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Abstract
Background: In systems biology, comparative analyses of molecular interactions across diverse
species indicate that conservation and divergence of networks can be used to understand functional
evolution from a systems perspective. A key characteristic of these networks is their modularity,
which contributes significantly to their robustness, as well as adaptability. Consequently, analysis of
modular network structures from a phylogenetic perspective may be useful in understanding the
emergence, conservation, and diversification of functional modularity.

Results: In this paper, we propose a phylogenetic framework for analyzing network modules, with
applications that extend well beyond network-based phylogeny reconstruction. Our approach is
based on identification of modular network components from each network separately, followed
by projection of these modules onto the networks of other species to compare different networks.
Subsequently, we use the conservation of various modules in each network to assess the similarity
between different networks. Compared to traditional methods that rely on topological
comparisons, our approach has key advantages in (i) avoiding intractable graph comparison
problems in comparative network analysis, (ii) accounting for noise and missing data through
flexible treatment of network conservation, and (iii) providing insights on the evolution of biological
systems through investigation of the evolutionary trajectories of network modules. We test our
method, MOPHY, on synthetic data generated by simulation of network evolution, as well as existing
protein-protein interaction data for seven diverse species. Comprehensive experimental results
show that MOPHY is promising in reconstructing evolutionary histories of extant networks based
on conservation of modularity, it is highly robust to noise, and outperforms existing methods that
quantify network similarity in terms of conservation of network topology.

Conclusion: These results establish modularity and network proximity as useful features in
comparative network analysis and motivate detailed studies of the evolutionary histories of
network modules.
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Background
As a fundamental concept, evolution has profound impli-
cations in a variety of applications in modern molecular
biology; e.g., functional annotation of DNA/protein
sequences through comparative sequence analysis has
become an important and integral part of biological sci-
ences [1]. Accurate reconstruction of the evolutionary his-
tory of species, usually represented by a phylogenetic tree,
is critical for the success of such applications. Phyloge-
netic analysis of molecular sequence data has drawn sig-
nificant attention ever since protein/DNA sequences have
become available [2,3]. There exist many models (from
the simplest Jukes-Cantor model to more complex Gen-
eral Time Reversible model), but all of them specify site
evolutions at the DNA level for obvious reasons: structure
constraints (secondary structures of RNAs and tertiary
structures of proteins) are hard to model. Based on
sequence evolution, different approaches have been
developed to either explicitly use an evolutionary model
(e.g., Maximum Likelihood) or approximate one (e.g.,
Maximum Parsimony) [4].

Understanding functional evolution
It is clear that many other evolutionary constraints (e.g.,
structure, function) are not considered in phylogenetic
analyses using conventional approaches based on
sequence comparisons. As the genome of an organism is
affected throughout evolution, the structure and hence
the inner dynamics of networks representing the func-
tional relationships of these genes evolve in parallel with
the genome. Most changes on genes, as little as one resi-
due, might affect the functional relationships among
interacting biomolecules. These functional relationships
include transcriptional and translational regulation, pro-
tein-protein interactions, gene modifications, post-trans-
lational protein modifications, metabolic reactions, and
indirect interactions such as genetic interactions (e.g., syn-
thetic lethality). The structure of these networks can vary
over time and space, accounting for the dynamics of the
system [5]. While networks contain a more solid base for
understanding biological systems, the evolutionary path
that is taken by cellular organization and cellular signal-
ing is yet to be uncovered.

Comparative network analysis
Availability of high-throughput data that relates to the
organization and dynamics of biological systems enables
understanding of biological functions from a systems per-
spective [6]. An important source of data that pertains cel-
lular organization and signaling is in the form of physical
interactions between proteins, organized into genome
scale protein-protein interaction (PPI) networks [7].
Comparison of recently available PPI networks that
belong to diverse model organisms reveals that parts of
extant molecular networks are conserved across diverse

species [8-10]. Furthermore, it is observed that proteins
that are organized into cohesive interaction patterns are
more likely to be conserved [11]. Comparative network
analysis is also shown to enhance the performance of
computational approaches to basic problems in func-
tional genomics, such as identification of orthologs across
species and annotation of protein functions [12,13]. Fur-
thermore, recent studies show that incorporation of evo-
lutionary models and knowledge enhances the
performance of network alignment methods significantly
[14]. Such findings demonstrate that network compari-
sons provide essential biological information beyond
what is gleaned from the genome [15]. Consequently,
phylogenetic analysis of network topology and function
has the potential to provide key insights on the evolution
of biological functions at a systems level [16].

Phylogenetic analysis of network modularity
In this paper, we propose a modularity based approach to
phylogenetic network analysis. The proposed framework,
MOPHY, is illustrated in Figure 1. Our approach differs
fundamentally from existing approaches, in that we focus
on the conservation and divergence of modular compo-
nents, rather than one-to-one comparison of network
topologies. In our framework, we first identify modular
subgraphs in different networks independently. Then, we
project these modules on networks of other species to
understand the conservation and divergence of different
modular processes in these networks. While projecting a
module on different species, we rely on the conservation
of network proximity between homologs (proteins with
significant sequence similarity) of its constituent proteins
in other networks. Consequently, by utilizing network
information, our approach captures functional evolution
beyond conservation of sequences. Namely, network
information is incorporated into the analysis by (i) con-
sidering network modules as "features" of each network
and (ii) assessing the conservation of modularity in terms
of the network proximity between proteins with con-
served sequences.

