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Abstract. In systems biology, the solution space for a broad range of
problems is composed of sets of functionally associated biomolecules.
Since connectivity in molecular interaction networks is an indicator of
functional association, such sets can be identified from connected in-
duced subgraphs of molecular interaction networks. Applications typi-
cally quantify the relevance (e.g., modularity, conservation, disease
association) of connected subnetworks using an objective function and
use a search algorithm to identify sets of subnetworks that maximize
this objective function. Efficient enumeration of connected subgraphs of
a large graph is therefore useful for these applications, and many existing
search algorithms can be used for this purpose. However, there is a lack
of non-heuristic algorithms that minimize the total number of subgraphs
evaluated during the search for subgraphs that maximize the objective
function. Here, we propose and evaluate an algorithm that reduces the
computations necessary to enumerate subgraphs that maximize an ob-
jective function given a monotonically decreasing bounding function.

Keywords: connected subgraph enumeration, protein interaction net-
works, branch-and-bound algorithms.

1 Introduction

For many applications in systems biology, the connected induced subgraphs of
molecular interaction networks are of particular interest since they represent sets
of functionally associated biomolecules. For example, in the context of the sys-
tems biology of complex diseases, medical scientists are interested in identifying
“dysregulated protein subnetworks”, i.e., sets of proteins connected to each other
via protein-protein interactions that exhibit collective differential expression be-
tween different phenotypes [3,4,5,6]. Similarly, gene set enrichment analysis aims
to evaluate the statistical significance of the aggregate disease association of sets
of genes that are defined a priori, and the connected subgraphs of molecular net-
works provide excellent candidate gene sets since they are functionally related
through physical and functional interactions [15]. At the evolutionary scale, sets
of orthologous proteins that induce connected subgraphs on networks of differ-
ent species are shown to be useful in gaining insights into the conservation and
modularity of biological processes across diverse taxa [7,11,16].
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In all of these applications, an objective function is defined to score any given
subnetwork in terms of its relevance to what is being sought by the application.
For example, in the identification of disease-associated subnetworks, connected
subnetworks that contain a large number of disease-associated gene products
are of interest. This scoring function may be computed based on the network
topology alone, or may also incorporate other data, such as gene expression [5],
genome-wide association [10], or sequence homology [11]. Then the problem is
abstracted as one of finding high-scoring (e.g., globally optimal, locally optimal,
or above a certain threshold) subnetworks according to this scoring function.

Due to computational considerations, most methods designed to tackle these
problems implement heuristic algorithms to search the space of connected in-
duced subgraphs of a network. However, it was shown that exhaustive search
may lead to the identification of more biologically relevant patterns as com-
pared to those identified by simple heuristics [4,16,18]. Furthermore, it is often
desirable to identify many high-scoring subnetworks as candidates to be further
evaluated for statistical significance, as opposed to identifying a single subnet-
work with maximum score.

The objective of this work is to develop efficient algorithms for enumerating
all sets of vertices that induce a connected subgraph in a large network. Our
main motivation is to facilitate effective exploration of the subnetwork space of
molecular interaction networks by enabling pruning of the search space in large
chunks. For this purpose, we focus on the case where the scoring function satisfies
a hereditary property. A hereditary property in a graph G = (V,E) is a property
such that if a set S ⊆ V of nodes satisfies the property, then all subsets S′ ⊆ S
also satisfy the property [2]. For example, being a clique is a hereditary property
because any induced subgraph of a clique is also a clique. The bounding functions
used by branch-and-bound algorithms also exploit hereditary properties. For the
purpose of finding all maximal cliques or finding all maximal vertex sets S ⊆ V
that “score” greater than a specified threshold, the hereditary property is useful
for pruning out the search space. This is because, if the property does not hold
for a vertex set S, then no superset of S needs to be evaluated.

Many well established algorithms exist to enumerate connected induced sub-
graphs, such as ReverseSearch [1] and Algorithm447 [8] which are both variations
of depth first search, and new algorithms such as ConSubG[12] are an area of
active research. For the purpose of exploiting a hereditary property to prune out
the search space, conventional depth first enumeration algorithms exhibit an
inherent drawback: These algorithms do not enumerate vertex sets in an order
that will allow evaluation of a vertex set after all of its subsets are evaluated.
In other words, if a connected induced subgraph S ⊆ V does not satisfy the
hereditary property, depth first enumeration methods are likely to needlessly
enumerate many S′ ⊃ S either before or after S is evaluated and rejected. We
refer to such redundant computations as “unnecessary rejections”.

