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quite noisy, and the signatures of individual markers might 
be highly variable across different patients.1 Furthermore, 
disease mechanisms often involve complex interactions 
among multiple molecules, and the patient population 
might not be homogeneous in terms of these mechanisms.2 
Consequently, functionally relevant differences in affected 
and control samples could present as subtle differences 
in the properties of individual molecules, which may not 
be detected by analyzing each molecule in isolation from 
other molecules.3 Today, the scientific community seems 
to be in agreement that systems-level approaches are  
required to better understand the mechanisms of complex 
diseases.4

Several algorithms aim to overcome the limitations of 
individual gene based approaches by utilizing established 
biological pathway information or high-throughput data 
on protein-protein interactions (PPIs) to identify groups of 
functionally related genes. This article focuses on identify-
ing dysregulated subnetworks through the integration of 
gene expression and protein-protein interaction (PPI) data.

DIFFERENTIAL GENE EXPRESSION
Many complex diseases are associated with genomic 

sequence alterations. Therefore, comparative analysis of 
genomic sequences in healthy and affected populations 
is quite effective in locating the possible genetic sources 
of disease phenotype. However, genomic data does not 
directly capture the regulatory mechanisms that medi-
ate the link between genetics and disease progression. 
To this end, gene expression, measured in terms of the 
abundance of mRNA molecules in a tissue sample, proves 
useful in elucidating the variation in cellular system ac-
tivity. Indeed, in the past decade, researchers  often 
used genome-wide monitoring of gene expression—the  

O ne of biology’s major challenges in the postge-
nomic era is systems-level characterization of 
complex human diseases—that is, diseases that 
result from the interplay among multiple genetic 

and environmental factors. With significant advances in 
high-throughput screening technologies such as next-
generation sequencing, it is now possible to develop 
computational techniques for understanding disease 
development and progression. 

Figure 1 shows the commonly used technologies for 
interrogating cellular systems and the data they generate. 
Such technologies generate genome-scale data on bio-
molecular sequences and structures, the abundance of 
individual molecules under various conditions, and the 
physical interactions among two or more molecules.

A common approach to analyzing disease-specific 
molecular data is to compare the abundance—the gene 
or protein expression—of each molecule in an affected 
sample against a control or healthy sample. These analyses 
reveal individual molecules potentially associated with 
disease that can serve as candidate biomarkers for use in 
diagnosis, prognosis, risk assessment, treatment choice, 
and therapeutic intervention. 

However, because the data used in such analyses repre-
sents a snapshot of a complex dynamic system, it can be 
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transcriptome—enabled via DNA microarray technology, 
to investigate disease mechanisms.5 Today, with the advent 
of next-generation sequencing (NGS) techniques, it is pos-
sible to monitor gene expression even more efficiently 
and reliably.

Differential analysis of gene expression facilitates the 
identification of dysregulated genes in the disease of inter-
est—that is, those genes that exhibit significant difference 
in the amount of mRNA transcripts present in a range of 
disease and control samples. To date, systematic analyses 
of differential gene expression have led to identification 
of the genetic markers associated with many cancers, as 
well as genes associated with tumor grade, metastasis, 
and disease recurrence.1 Because knowledge of individual 
dysregulated genes provides limited insights into the dys-
regulation of cellular processes as a system, researchers 
increasingly focus on interpreting these findings in the 
context of cellular systems.5

PATHWAYS AND ENRICHMENT ANALYSIS
A popular approach to systems-level interpretation 

of differential gene expression is to identify biological 
pathways that are significantly enriched in products of 
differentially expressed genes. In general, a pathway is 
defined as a sequence of biochemical reactions or inter-
actions that describe a particular biological process with 
specified inputs and outputs. Because pathways generally 
describe relatively well-characterized biological processes, 
those pathways enriched in products of differentially 
expressed genes offer immediate clues to biological pro-
cesses affected in the disease phenotype.