Our approach is motivated by several observations:

• Existing evidence suggests that modularity plays an
important role in the evolution of biological systems
[17]. Therefore, by explicitly incorporating modularity
into the analysis, we can capture the evolutionary rela-
tionships between extant networks more accurately.

• Explicit identification and projection of modules
also enables the study of the evolutionary histories of
specific modules, identification of module families,
and construction of module-specific phylogenies [18].
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• Available interaction data are highly incomplete and
noisy [19]. Compared to topology based analysis,
modularity based analysis is likely to be more robust
to such imperfections in the data, since it relies on
conservation of aggregate network properties (i.e., net-
work proximity and modularity), rather than conser-
vation of individual interactions.

• Comparative network analysis is computationally
expensive because of the intractability of the underly-
ing subgraph isomorphism problem, difficulties in
formulating and accounting for approximate matches,
and existence of multiple mappings between proteins
in different species [9,10]. Modularity- based analysis
alleviates this problem by avoiding one-to-one com-
parison of network topologies.

Evaluating network comparison methods
In this study, we also take a novel approach to the calibra-
tion and validation of comparative network analysis
methods. Based on theoretical models on the evolution of
molecular interactions [20,21], we simulate network evo-
lution to generate networks with known underlying phyl-
ogeny. Then, we use our algorithms on the generated
networks to reconstruct a phylogenetic tree. By comparing
the reconstructed tree with the underlying tree, we evalu-
ate the performance of different methods and assess the

effect of various parameters on the accuracy of our meth-
ods. We also use simulated networks to evaluate the
robustness of our methods against noise and missing
data, by perturbing the simulated networks to mimic data
collection processes. Extensive experiments on simulated
data show that the proposed algorithm is extremely suc-
cessful in reconstructing the underlying phylogenies and
is quite robust to noise. We also use the proposed
method, MOPHY, to reconstruct the phylogeny of seven
species, for which reasonable interaction data is available.
We show that our method constructs a phylogenetic tree
that is in accordance with the phylogenetic relationships
and evolutionary distances inferred by independent
methods. Furthermore, we demonstrate that MOPHY out-
performs existing phylogenetic network analysis methods.

Learning from phylogenetic network analysis
It should be noted that the application of the proposed
framework extends well beyond phylogenetic tree recon-
struction. The methods and results presented here rather
constitute a step towards establishing modularity based
analysis as a key approach in understanding the func-
tional evolution of cellular organization. Indeed, our
results show that conservation of modularity and network
proximity is likely to provide useful insights into the evo-
lutionary histories of networks, by providing statistical
evidence for the following observations:

Modularity Based Phylogenetic Analysis of Molecular Interaction NetworksFigure 1
Modularity Based Phylogenetic Analysis of Molecular Interaction Networks.
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• Conservation of network proximity is a better indi-
cator of evolutionary relationships when modular net-
work components are considered (as opposed to the
proximity between arbitrary proteins) (Tables 1, 2 and
3).

• Modularity based analysis is quite robust to noise
and missing data in terms of capturing evolutionary
relationships, and therefore may be more promising
in comparative analysis of extant protein-protein
interaction networks, which are highly incomplete
and susceptible to noise (Figure 2(c)).

• Network modules are likely to be conserved more in
evolutionarily closer species, in terms of the network
proximity between the homologs of their constituent
proteins (Figure 3).

These results motivate elaborate studies of modular evolu-
tion, including identification of module families and
reconstruction of evolutionary trajectories for these mod-
ule families, which in turn will be useful in constructing
the "periodic table of systems biology" [6].

Results and Discussion
Here, we first present all the algorithmic details of our
method in Algorithms subsection. It is followed by the Test-
ing subsection in which results when the algorithm is
applied to simulated and real network data are illustrated
in a detailed way.

Algorithms
Our modularity-driven approach to phylogenetic network
analysis, MOPHY, which is illustrated in Figure 1, can be
summarized as follows:

1. Considering each extant network individually, iden-
tify network modules that represent functional and
topological properties of each network.

2. Project modules identified on each network to other
extant networks, based on the conservation of func-
tional and topological properties, to obtain a module
map for each species. A module map can be thought of
as a mathematical representation of the conservation
of extant network modules in the corresponding spe-
cies.

3. Using module maps, compare networks of diverse
species to construct network phylogenies.

4. Using resulting network phylogenies, investigate
the evolutionary histories of extant network modules
to gain insights on the evolution of functional modu-
larity.

In the rest of this section, we formulate this approach
based on biologically sound abstractions and present
algorithms to effectively solve the resulting computa-
tional problems.