Here, we propose an enumeration algorithm that introduces two novel tech-
niques to reduce the number of unnecessary rejections while searching for con-
nected induced subgraphs satisfying a hereditary property: 1) We use anchor
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vertices to seed the search, with a view to enabling easy tracking of the con-
nectedness of the set of vertices being enumerated. 2) We use a breadth-first
discovery, depth-first extension approach to enumerate sets of vertices, with a
view to enabling evaluation of most vertex sets before their supersets are enu-
merated.

We systematically evaluate the ability of the proposed algorithm in reducing
the number of unnecessary rejections and the resulting earnings in terms of
runtime. Our results show that the proposed method significantly reduces the
number of unnecessary rejections without introducing additional overhead into
the enumeration itself.

2 Methods

2.1 Problem Definition and Observations

Let G = (V,E) be an undirected graph. A set V ′ ⊆ V is said to be a connected
vertex set if the subgraph induced by V ′ is connected, i.e., if for every pair of
vertices {u, v} ∈ V ′, there is a path in G from u to v that goes only through
nodes in V ′. Throughout this work we refer to connected node sets as S where
it is implied that S ⊆ V and S induces a connected subgraph of G.

Let f : 2V → R be a function used to score vertex sets. For example, if we
are interested in identifying maximal cliques, then we can define f(S) = |S| if
S induces a clique, and 0 otherwise. If we are interested in identifying disease-
associated subnetworks such that the disease association of vertex v ∈ V is
quantified as σ(v), then we can define f(S) =

∑
v∈S σ(v)/

√|S| [9].
We consider a problem setup where we are given a threshold t, and we are

interested in enumerating all connected node sets S ⊆ V such that f(S) ≥ t.
We assume that we are given a bounding function fb : 2V → R such that, for
any S′ ⊇ S, f(S′) ≤ fb(S). We say that node set S is rejected if fb(S) < t. The
bounding function is useful for pruning out the search space using a bottom-up
enumeration algorithm, since fb(S) < t implies f(S′) < t for all S′ ⊇ S, i.e.,
once S is evaluated and rejected, there is no need to generate and evaluate any
superset of S. In general terms, this problem can be viewed as one of generating
all maximal connected vertex sets that satisfy a given hereditary property.

In order to efficiently generate all maximal vertex sets that satisfy a hereditary
property, we need an algorithm to enumerate the solution space correctly and
efficiently. Any algorithm that solves this problem has to satisfy the following
criteria in order to be correct and optimal:

– Completeness: All connected vertex sets S in G for which f(S) ≥ t should
be generated and all generated vertex sets should be connected.

– No redundant subgraph generation: Each connected node set in G should be
generated exactly once.

– Optimal order of enumeration: If S′ and S are connected node sets and
S′ ⊂ S, then S′ should be generated before S so that if fb(S

′) < t we try to
avoid generating S.
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The “completeness” criterion relates to the correctness of the algorithm while the
“no redundant subgraph generation” and “optimal order of enumeration” criteria
relate to efficiency. The “no redundant subgraph generation” criterion asserts
that each candidate solution in the solution space should be considered exactly
once since additional considerations will lead to redundant computation. The
“optimal order of enumeration” criterion, on the other hand, facilitates optimal
pruning of the search space by ensuring that all subsets of a connected node set
are considered before the node set itself is considered.

While depth-first enumeration approaches satisfy the first two criteria, they
lead to many unnecessary rejections because the depth-first order of enumeration
does not satisfy criterion three. Avoiding all unnecessary rejections likely requires
a breadth-first enumeration, but memory can be a limiting factor for breadth-
first approach. Here, we propose a more balanced approach that keeps the size
of the problem manageable while reducing the number of redundant rejections.

2.2 Anchor Vertices

We first observe that the “completeness” and “no redundant subgraph genera-
tion” criteria can be satisfied by selecting a single v ∈ V as an anchor vertex
and enumerating all subgraphs containing v before removing v from G. In this
way each v ∈ V is chosen as a starting point and all subgraphs containing it are
enumerated before v is removed from G. When V ≡ ∅ all subgraphs have been
enumerated. An example of enumerating connected induced subgraphs from an
anchor vertex is shown in Figure 1.

