0.561 0.0124 16130605 OraA;RecX 0.516 0.0056 16131113 NanE

17 0.560 0.0126 16130559 YfjY 0.516 0.0056 16131297 GlpR

18 0.558 0.0130 16128921 FabA 0.516 0.0056 33347806 FrvB

19 0.555 0.0136 16129052 RpmF 0.516 0.0056 33347834 SgaT

20 0.555 0.0137 16131388 GadX 0.497 0.0103 16128871 FocA

Fig. 9. Co-evolutionary matrix for the E.coli proteins CheA and CheB. Darker color indicates higher mutual information score. The matrix shown here is the

downsampled version of the original matrix. Each bin is 10 residues wide.
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system. As a note, Mcp2, Mcp3, Mcp4 and Aer are homologous

(BLAST E-value < 1.0).

3.2.3 Kdp system In E.coli, KdpD and KdpE regulate expression

of the kdpFABC operon, which encodes a high affinity K+ transport

ATPase (Walderhaug et al., 1992). KdpD is a multi-domain

protein which consists of an N-terminal cytoplasmic domain

(residues 1–395), four transmembrane domains and a cytoplasmic

C-terminal transmitter domain (Heermann et al., 2003). The

Coevolutionary-Matrix method clearly delineates three correspond-

ing domains in Figure 10.

Figure 10 suggests that the N-terminal domain of KdpD

co-evolved with KdpC. Supporting this hypothesis, a recent

study has shown that this N-terminal domain alone triggers

semi-constitutive expression of the kdpFABC operon through inter-

actions with KdpE (Heermann et al., 2003). Interaction between

KdpD and KdpC is therefore of functional dependence rather than

physical. Top 10 interacting partners predicted by the Single-Profile

include only KdpE from this system while those of the

Coevolutionary-Matrix include KdpE, KdpA and KdpC. Mutual

information scores of KdpC and KdpA with respect to KdpD

using the Single-Profile method are 0.1829 and 0.2496, respect-

ively. These very low mutual information scores suggest that

the Single-Profile method cannot detect co-evolution between

KdpC/KdpA and KdpD.

4 DISCUSSION

The results shown in this paper strongly suggest that co-evolution of

proteins should be captured at the domain level. As indicated by the

co-evolutionary matrices shown in Figures 8, 9 and 10, sequence

regions with conflicting evolutionary histories can co-exist within a

single protein. By representing protein co-evolution at the domain

level, the Coevolutionary-Matrix method can assign very different

phylogenetic similarity scores to proteins when compared with the

Single-Profile method (Fig. 7). In turn, these differences have sub-

stantial effect on the performances of the two methods (Tables 3,

4 and 5).

Table 4. Top 20 interacting partners predicted by the Single-Profile and Coevolutionary-Matrix methods for the E.coli CheA

Rank Single-Profile Coevolutionary-Matrix

MI p-value GI Name MI p-value GI Name

1 0.897 0.000097 16129380 Mcp3 0.984 6.9e�06 16129380 Mcp3

2 0.871 0.000136 16129902 YedQ 0.984 6.9e�06 16130967 Aer

3 0.844 0.000192 16129302 YdaM 0.966 1.21e�05 16129838 Mcp2

4 0.830 0.000228 16129338 Dos 0.966 1.21e�05 16129839 CheW

5 0.778 0.000451 16128300 YahA 0.947 1.21e�05 16129837 Mcp4

6 0.777 0.000456 16131386 YhiV 0.741 0.000193 16129836 CheR

7 0.770 0.000497 16128802 YliF 0.703 0.000325 16129835 CheB

8 0.769 0.000504 16130007 YegE 0.684 0.000536 33347519 YcfQ

9 0.765 0.000528 33347585 YeaP 0.684 0.000536 16129449 YddV

10 0.757 0.000591 16130498 RpoE 0.666 0.000536 16129037 FlgC

11 0.757 0.000594 16129449 YddV 0.666 0.000536 16129302 YdaM

12 0.756 0.000599 33347519 YcfQ 0.666 0.000536 16130498 RpoE

13 0.744 0.000716 16131140 YhdA 0.647 0.000696 16129448 Dos

14 0.742 0.000737 16129092 PhoQ 0.628 0.001225 16129841 MotB

15 0.740 0.000766 16130525 YfiN 0.628 0.001225 16129842 MotA

16 0.733 0.000841 16129185 NarX;NarR 0.609 0.001225 16128300 YahA

17 0.710 0.001163 16131154 AcrF 0.609 0.001225 16128731 ModA

18 0.709 0.001177 16128370 YaiC 0.609 0.001225 16129040 FlgF

19 0.709 0.001181 16131869 LexA;ExrA 0.609 0.001225 16129046 FlgL

20 0.702 0.001312 16129131 YcgG 0.609 0.001225 16129566 RstA;UrpT

Predicted interacting proteins are ranked based on their mutual information scores (MI) and shown here with their NCBI GenBank Identifiers (GI) and names. GI number of CheA is

16129840. Each entry represents a single protein and more than one name is provided if available. Known chemotaxis components are highlighted.

Fig. 10. Co-evolutionary matrix for the E.coli proteins KdpD and KdpC. Darker color indicates higher mutual information score. The matrix shown here is the

downsampled version of the original matrix. Each bin is 10 residues wide.
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Others have also noted the importance of including domain

information when predicting protein interactions. By incorporating

interaction profile of domains in their method, Wojcik and

Schachter (2001) reported increased performance in inferring pro-

tein interaction of one organism from the interaction network of

another. Similar in spirit to our approach, Pagel et al. (2004)

improved upon the phylogenetic profiling method using domains

defined with the Pfam database (Bateman et al., 2004). Although
the coverage of their method is limited by that of the Pfam database,

it has the advantage of requiring less computing time and having a

simple update procedure as more genomes are used.

Interestingly, similar to databases such as Pfam (Bateman et al.,
2004), the Coevolutionary-Matrix method can delineate ‘domains’

within a protein. Because of the way parameters were chosen, the

co-evolving regions detected with our method are required to have

sizes of at least 60 residues. The size requirement ensures that it is in

the range of independently folding protein domains, excluding those

of loops (i.e. less than 20 residues).

Motivated by the performance of the Coevolutionary-Matrix

method, we explored the idea of whether co-evolving domains

captured indeed are involved in interactions at the domain level.

For the PTS proteins IIAB and IIC, physical interaction between the

domain IIB and protein IIC seems plausible based on available

evidence. However, for some proteins such as those involved in

the chemotaxis pathway, it appears that much of the co-evolution

between the domains was driven by their functional dependence.

For example, the Coevolutionary-Matrix method identified that the

N-terminus and C-terminus regions of CheA co-evolved with CheB.

The method indicates that these same regions also co-evolved with

Mcp’s, CheW and CheR proteins. Most likely all these proteins do

not physically interact with the same two regions of CheA. Like-

wise, the N-terminus domain of KdpD in the Kdp system does not

physically interact with KdpC or KdpA but is needed to drive the

expression of the latter two proteins.

5 CONCLUDING REMARKS

Since evolution and functions of proteins are coupled, greater

understanding of the former can reveal much about the latter.

By capturing co-evolution of proteins at the domain level, regions

that are important for supporting both functional and physical inter-

actions between these proteins are detected.With examples from the

cellular systems of the E.coli bacterium, we showed that these

regions correspond to biochemically characterized protein domains.
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