Problem Formulation
An interaction network G = (V, E) is specified by a set V of
proteins and a set E of interactions between these pro-
teins. For vi, vj  V, viv j  E indicates that proteins vi and vj
interact with each other. Interactions are also associated
with reliability scores, specified by weight function w: V ×
V  [0, 1], where larger w(vi, vj) indicates higher confi-
dence in the existence of an interaction between vi and vj
[22].

In this paper, we particularly focus on protein-protein
interaction (PPI) networks. However, the proposed
method can be easily extended to different sources of data
that relates to the organization of cellular systems (e.g.,
gene expression, regulatory networks, metabolic path-
ways) - to provide an integrated view and analysis of cel-

Table 1: Comparison of performances of MOPHY with using random protein modules, using protein similarities only, using random 
homologous protein partners and RDL.

METHOD Run 1 Run 2 Run 3 Run 4 Run 5 Avg.

MOPHY 5.28 5.85 8.82 5.82 8.15 6.79
RDL 14.40 15.50 19.80 13.12 14.83 15.53

Random Modules 14.81 9.33 11.54 8.11 12.6 11.29
Only Protein Similarity 11.72 11.56 13.96 11.22 10.75 11.84

Random Homolog Selection 15.01 13.60 17.73 22.72 17.61 17.33

For the simulated networks, we compare the performance of MOPHY with the random module method, random homolog selection method, RDL 
and a method that only uses protein similarity in the networks. Nodal distance for five simulation instances as well as the average values of these 
five runs are shown in the table. For MOPHY, the result used is the best performance achieved with coverage 0.60 and diameter 2, by using the most 
specific modules. Similarly for the random module method, the best performance is achieved for the instance with coverage 0.40 and diameter 4, 
with the most comprehensive modules. For the random homolog selection method, the best result is achieved with coverage 0.60 and diameter 3, 
by using the most specific modules. As clearly seen, MOPHY outperforms the other methods in terms of capturing the evolutionary distances 
between species.
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lular organization. Consider a set  = {G1, G2, ..., GK } of

K PPI networks, each belonging a different extant species.

The proteins in these networks can be associated with
each other through a sequence based similarity measure,

:  ×   [0, 1], where  = V1  V2  ... VK is the set

of all proteins in all networks. In practice, we estimate the
sequence similarity scores using BLAST E-values [1]. Let Eij

denote the E-value of the most significant bidirectional

BLAST hit between proteins vi and vj . We define  (vi, vj)

= 1 + 1/log(Eij), if Eij <, and 0 otherwise, where  denotes

the threshold for the E-value being considered significant.

If  (vi, vj) > 0, i.e., Eij <, we call vi and vj homologs. Note

that  is quite sparse in practice, i.e., most proteins have
only a few homologs in other species.

Network Modularity
An important class of network components that are used
in characterizing the networks consists of functional mod-
ules [23]. A functional module is in general defined as a
set of macromolecules (e.g., proteins) that perform a dis-

tinct function together (e.g., protein complexes, signaling
pathways) [5]. It is shown that these functional modules
generally manifest themselves in interaction networks as
subgraphs with distinctive local properties. For instance,
protein complexes would have high inner connectivity in
the network, while being somewhat loosely connected to
the rest of the network [24]. Furthermore, it is observed
that functionally modular groups of proteins and their
interactions are likely to be conserved together [9,10,25].
Consequently, modular subgraphs provide an excellent
substrate for understanding the evolutionary relationship
between networks that belong to diverse species. For this
reason, we use conservation of modular subgraphs as an
indicator of evolutionary proximity between networks.
Note that, comparative methods that target identification
of conserved functional modules on a group of networks
are also available. However, there are several advantages
to our approach of discovering modular subgraphs on
each network individually, followed by projection of
these subgraphs on other networks: (i) multiple graph
alignment is a computationally expensive problem [8,15],
(ii) noisy and incomplete nature of available interaction
data makes it particularly difficult to account for mis-



  

Table 2: Performance of MOPHY in capturing the topology of underlying phylogeny for simulated networks.

Most Specific Modules

Diameter

2 3 4

Coverage MOPHY Random p-value MOPHY Random p-value MOPHY Random p-value

20% 1.6** 11.2 0.0039 1.6** 11.2 0.0039 1.6** 12.0 0.0029

40% 1.6** 12.0 0.0013 1.6** 10.8 0.0093 1.6** 12.0 0.0014

60% 1.6** 11.2 0.0019 1.6** 11.6 0.0039 1.6** 11.6 0.0021

Most Comprehensive Modules

Diameter

2 3 4

Coverage MOPHY Random p-value MOPHY Random p-value MOPHY Random p-value

20% 2.4** 11.6 0.0048 2.8** 10.8 0.0088 4.4* 10.8 0.0121

40% 2.8** 12.0 0.0036 2.8** 10.8 0.0032 4.4* 10.4 0.0179

60% 1.6** 10.8 0.0062 2.4** 11.2 0.0029 3.6** 10.0 0.0054

Performance of MOPHY in capturing the topology of underlying phylogeny for simulated networks. For each parameter setting, the symmetric 
distance between the underlying tree and the tree reconstructed by MOPHY/randomized method is shown. Reported values are averages over five 
runs. p-values indicate the statistical significance of the performance difference between MOPHY and the randomized method. **: p < 0.01, *: p < 
0.05.
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Table 3: Performance of MOPHY in capturing the underlying evolutionary distances for simulated networks.