Many statistical and computational methods are 
available to systematically interpret differential gene ex-
pression via pathway-based enrichment analysis. Among 
these, gene-set enrichment analysis is commonly used.6 

GSEA takes as input a gene expression dataset and a set 
of genes—for example, genes that code for proteins in a 
particular pathway—and assesses the overall rank of the 
genes in the set among all genes in the dataset in terms of 
their differential expression in the disease of interest. If the 
genes that code for proteins in a pathway rank significantly 
higher compared to other genes in the entire genome, then 
the pathway is considered dysregulated in the disease.

Following GSEA, researchers developed many other 
methods to improve statistical procedures for pathway-
based differential expression analysis, but these methods 
are conceptually similar. Today, medical scientists often 
use enrichment analysis as a follow-up procedure for gene 
expression assays comparing phenotypes. Many com-
mercial software products and databases also provide 
functionalities for enrichment analysis—for example, 
MetaCore and Ingenuity Pathway Analysis—but the al-
gorithmic/statistical frameworks that such tools utilize 
generally are not transparent to the user.

While being quite useful and directly interpretable, 
pathway-based analysis of differential expression has 
important limitations. In particular, pathway-based ap-
proaches restrict the functional relationships among 
genes and proteins to established biological knowledge 
on well-characterized pathways. Therefore, these ap-
proaches generally cannot characterize the differential 
expression of relatively less studied genes, discover novel 
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Figure 1. Large-scale interrogation of cellular systems at multiple levels generates various types of “omic” data. For each data 
type, a corresponding box provides common examples of genome-scale data, but the lists are not exhaustive. Computational 
algorithms facilitate innovative integration of omic datasets to gain insights into the underlying mechanisms of complex dis-
eases.
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functional links among genes, identify disease-specific 
crosstalk between different pathways, or elucidate poten-
tially combinatorial relationships among multiple genes. 
Protein-protein interaction (PPI) networks offer an invalu-
able resource in this regard.

PPI NETWORKS
High-throughput experiments and computational pre-

diction techniques can identify physical and functional 
interactions among proteins at a large scale.7 Although 
high-throughput screening methods are noisy and incom-
plete, and computational methods have limited prediction 
accuracy, the data that all these methods generate can be 
integrated to construct networks of PPIs that serve as maps 
of the cell’s functional organization.8 This data is organized 
into public databases, including the Human Protein Refer-
ence Database9 and BioGrid.10

Because PPI networks are derived from a diverse range 
of experimental sources, they contain potential functional 
links that have not yet been characterized in detail. Fur-
thermore, because they provide a comprehensive map of 
functional interactions in the cell, PPI networks are useful 
for analyses that take into account the cell’s global orga-
nization. For these reasons, network-based analyses of 
differential expression can prove more promising than 
pathway-based analyses in discovering novel relationships 
among genes in the context of disease mechanisms. Note 
that data on molecular interactions is not limited to PPIs: 
transcriptional regulatory networks, genetic interactions, 
and metabolic networks also provide genome-wide infor-
mation on the functional links among genes and proteins.11

DYSREGULATED SUBNETWORKS
Systematic studies of differential gene expression in 

several complex diseases show that dysregulated genes 
in similar diseases are likely to interact with each other in 
PPI networks.12 Motivated by this observation, researchers 
have developed many methods to identify dysregulated 
subnetworks—that is, connected subgraphs of the human 
PPI network that exhibit collective differential expression 
with respect to the disease phenotype. 

Table 1 shows a comparison of pathway-based and 
protein-protein interaction network-based approaches. 
The key difference between network-based algorithms 
and pathway enrichment analysis is that the functional 
relationships among proteins are not restricted to well-
characterized pathways in network-based analysis. Rather, 
any group of proteins functionally linked through interac-
tions in the global PPI network is considered as a potential 
group of proteins with collective dysregulation. Therefore, 
in addition to dysregulated pathways, these algorithms 
also have the potential to discover dysregulated parts of 
pathways and dysregulated functional links across mul-
tiple pathways.13 

However, since this formulation requires searching the 
PPI network’s entire subnetwork space, it leads to intrac-
table computational problems and requires development 
of sophisticated computational algorithms for efficient 
discovery of dysregulated subnetworks.