It is clear that, for some S′ ⊂ V , this process generates many S ⊃ S′ before
S′ itself, and thus it does not satisfy the criterion of “optimal order of enumera-
tion”. The number of these unnecessary rejections can be reduced using heuris-
tic choices for the anchor vertex based on measures of centrality (e.g., degree
or betweenness centrality). In this work, we rather focus on reducing unneces-
sary rejections within each search anchored at a given vertex. In the following,
we first describe our approach for reducing unnecessary rejections in the local
search comprised of the anchor vertex and its neighbors, and then generalize our
method to all connected induced subgraphs that contain the anchor vertex.

2.3 Efficient Enumeration of Spokes

Observe that, for a given anchor vertex v ∈ V , the neighbors of v can be treated
as a set because v and any combination of its neighbors induce a connected
subgraph of G. This collection of subgraphs (“spokes”) can be represented as a
binomial tree. A binomial tree is a data structure that can be used to enumerate
all subsets of a set [14]. Any node n of a binomial tree has children that are copies
of all branches rooted at siblings that precede n in the tree. The binomial tree
that enumerates all spokes around the anchor vertex has a root node r labeled
by the anchor vertex v and all descendants are labeled by neighbors of v. Since
all vertices labeling nodes in T are connected to the vertex labeling the root, the
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Fig. 1. Example illustrating the enumeration of all connected induced subgraphs of a
graph using anchor vertices. On the left is the graph as each vertex becomes the anchor
used for enumeration of all connected subgraphs that contain the anchor before it is
subsequently removed from G. On the right are the connected subgraphs generated
from each anchor vertex.

set of vertices that label each path from the root r of T to a node n represents
a connected subgraph of G.

A simple method that reduces unnecessary rejections using a binomial tree
based approach constructs the tree by adding each neighbor vertex to the root
as a new node n, and then adding copies of the branches rooted at each sibling of
n as children of n. Copying a branch terminates whenever the set S represented
by the path does not satisfy fb(S) ≥ t. The resulting local search is similar in
spirit to the set enumeration tree (SE-tree) search of Rymon [19]. However, our
approach is more closely related to the binomial tree because we construct an
explicit tree where the set is defined by the path from the root to a node in the
tree. It is important to note that depending on how rejections occur, T may no
longer meet the definition of a binomial tree so moving forward we will refer to
T as a local search tree. An example of constructing a local search tree is shown
in Figure 2.

The local search method can be extended to vertices beyond the direct neigh-
bors of the anchor vertex by following a path of T and treating the vertices that
label the path as an anchor set around which another local search tree is con-
structed as shown in Figure 3. This leverages the local search for each anchor set
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X

Fig. 2. Creating the local search tree T . (A) The input graph G with the anchor vertex
A. (B) Exploring D with no previous branches yields the D branch. (C) Exploring C
with the previous D branch evaluates ACD which is rejected resulting in branches C
and D. (D) Exploring B with previous branches evaluates ABD and ABC (avoiding
ABCD which contains the previously rejected ACD).

but the information is not used globally. In order to use the information from
previous rejections globally we must modify our procedure as outlined in the
following section.

2.4 Efficient Enumeration of All Connected Subgraphs

With slight modification we can combine the local search tree strategy with a
conventional depth first approach to enumerate all subgraphs that contain the
anchor vertex. Rather than using neighbors to construct the tree, we use the
branches generated by depth first search through each neighbor to generate
the tree. The top level procedure performs the depth portion of the search and
it marks all neighbors as visited so they cannot be reached by continued depth
search. The search space of neighbors is explored by the procedure that builds
the local search tree from depth branches which we consider the breadth proce-
dure. The only modification required to ensure correctness is that the breadth
procedure stops cloning branches at nodes labeled by unvisited vertices adjacent
to the vertex labeling the node that is appending the branch. This method rep-
resents our solution to the general case and is formalized in the Breadth-first
Discovey, Depth-first Exploration (BDDE) algorithm. An example of the tree
constructed by BDDE is shown in Figure 4 (C). An example of why the stop
condition is necessary is show in Figure 4 (B).