Most Specific Modules

Diameter

2 3 4

Coverage MOPHY Random p-value MOPHY Random p-value MOPHY Random p-value

20% 6.87** 16.40 0.0020 6.84** 15.85 0.0017 6.97** 15.78 0.0019

40% 6.81** 16.14 0.0017 6.86** 15.85 0.0017 7.01** 15.53 0.0029

60% 6.79** 15.85 0.0017 6.86** 15.41 0.0016 7.02** 15.25 0.0026

Most Comprehensive Modules

Diameter

2 3 4

Coverage MOPHY Random p-value MOPHY Random p-value MOPHY Random p-value

20% 8.89 11.72 0.2283 9.67 11.76 0.3512 10.83 11.82 0.6277

40% 7.62* 13.12 0.0277 8.44 11.61 0.2029 9.63 11.29 0.4922

60% 6.70** 14.93 0.0018 7.92 12.90 0.0529 8.96 11.51 0.3263

For each parameter setting, the nodal distance between the underlying tree and the tree reconstructed by MOPHY/randomized method is shown.

Effect of Coverage and Noise on PerformanceFigure 2
Effect of Coverage and Noise on Performance. (a), (b): Performance of MOPHY in capturing the underlying evolutionary 
distances between simulated networks with respect to coverage (fraction of modules that are used in phylogeny reconstruc-
tion). (a) Most specific modules, (b) most comprehensive modules. (c): The effect of noise and missing interactions on the per-
formance of MOPHY. Even when the data is perturbed with 50% noise, MOPHY's accuracy in reconstructing the phylogeny is 
statistically significant. If the missing interactions are correlated across species, then the effect of missing data is comparable to 
that of random noise. On the other hand, if they are uncorrelated, then the performance of MOPHY is degraded more quickly, 
which is expected since the networks break apart in different ways in different species.
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matches (e.g., does a missing interaction indicate diver-
gence of function or is it just an artifact of missing data?),
and (iii) by identifying modular subgraphs in each extant
network individually, we can quantify not only the con-
servation, but also divergence of modularity in different
evolutionary lineages and understand the evolutionary
histories of functional modules in diverse species.

Proximity as an indicator of modularity
In order to assess the modularity of a group of proteins in
a network, we use a proximity based measure, motivated
by three key observations: (i) Network proximity is shown
to be correlated with functional similarity [26,27]. (ii) PPI
networks are generally incomplete and prone to noise,
therefore existence of alternate paths may account for
missing interactions [19]. (iii) Existing evidence suggests
that existence of alternate paths relaxes the evolutionary
pressure on conserving the interaction between two pro-
teins [28].

Consequently, while assessing the modularity of a sub-
graph in a different network, it might be evolutionarily
more relevant to consider the conservation of network
proximity rather than conservation of individual interac-
tions.

Let  denote a simple path

connecting proteins vi and vj in network G. We define the

reliability of this path as the aggregate reliability of all

interactions on the path, i.e., .

Then, we estimate the proximity between two proteins
with respect to G as the reliability of the most reliable path
between these two proteins, i.e.,

, where  (vi, vj) denotes

the set of all simple paths between vi and vj . Note that,

according to this measure, proximity decays exponentially
by path length. This is in agreement with the relation
between functional similarity and network proximity
[26]. If the interactions are not associated with reliability
scores (i.e., the edges are unweighted, as in many of the
existing PPI databases), we assign a score of 1/2 for all
interactions, to ensure exponential decay of the proximity
measure. In addition, mutual clustering coefficient, as a
measure of (sub)graph connectivity, is used to comple-
ment proximity in identifying network modules, which is
very effective in breaking ties in the unweighted case
(please see Section Module Identification for details).

Projection of proximity on other networks

Now consider evaluating the proximity of two proteins

with respect to another network, G'  G, with a view to
assess the conservation of their functional association. In
order to measure the proximity of vi and vj with respect to

 = ={ , , , , }v v v v vi jr  
1 2

 ( ) ( , )=
+=

−∏ w v v
i ii

r
  11

1

  G i j v vv v
i j

( , ) max ( )( , )= ∈Π

Comparison of the performances of MOPHY and other methods in reconstructing the phylogenetic tree of seven PPI networksFigure 3
Comparison of the performances of MOPHY and other methods in reconstructing the phylogenetic tree of 
seven PPI networks. (a) Tree based on genome sequences [36], (b) tree reconstructed by MOPHY, (c) tree reconstructed by 
RDL [16], (d) tree reconstucted by using protein similarities only, (e) tree reconstructed by using random group of proteins as 
modules, (f) tree reconstructed by Random Homolog Selection method.
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G', we aggregate the proximities of their homologs in V
(G'). For this purpose, we normalize the similarity meas-
ure with respect to network G ' to obtain