Algorithms for identifying dysregulated subnetworks 
generally integrate two different sources of molecular data: 
a transriptomic dataset that includes measurement of gene 
expression from disease and control samples, and an inter-
actomic dataset that includes interactions among proteins 
coded by genes in the gene expression dataset. Here, we 
use the following notation to describe these algorithms:

 • V, the set of genes for which gene expression data is 
available;

 • e
i
, the m-dimensional expression profile of g

i
 ∈ V, such 

that e
i
( j) denotes the expression of g

i
 in sample j for  

1 ≤ j ≤ m and m denotes the number of samples in 
the dataset;

 • C, an m-dimensional phenotype vector, such that  
C( j) = 1 indicates that sample j is a phenotype 
sample (for example, taken from tumor tissue), while  
C( j) = 0 indicates that sample j is a control sample  
(for example, taken from a normal tissue); and

 • G = (V, E), the undirected graph that describes the PPI 
network, where V represents the genes that code for 
the proteins in the network and E represents the set 
of interactions among these proteins.

Because we construct PPI networks by integrating 
data from multiple sources, the edges of G are gener-
ally weighted, representing each interaction’s reliability. 
However, most of the algorithms discussed here do not 
directly use these weights; rather, they apply a thresh-
old on the reliability scores and represent the network 
as an unweighted graph. Recent work demonstrates that 
incorporating reliability scores can improve algorithm 
performance.14

Table 1. Comparison of pathways-based and protein-protein 
interaction network-based approaches.

Characteristic Pathways PPI network

Source Literature 
driven

Experimentally identified

Scale Process specific Genome wide

Reliability Well 
characterized

Noisy, incomplete

Procedure Statistical tests Combinatorial algorithms

Outcome Dysregulated 
pathways

Dysregulated parts of pathways, 
disease-associated crosstalk 
among different pathways,  
combinatorial logic of disease 
mechanisms
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Additive coordinate dysregulation
Early algorithmic approaches identify dysregulated 

or “active” subnetworks by searching for connected 
subgraphs of the PPI network with a high aggregate sig-
nificance in the differential gene expression.15 While these 
approaches can extract functional links among genes 
that exhibit individual differential expression, they are 
limited in capturing coordination in the dysregulation of 
multiple genes, since they assess differential expression 
individually for each gene. Recognizing this limitation, 
Han-Yu Chuang and colleagues16 proposed an information-
theoretic formulation of subnetwork dsyregulation that 
takes into account the sample-specific variation in the ex-
pression of genes in a subnetwork. For this purpose, they 
introduced the notion of subnetwork activity, defined as 
the aggregate expression of gene products in the subnet-
work in each sample—that is, the activity of subnetwork 
S ⊆ V is defined as 

e S g Si

e

S
i

( )   = ∈∑ . (1)

Subsequently, they quantify the dysregulation of subnet-
work S as

.  (2)

Here, I e S C( ( );  )  denotes the mutual information 
between the phenotype vector C and the activity of 
subnetwork S, that is, it is the reduction in phenotype un-
certainty upon observing the aggregate expression of the 
genes coding for the proteins in S. Phenotype uncertainty 
is quantified by entropy H(C), and the uncertainty after 
observation of subnetwork activity is quantified by con-
ditional entropy H Ce S( ( )) . Here, ∆

additive
 is referred to as 

additive coordinate dysregulation because it is based on 
additive assessment of the coordination among multiple 
genes.