2.5 Correctness

The following theorems are based on supporting lemmas in the supplemen-
tary materials1. Theorem 1 guarantees that our method satisfies the “complete-
ness” and “no redundant subgraph generation” criteria during exhaustive enu-
meration, i.e, when fb is satisfied by any S. Theorem 2 guarantees that our
method satisfies the “optimal order of enumeration” criterion during exhaustive
enumeration. Theorem 3 guarantees that our method satisfies the “complete-
ness” criterion when fb is selective.

1 http://statler.case.edu/smaxwell/alcob2014/supplement.pdf

http://statler.case.edu/smaxwell/alcob2014/supplement.pdf
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Fig. 3. Example illustrating the key idea of anchor sets. Initial tree T1 generated from
anchor vertex A in G (top) is extended by following path ACD in T1 and treating the
vertex set {ACD} as an anchor set. The anchor set can be isolated in G (bottom) the
same way as an anchor vertex and a new local search tree is constructed anchored at
ACD and appended to T1 resulting in T2. In this way all S ⊆ V that contain the anchor
vertex can be enumerated.

Theorem 1. Given an input graph G, an anchor vertex v ∈ V and a function
fb s.t. for any S, fb(S) ≥ t, BDDE uniquely enumerates all S ⊆ V containing
v.

Proof: By Lemma 4 we know that the set represented by any path P(nk) in T
induces a connected subgraph of G and by Lemma 5 we know that every path
in T represents a unique set. By Lemma 7 we know that all S ⊆ V containing
v are represented by a path P(nk) in T . Therefore, we can conclude that be-
cause BDDE enumerates all paths of T , BDDE uniquely enumerates all S ⊆ V
containing v. �

Theorem 2. Given an input graph G, an anchor vertex v ∈ V and a function
fb where fb(S) ≥ t for any S ⊆ V , BDDE enumerates all connected induced
subgraphs of G containing v in an order such that all S′ ⊂ S containing v are
enumerated before S.
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(C)

Fig. 4. (A) Graph G with anchor vertex A highlighted. (B) The enumeration tree
generated by appending an un-pruned branch generated from S =AC to the branch
generated through S =AB which exhibits several redundant instances of G and E. (C)
The tree generated by pruning the branch generated through S =AC as it is added to
the branch generated through S =AB and subsequent children.

Proof: By Theorem 1 we know that all S ⊆ V containing v that induce a
connected subgraph of G are enumerated, and by Lemma 8 we know that any
S′ ⊂ S containing v must be generated before S. �

Theorem 3. Given an input graph G, an anchor vertex v and a function fb, if
fb(S

′) < t all S �⊃ S′ are still enumerated by BDDE.

Proof: We know by Theorem 1 that all S ⊆ V containing v are enumerated
by BDDE when no rejections occur, and by Lemma 9 we know that when a
rejection of S′ occurs it only eliminates S ⊃ S′. Therefore, we conclude that if
an S′ is rejected all S �⊃ S′ are still enumerated. �

3 Experimental Results

In order to systematically evaluate the performance of BDDE, we define a
problem with a simple objective function that allows investigation of the ef-
fect of various parameters on performance. For this purpose, we use real-world
networks to ensure that the network topology is practically relevant. We as-
sign positive weights to all vertices of each network from a Gaussian distribu-
tion with mean m and standard deviation ρ. We define the objective function
f(S) = 1/

∑
v∈S w(v), where w(v) denotes the weight of vertex v. Then, for a

given threshold t and a maximum subgraph size k, we search for all connected
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subgraphs S ⊆ V with |S| ≤ k and f(S) ≥ 1/t (note 1/t is used because we
want to enumerate all subgraphs with a total weight less than t).

Datasets. In the experiments reported in this section, we utilize two real-world
networks: 1) A citation network generated by Leskovec et al. [17] from the on-line
arXiv journal, which consists of 5,241 vertices and 28,958 edges. 2) The protein-
protein interaction (PPI) network obtained from the Human Protein Reference
Database (HPRD) [13], which consists of 9,455 vertices and 37,080 edges.