, where vi  V

(G') and vk  V(G') Then, the proximity of vi and vj  G'

with respect to G' is defined as

Modularity and projection of modularity

We can now define the modularity of a set of proteins
with respect to a network. For a set S of proteins, all in the

same species, i.e., S  V (G) for some G  , the modu-

larity of S with respect to network G'   is given by

which is the average proximity between all pairs of pro-
teins in S with respect to G' In other words, the modularity
of a group of proteins in one network with respect to
another network measures the extent to which the modu-
larity of the homologs of these proteins is conserved in the
corresponding network, through aggregation of proximi-
ties of all homologs. Observe that our framework provides
a universal view of modularity by facilitating assessment
of the modularity of a set of proteins in one species with
respect to a network that belongs to another species.

Concerns could be raised that the proposed measure
might be heavily influenced by the sequence information,
resulting in an inadvertently sequence based analysis (as
opposed to network based). However, as we demonstrate
in Section Testing, the biological signals captured by this
measure depend on network topology and the use of
sequence information is minimal. Namely, we randomly
rewire all interactions (i.e., add 100% noise to all net-
works) and keep sequence similarities as they are. In this
case, the performance of the proposed measure in phylog-
eny reconstruction becomes equivalent to that of a ran-
dom algorithm (which is otherwise significantly better,
even at the presence of 50% noise). This result indicates
that biological signal is lost if the network is completely
noisy, even if the sequence information is completely pre-
served.

Module Identification
In our framework, network modules are identified on
each network individually, and then projected on other
networks to construct module maps. In order to identify
modular subgraphs in a single network, we use a hierar-
chical clustering algorithm with a hybrid similarity meas-

ure that integrates the concepts of proximity and
connectivity for network clustering. Integration of these
two alternate measures enables discovery of tightly cou-
pled subgraphs with low diameter.

Module identification via hierarchical clustering

We first describe our algorithm based on proximity. For a
given network G = (V, E), this algorithm starts with |V |
distinct clusters, each containing a single protein. Then, it
iteratively merges two clusters that are of maximum prox-
imity to each other, until a single cluster containing all
proteins in the network is formed. Observe that, this algo-
rithm requires generalization of proximity measures to
pairs of clusters. Measures that are commonly used for this
purpose are single linkage (for clusters Si and Sj,

), complete linkage

, and average linkage

. We use

complete linkage clustering to ensure that all proteins in
identified subgraphs are tightly coupled to each other.

Proximity vs. connectivity
An important problem associated with the application of
proximity based clustering to molecular interaction net-
works is that, these networks are "ultra-small", i.e., dis-
tances between most pairs of proteins are very low.
Particularly when the interactions are not associated with
reliability scores, there are many pairs of proteins with
identical proximity at early steps of hierarchical clustering,
resulting in many candidate pairs of clusters to be merged.
This problem is often alleviated by running the algorithm
multiple times with random decisions, and then reconcil-
ing the clusters based on the number of times each pair of
proteins are assigned to the same cluster.

Mutual clustering coefficient complements proximity
In this study, we propose an alternate approach, which
uses mutual clustering coefficient [29] between two sets of
proteins as a secondary measure of similarity between
clusters. Mutual clustering coefficient captures the overlap
between the interaction profiles of two proteins, provid-
ing an estimate of the likelihood that the two proteins
together belong to a functional module. We generalize the
notion of mutual clustering coefficient to pairs of clusters
(sets of proteins) as follows. For a set Si  V of proteins in
network G = (V, E), let Ni = {vk  V:  vl  Si such that vkvl
 E} be the set of interacting partners of the proteins in Si.
Then the mutual clustering coefficient of clusters Si and Sj
is given by

ˆ ( , ) ( , ) / ( , )
( )

  ′ ′ ∈ ′= ′∑G i k i k i kv V G
v v v v v v

k

   ′ ′ ′ ′
∈ ′

= ∑G i j G i k G j l G k l

v v V G

v v v v v v v v

k l

( , ) ( , ) ( , ) ( , ).
, ( )








′ =
′∈∑

−G S
G vi v jvi v j S

S S
( )

( , ),

| |(| | )
,

2

1

 ( , ) max ( , ),S S v vi j v S v S k lk i l j
= ∈ ∈

( ( , ) min ( , )), S S v vi j v S v S k lk i l j
= ∈ ∈

( ( , ) max ( , ) / | || |), S S v v S Si j v S v S k l i jk i l j
= ∈ ∈
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Note that this is a measure of the statistical significance of
the number of shared interacting partners, which is mod-
eled as a hypergeometric random variable.