To identify network markers of breast cancer metas-
tasis, Chuang and colleagues searched for subnetworks 
of the human PPI network that maximize ∆

additive
(S) using 

a greedy algorithm. Next, they used the activity of sig-
nificantly dysregulated subnetworks as features for 
classification. As compared to single gene markers, these 
subnetwork markers exhibited improved accuracy in pre-
dicting breast cancer metastasis.16

Coordinate dysregulation and set cover
Although the concept of coordinate dysregulation is 

promising for capturing the interplay among multiple in-
teracting proteins, the problem of identifying subnetworks 
with significant coordinate dysregulation is intractable. 
Furthermore, bottom-up heuristics that grow subnet-
works to greedily maximize the objective function may 
lack global awareness. Motivated by these considerations, 

recent work formulates the problem of identifying coor-
dinately dysregulated subnetworks as a variation of the 
well-known set-cover problem.17,18 Although set-cover is 
also an NP-hard problem, this formulation provides in-
terpretable insights into the coordination among multiple 
proteins, enabling development of more effective heuristic 
algorithms.18

To see the relationship between coordinate dys-
regulation and set-cover, consider gene expression data 
from paired samples. A gene g

i
 is said to cover sample  

j positively/negatively if it is up-regulated/down-regulated 
in the phenotype sample with respect to control—for 
example, ˆ ( )   e j Hi = and ˆ ( )   e j Li ′ = , where ˆ ( ) ,e j L Hi ∈{ }  
represents the binarized expression of gene g

i
 in sample j 

and j′ denotes the control sample paired with phenotype 
sample j. Subsequently, the set of samples covered posi-
tively/negatively by g

i
 is called the positive/negative cover 

set of g
i
 and respectively denoted P

i
/N

i
. 

Based on this formulation, as Equation 2 shows, 
∆additive({g

i
}), the dysregulation of a single gene, is a 

monotonically increasing function of ||P
i
| − |N

i
||. Moti-

vated by this insight, the NETCOVER algorithm searches 
for subnetworks comprising genes that together cover all 
samples consistently, either positively or negatively.17 Here, 
for a given subnetwork S ⊆ V, the positive and negative 
cover sets of S are

  (3)

Figure 2 illustrates this concept. In the context of human 
colorectal cancer, NETCOVER identifies subnetworks that 
provide better classification accuracy than subnetworks 
identified by a greedy algorithm that aims to explicitly maxi-
mize additive coordinate dysregulation.17

Synergistic dysregulation
Dimitris Anastassiou19 further delineated the concept 

of coordinate dysregulation to assess the synergistic dys-
regulation among two or more genes. For a pair of genes g

i
  

and g
j
, the synergistic dysregulation of g

i
 and g

j
 is defined as

  (4)

Observe that synergistic dysregulation is different from 
additive coordinate dysregulation in two aspects. First, 
the dysregulation of the subnetwork comprising g

i
 and g

j
 

is quantified in terms of the mutual information between 
phenotype and the binary expression state of the genes, 
which is a two-dimensional binary vector (as opposed to 
the average expression of the genes). Second, the dysregu-
lation of each individual gene is subtracted from the overall 
dysregulation of the subnetwork to capture the pair’s abil-
ity to distinguish phenotype and control beyond what each 
individual gene can distinguish. 
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In this respect, if two genes exhibit correlated differ-
ential expression in phenotype samples, their synergistic 
dysregulation will be negative. On the other hand, if the 
two genes are complementary with each other in dis-
tinguishing phenotype and control, their synergistic 
dysregulation will be positive. Therefore, the concept 
of synergy provides a useful measure for quantifying 
the complementarity and redundancy of two genes in 
distinguishing phenotype and control.

We can extend the concept of synergistic dysregu-
lation to a subnetwork comprising multiple genes by 
defining the expression state of a set S of k genes as 
F e e e L HS k

k    ˆ , ˆ , ˆ ,= …{ }∈{ }1 2 , that is, a random variable 
represents the combination of binary expression states of 
the genes in S. However, computation of the synergy of k 
genes requires exponential time in k because computing 
the synergy requires considering all subsets of S. Con-
sequently, synergy computation for a given subnetwork 
of arbitrary size becomes an intractable problem, not to 
mention the problem of identifying subnetworks with 
high synergy. For this reason, in the context of prostate 
cancer, John Watkinson and colleagues20 limited their 
attention to pairs of genes and constructed a synergy 
network by representing identified synergistic relation-
ships as interactions between pairs of genes.