Results. For each network, we set m = 10 and generate ten instances each
for different values of ρ ranging from 1 to 9. On each instance, we perform
enumerative search using the proposed algorithm and a standard DFS-based
algorithm for t ranging from 5 to 50 for arXiv and 5 to 40 for HPRD. For each
combination of ρ and t, we report the average of the performance measures
across the ten randomized instances. The results for the HPRD network are
shown in Figure 5. The results for the arXiv network follow similar trends and
are available in the online supplemental materials.

Figure 5 shows the rejection rate for each algorithm. Here, rejection rate is
defined as the fraction of subgraphs S with f(S) < 1/t among all subgraphs
that are enumerated. The rejection rate for BDDE is consistently lower than
that of DFS though the relationship is more obvious at higher values of ρ. This
relationship between ρ and rejection rate is indeed expected, since pruning is
less effective when the weight distribution is more uniform across vertices. At
the extreme case, when ρ=0 (all vertices have equal weight), only the leaf nodes
of the enumeration tree are rejected and neither algorithm can take advantage
of the knowledge on smaller subgraphs to prune out larger subgraphs. But as ρ
grows, the enumeration tree becomes more imbalanced, and the benefit of the
order of generation implemented by BDDE becomes more apparent.

Our computational tests also show that the two algorithms have similar run-
times for smaller values of the threshold t (when larger subgraphs are less likely to
satisfy the objective criterion) and smaller values of ρ (when the vertex weights
are more uniform). However, for larger values of t and ρ, BDDE consistently
outperforms the DFS-based method. While runtime comparisons are largely im-
plementation dependent we find this is a positive outcome and include additional
figures and analysis in the supplementary material.

4 Conclusion

We have investigated the problem of reducing the number of subgraphs eval-
uated while enumerating all connected induced subgraphs S ⊆ V that satisfy
a hereditary property. Our proposed method displays a significant decrease in
total number of subgraphs evaluated during enumeration compared to a classi-
cal depth first branch and bound approach. In addition, Theorems 1, 2 and 3
provide proof of correctness that all connected induced subgraphs S that satisfy
fb(S) ≥ t are enumerated. However, due to the potential for our method to use
space exponential to the maximum size of S being enumerated, our method is
best suited to enumerating all |S| ≤ k from G where k is chosen appropriate to
the problem and the available memory.
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Algorithm 1. The BDDE algorithm. Enumerates all S that contain anchor
vertex v and satisfy fb(S) ≥ t. Returns the root node of the enumeration tree
T . Entry point is DEPTH(∅,v,[ ]).
1: procedure BREADTH(S,n, U)
2: if vn ∈ U then � Prune branch by stop condition
3: return null
4: end if
5:
6: S′ ← S ∪ vn � Prune branch by bounding function
7: if fb(S

′) < t then
8: return null
9: end if
10:
11: n′ ← Υ (vn) � Create a new tree node labeled by vn
12: for all {n∗ : nn∗ ∈ B} do � Recursively copy child branches
13: n′′ ← BREADTH(S′, n∗, U)
14: if n′′ �= null then
15: B ← B ∪ n′n′′ � Append child branch
16: end if
17: end for
18: return n′

19: end procedure

20: procedure DEPTH(S, v, β)
21: S′ ← S ∪ v
22: if fb(S

′) < t then
23: return null
24: end if
25: n ← Υ (v)
26: β′ ← [ ]
27: for i = 1 to |β| do
28: n′ ← BREADTH(S′, β[i], χn)
29: if n′ �= null then
30: B ← B ∪ nn′

31: push(β′, n′)
32: end if
33: end for
34: for all v ∈ χn do � Note: Derive χn from S and v
35: n′ ← DEPTH(S′, v, β′)
36: if n′ �= null then
37: B ← B ∪ nn′

38: push(β′, n′)
39: end if
40: end for
41: return n
42: end procedure
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Fig. 5. Rejection rate analysis for enumerating all subgraphs up to size 4 satisfying
f(S) ≥ 1/t in the HPRD network. Each pane plots the average rejection rate (fraction
of subgraphs S with f(S) < 1/t among all subgraphs that are enumerated) for each
algorithm versus threshold 5 ≤ t ≤ 40 where the node scores were sampled from a
Gaussian distribution with mean m=10 and standard deviation 1 ≤ ρ ≤ 9.
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