Our algorithm uses mutual clustering coefficient as a tie-
breaker. In other words, at each step, it merges two clus-
ters with maximum proximity if this pair of clusters is
unique. Otherwise, among all pairs of clusters with maxi-
mum proximity, it merges the pair with largest mutual
clustering coefficient. Consequently, at early stages of the
algorithm, mutual clustering coefficient effectively acts as
the primary similarity criterion. On the other hand, the
proximity criterion ensures formation of clusters with the
minimal diameter throughout the course of the algo-
rithm. Once a hierarchical clustering is obtained using
this method, we identify the modular subgraphs by prop-
erly choosing thresholds on proximity. In Section Testing,
we evaluate the effect of the proximity threshold on the
performance of our algorithms in detail.

Constructing Module Maps

Once modular subgraphs are identified on each network,
we project these subgraphs to all networks and construct
a module map for each network. Module maps can be
thought of as feature vectors, where features represent the
modularity of each subgraph in the corresponding net-
work. The modularity score of each module with respect
to each network is calculated as in Equation 2. To be more
precise, assume that we identify mj modules in network Gj

. Let the set of these modules be . Then,

for each network Gi, 1  i  K, the module map fij of Gi with

respect to Gj is an mj-dimensional vector, defined as

Consequently, the module map of network Gi, 1  i  K is
represented as fi = [fi1, fi2, ..., fiK]. Network modules repre-
sent a particular functional component of each network.
These modules, when considered altogether, provide a
high level representation of each network. In other words,
the module maps are signatures of each network and can
be utilized to identify the overall phylogeny of these net-
works.

Phylogenetic Tree Reconstruction
Once modules are projected to each network and module
maps are created, we use these module maps as feature
vectors that characterize the cellular organization in each
species. Namely, we compute the pairwise distance
between each pair of species by comparing module maps,
and apply a traditional phylogenetic tree reconstruction
algorithm (i.e., neighbor joining [30]) based on these
pairwise distances.

Clearly, a straightforward way of estimating evolutionary
distances between pairs of species is to consider the corre-
lation between their module maps, i.e., to define

. However, this method is likely to

be significantly affected by the incompleteness of data,
since some modules may not exist in some species just
because of the unavailability of interaction data. For this
reason, while computing the evolutionary distance
between two species, we only consider the modules that
are identified on the networks of these two species. This
avoids the bias introduced by the large number of mod-
ules in species for which more comprehensive data is
available. Furthermore, we consider one-directional con-
servation of a single module as a bi-directional hit, to
account for missing data. For instance, in the PPI data
obtained from DIP, M. musculus (mouse) PPI data is rela-
tively incomplete compared to H. sapiens (human) PPI
data. However, available mouse network is quite similar
to parts of the human network. Therefore, almost all mod-
ules identified in mouse PPI network are also conserved in
human PPI network.

Consequently, by considering only the conservation of
modules in the smaller network, i.e., defining

we avoid the effect of missing interactions in the network
when incomplete data is used.

Simulation of Network Evolution
In order to evaluate and calibrate our algorithms for net-
work based phylogeny reconstruction, we apply our
method to synthetic networks that are generated by simu-
lating network evolution. The goal of this simulation is to
generate a set of networks with known underlying phylog-
eny, construct a phylogenetic tree for these networks using
our methods, and compare the underlying and recon-
structed trees to evaluate the accuracy of our algorithms.
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Network Evolution Models
We generate synthetic networks by utilizing a model that
can accurately reflect the basics of network evolution.
There are a variety of duplication based evolution models
proposed to model the growth of PPI networks
[21,31,32]. These models are inspired by theoretical mod-
els of molecular and functional evolution and aim at
reproducing the topological properties observed on extant
PPI networks. Among these models, we employ a slightly
modified version of an iterative model called duplication-
mutation-complementation (DMC), which is shown to
regenerate the subgraph distribution of D. melanogaster
PPI network significantly better than other network gener-
ation models [20]. The DMC model works in iterations
and each iteration consists of three steps. (1) Gene duplica-
tion: A protein vo is chosen uniformly at random and
duplicated to create a new protein v, with all interactions
of vo. (2) Mutation/Complementation: For each pair of inter-
actions vo v' and vv', one is chosen and deleted with a prob-
ability p, based on the notion that the duplication results
in redundant protein functionality, relaxing the evolu-
tionary pressure on preserving one of the redundant inter-
actions. (3) Self-Interaction: An interaction is added
between vo and v with probability p'. In our experiments,
we choose p = 0.7 and p' = 0.1 as suggested in [20].

Incorporating Speciation
Unlike other network generation models that focus on
evolving a single network, in this work, we evolve multi-
ple networks in parallel to construct a phylogenetic tree of
networks. Starting with a single network, the networks
evolve concurrently with respect to an evolutionary time-
line. We assume that, at each branch, speciation occurs
with a constant rate rs, resulting in two networks and split-
ting the evolution process into two new branches.