Combinatorial coordinate dysregulation
To overcome the computational difficulties in com-

puting synergy but still capture the combinatorial 
relationship in the dysregulation of multiple interacting 
genes, Salim Chowdhury and colleagues21 defined com-
binatorial coordinate dysregulation of a subnetwork S 
as follows:

 (5) 

The difference between synergistic and combinato-
rial dysregulation is that combinatorial dysregulation 
does not account for the dysregulation of parts of the 
subnetwork. However, in contrast to additive coordinate 
dysregulation, which requires all genes in the subnetwork 
to be dysregulated in the same direction, combinatorial 
coordinate dysregulation can discover combinatorial 
patterns of dysregulation among the genes in a subnet-
work—for example, it can discover that patterns such as 
g1 and g3 are down-regulated in tumor samples, while 
g2 is up-regulated. Such patterns can shed light on the 
combinatorial logic of disease mechanisms.

Although computation of combinatorial coordinate 
dysregulation is straightforward, the problem of identi-
fying subnetworks with high combinatorial coordinate 
dysregulation is intractable. Motivated by this consid-
eration, Chowdhury and colleagues21 decomposed the 
combinatorial coordinate dysregulation of a subnetwork 

into components associated with individual subnetwork 
states. Namely, they defined 

J f C p f p c f p c f p cS S S S
c

;     ( ) log / ( )
,

( ) = ( ) ( )( )
∈{ }
∑
01

,   (6)

where

I F C J f CS S
f H LS

k

;   ; .
,

( ) = ( )
∈{ }
∑    (7)

Here, f
S
 ∈{H, L}k denotes an observation of the random 

variable F
S
, that is, f

S
 is a specific combination of the ex-

pression states of the genes in S, c denotes an observation 
of the random variable C (a specific phenotype) and p(x) 
denotes P(X = x), the probability that random variable 
X is equal to x (similarly, p(x|y) denotes P(X = x|Y = y)). 

In biological terms, we can consider J( f
S
; C) to be a 

measure of the information provided by subnetwork 
state f

S
 on phenotype C. Based on this definition, Chow-

dhury and colleagues derived a useful bound on  J( f
S
; C)  

that can be computed using statistics of smaller sub-
networks. Using this bound, they developed CRANE, an 
efficient branch-and-bound algorithm, to identify sub-
networks and associated state functions. Subsequently, 
they trained neural networks to use these subnetworks 
for predicting colon cancer metastasis on independent 
datasets.
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Figure 2. Set-cover based formulation of coordinate 
dysregulation in complex phenotypes. Circles represent pro-
teins, and connecting lines represent interactions between 
proteins. The matrix near each protein shows its mRNA-level 
expression in phenotype (upper row) and control (lower row) 
samples. Dark red indicates high expression, and light green 
indicates low expression. In this example, P1 = {s1, s2}, that is, 
g1 covers samples s1 and s2 positively because it is up-reg-
ulated in the phenotype samples compared to the control 
samples. The subnetwork comprising the gray proteins cov-
ers all phenotype samples positively.
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Figure 3 shows the results of these cross-classifica-
tion experiments. As the figure shows, combinatorially 
dysregulated subnetworks outperform additively dysregu-
lated subnetworks and single gene markers in predicting 
metastasis.

Figure 4 shows a sample subnetwork that illustrates how 
the dysregulated subnetworks identified by computational 
algorithms can generate novel hypotheses for experimen-
tal biology. This subnetwork contains membrane-bound 
proteins TNFSF11, MMP1, BCAN, MMP2, TBSH1, and SPP1. 
For this subnetwork, the state function LLLLLH (in respec-
tive order) indicates metastatic phenotype with J-value 
0.33. The combinatorial coordinate dysregulation of this 
subnetwork is 0.72, while its additive coordinate dysregula-
tion is 0.37; this subnetwork would likely escape detection 
by the additive algorithm. 