Throughout network evolution, a species S = (G, nc, nf) is
specified by its PPI network G, the current size of its net-
work nc, and the target size nf . The steps taken while gen-
erating the phylogenetic tree of these species can be
summarized as follows: Initially, the phylogenetic tree has
only one species at the root position with (G, nc, nf), where
G contains only two interacting proteins, i.e., nc is set to 2.
The value of nf is assigned randomly from a Gaussian dis-
tribution (in our experiments, we use  = 3000,  = 1000
to generate diverse networks with size that reflect that of
extant networks accurately).

At each iteration t of the evolutionary process, for each
species S that has not reached to the target interaction net-
work size, i.e., nc< nf, the following actions are performed:

• S is evolved by a single iteration of the DMC model.
This results in the addition of a new node to G, incre-
menting nc by one.

• If the network size reaches the target value after this
addition, i.e., nc = nf, the network is recorded as a leaf
network.

• Otherwise, a speciation event takes place for S with
probability rs. This process is analogous to generating
two new species and replacing the original S with an
internal node. These new species initially have the
same set of interactions with their parent. They are
also assigned new nf values right after the speciation,
chosen from the same distribution. Note that, com-
mon proteins in these new species are recorded as
homologs.

When all species reach their targeted network sizes, the
simulation terminates with leaves representing the result-
ing species. Note that each speciation event increases the
total number of species by one. The desired number of
networks for a given distribution of target network size
(number of proteins in each network) can be achieved by
properly adjusting rs and the number of iterations.

The evolutionary distances between species are recorded
according to the occurrence of speciation events with
respect to evolutionary timeline. This enables evaluation
of our algorithms in terms of its accuracy in estimating
evolutionary distances, as well as the topology of the
resulting phylogeny. Furthermore, to obtain similarity
scores between proteins in different species, we record
homologs after each speciation event and assign scores to
each pair of proteins based on the number of duplications
that occur after their common ancestor is split into two
different proteins. More precisely, we set  (Pi, Pj) = 1/Dij,
where Dij is the number of duplication events that occur
after the common ancestor of these two proteins is split.

Testing
In this subsection, we evaluate the performance of MOPHY

on simulated, as well as real data - in terms of (i) success
in accurately reconstructing the underlying phylogeny, (ii)
robustness to noise and missing data, and (iii) perform-
ance as compared to existing algorithms.

Results on Simulated Data
We test our method on synthetic networks generated by
simulation of the evolutionary process. In our experi-
ments, in order to keep the size of the networks at a real-
istic scale with sufficient variability, we set the average
number of proteins in a network to 3000, with a standard
deviation of  = 1000. Here, average network size is kept
relatively smaller as compared to that of extant networks
for feasibility constraints, since these experiments are per-
formed multiple times to assess statistical significance and
the effect of varying parameters. Our results on extant net-
works show that the method also scales to larger networks
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and is applicable in practice. Using this configuration, we
generate ten networks for each experiment. For all experi-
ments, we generate five different instances, and for each
performance figure, we report the average over these five
instances. Note that, in these experiments, the interac-
tions are not associated with reliability scores.

Evaluating performance:Comparison of phylogenetic trees
In order to quantify the performance of a tree reconstruc-
tion method, it is necessary to compare the reconstructed
tree with the underlying tree based on a sound measure of
similarity between two phylogenetic trees. For this pur-
pose, we investigate the similarity between the two phylo-
genetic trees by using two methods: (i) Symmetric
Difference of Robinson and Foulds [33] is defined as the
total number of partitions that are on one tree and not on
the other. We use this measure as a metric of success in
reconstructing the topology of the phylogenetic tree. (ii)
Nodal distance [34] takes into account the branch lengths
and computes a similarity metric by comparing the sum of
distances of every node pair in each tree. We use this
method to evaluate the performance of algorithms in cap-
turing the evolutionary distances between different net-
works.

Comparison of performance with other methods
We compare the performance of MOPHY in reconstructing
the correct phylogeny to that of four alternate methods

• RDL: An existing method for network-based phylog-
eny reconstruction, which uses relative description
length to assess the similarity between networks [16].

• Random Modules: This method implements an
algorithm similar to that of MOPHY, but it uses random
groups of proteins as modules. These random mod-
ules are selected in a way that they reflect the modules
incorporated by MOPHY in terms of their quantity and
size distribution. We use this method as a reference
method to assess the contribution of the information
on modularity in reconstructing the correct phylog-
eny.

• Only Protein Similarity: This method incorporates
only the similarities between proteins to reconstruct a
phylogenetic tree. Namely, we still compute feature
vectors for each network, but each entry of the feature
vector represents the conservation (score of best
sequence similarity match) of a single protein. The
purpose of using this method as a reference is to assess
the contribution of the use of network information
(proximity and modularity) in reconstructing the cor-
rect phylogeny.

• Random Homolog Selection: In this method, we
investigate the impact of the assessment of homology
on the performance of MOPHY. Namely, homologous
proteins across different species are chosen randomly
instead of using sequence similarity of proteins. By the
comparison of MOPHY against this method, we aim to
verify that the assessment of conservation in MOPHY is
not arbitrary; MOPHY rather makes effective use of
sequence homology to assess conservation of network
modules.