As seen, SPP1, TBSH1, and MMP2 interact with integrin 
alpha-chain V (ITGAV). Integrins are heterodimeric integral 
membrane proteins comprising an alpha chain and a beta 
chain. They are known to play a major role in mediating 
cell adhesion and cell motility, processes known to be 
involved in metastasis of colorectal cancer.22 However, 
alpha-v/beta-5 integrin does not exhibit significant dif-
ferential expression at the mRNA-level, suggesting that 
the subnetwork identified by CRANE may be a signature 
of its post-translational dysregulation in metastatic cells. 

This subnetwork therefore suggests several follow-up 
experiments, including investigation of the post-transla-
tional dysregulation of integrin heterodimers in metastatic 
samples and pharmacological inhibition or siRNA interfer-

ence of the integrin dimers to evaluate the role of these 
proteins in maintaining the metastatic phenotype.

Discriminative subnetworks
The methods discussed so far use information theoretic 

measures to formulate subnetwork dysregulation. Recent 
methods take an alternate approach and formulate the abil-
ity of a subnetwork to discriminate phenoype and control 
within the framework of a specific classification technique. 

In particular, Phuong Dao and colleagues23 developed 
an algorithm to identify optimally discriminative subnet-
works in the context of response to chemotherapy in breast 
cancer patients. Their formulation treats each sample as 
a point in the |V|-dimensional space represented by all 
genes. Based on this representation, they defined a dis-
criminative subnetwork as a set of at most k interacting 
gene products such that the total distance within each 
phenotype class is minimized and the total distance be-
tween different phenotype classes is maximized in the 
subspace characterized by these genes. Subsequently, they 
used a color-coding-based randomized algorithm to iden-
tify optimally discriminative subnetworks. Their results 
showed that this algorithm is more effective than greedy 
algorithms in discovering subnetworks that can accurately 
predict response to chemotherapy and are reproducible 
across multiple datasets. 

Other researchers subsequently proposed developing 
network-guided forests by extending random forests to 
construct decision trees with nodes corresponding to in-
teracting proteins in a subnetwork.24
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Figure 3. Performance of dysregulated subnetworks in predicting metastasis of colon cancer when used as features for clas-
sification. Two different datasets (GSE3964, GSE6988) from the Gene Expression Omnibus are used for cross-classification. Top-
scoring single-gene markers, additively dysregulated subnetworks, and combinatorially dysregulated subnetworks are identi-
fied on the training dataset; neural networks are trained on the training dataset using a variable number of features (ranging 
from 1 to 20); and the resulting classifiers are tested on the test dataset. This figure shows the best F-measure achieved by each 
set of features, with F-measure defined as the harmonic mean of precision and recall.
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A s the various studies discussed here 
demonstrate, network algorithms 
are very promising for uncovering 

the combinatorial relationships among 
multiple genes in the development and 
progression of complex diseases. These 
algorithms offer an excellent platform 
for life and medical scientists to use in 
extracting information from high-through-
put data, which they can then use to filter 
out candidates for further, detailed experi-
mental studies. 

Such frameworks are useful in identify-
ing drug targets, as well as in developing 
detailed dynamic models for disease mech-
anisms. Furthermore, the combinatorial 
patterns discovered by these algorithms 
serve as markers for classification that re-
peatedly demonstrate improved success 
compared with single gene markers in 
predicting disease progression16,21 and re-
sponse to therapy.23 Using these algorithms 
to generate concise and effective sets of 
biomarkers will be particularly useful 
in personalized medicine. Although the 
discussion here is limited to integration 
of transcriptomic and interactomic data, 
algorithms that also utilize genomic and 
proteomic data could lead to the genera-
tion of more detailed disease models.25-28 
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