The comparison of the performances of these methods
over five different instances, obtained through simulation
of network evolution, is shown in Table 1. As seen on the
table, MOPHY performs drastically better than any of the
four alternate methods in terms of minimizing the nodal
distance between the correct evolutionary history and the
reconstructed evolutionary history. Furthermore, the Ran-
dom Modules method performs clearly better than RDL,
suggesting that incorporation of network proximity, i.e.,
aggregation of interactions, is more useful than incorpora-
tion of network topology, i.e., incorporation of single
interactions, in capturing the similarity of networks. How-
ever, comparison of the performances of Random Mod-
ules and Only Protein Similarity suggests that, when
modularity is not considered, incorporation of network
information provides marginal improvement. Results
obtained by using Random Homolog Selection method
are also significantly less accurate as compared to those
obtained by MOPHY, indicating that MOPHY makes use of
homology information provided by sequence similarity
effectively.

Design parameters and module selection
In MOPHY, the module identification process can be tuned
by adjusting several parameters: (i) The threshold on
proximity adjusts the trade-off between the tightness and
comprehensiveness of modules (higher threshold on
proximity results in smaller and more tightly coupled
modules). Since the interactions in the simulated net-
works are unweighted, we use diameter, i.e., the maximum
distance between two proteins in a module, to represent
the proximity threshold. (ii) As multiple modules are
identified in each network, using all modules in phylog-
eny reconstruction may lead to problems associated with
high-dimensionality. Therefore, we investigate the effect
of network coverage provided by the modules considered,
where coverage is defined as the percentage of proteins
included in the selected modules. (iii) In order to under-
stand which modules are more informative, we consider
two different module selection strategies: most specific, i.e.,
the set of smallest (with size  3) modules for a given cov-
erage or most comprehensive, i.e., the set of largest modules
for a given coverage.
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Performance of MOPHY for different parameters
Detailed statistics on the comparison of underlying and
reconstructed phylogenetic trees for systematic experi-
ments on simulated instances are shown in Tables 2, 3,
and in Figure 2. To evaluate the performance of MOPHY

statistically, we evaluate the statistical significance of its
performance with respect to the Random Modules
method. The performance difference between MOPHY and
Random Modules can be thought of as an indicator of the
usefulness of relying on conservation of modular network
structures as opposed to arbitrary (groups of) proteins and
their interactions. We quantify the statistical significance
of the performance difference between MOPHY and Ran-
dom Modules based on Student's t-test to compare the
means of two populations. The p-value for an experiment
gives the probability that an algorithm that incorporates
sequence conservation and network proximity, but not
modularity can achieve as good as MOPHY solely based on
chance. As seen in Table 2, for any configuration of
parameters, the accuracy of the topology of the phyloge-
netic tree reconstructed by MOPHY is highly significant. In
general, more specific (smaller) modules appear to be
more informative. Indeed, as seen in Table 3, when evolu-
tionary distances are considered, the performance with
more comprehensive (larger) modules is not statistically
significant. Furthermore, performance degrades with
increasing diameter (less proximity), suggesting that con-
servation of tightly coupled modules is more informative
in reconstructing evolutionary histories. The effect of cov-
erage on performance is shown in Figure 2(a) and 2(b).
When more specific modules are used, the effect of cover-
age on performance is marginal. This indicates that careful
selection of a concise set of small, tightly coupled mod-
ules may be adequate to reconstruct network phylogenies
accurately. Finally, it is interesting to note that the rand-
omized method performs better with large clusters, which
is probably due to the increased likelihood that a random
group of proteins will contain an informative subset of
proteins.

Robustness against noise and missing data
Currently available PPI data is likely to be highly noisy
and incomplete. Hence, we evaluate the robustness of
MOPHY against random noise and incompleteness of data.
For the purpose of observing the effect of noise, after gen-
erating the networks via simulation of network evolution,
we randomly perturb the resulting networks by repeatedly
swapping randomly selected interactions. Furthermore, in
order to evaluate the effect of missing interactions in our
experiments, we apply two interaction removal strategies,
namely uncorrelated and correlated removals. For the uncor-
related removal method, a certain percentage of protein
interactions in each separate network is removed ran-
domly. Whereas for the latter removal method, if an inter-
action is selected for removal from one network, then one

of the interactions among the homologs of the interacting
proteins is also removed from all the other networks
where it exists.

The behavior of the performance of MOPHY with respect to
noise rate (percentage of interactions that are swapped)
and missing interactions is shown in Figure 2(c). These
experiments are performed for diameter = 3, coverage =
60%. As seen in the figure, although the accuracy of
MOPHY decreases with noise and missing interactions as
expected, the performance difference between MOPHY and
the randomized method is significant even at the presence
of 50% noise or 40% correlated missing data.

This observation suggests that MOPHY can be used to
extract meaningful information on evolutionary histories
of networks even when the networks are highly noisy and
incomplete. On the other hand, the performance of
MOPHY degrades more rapidly with increasing number of
uncorrelated missing interactions. This is expected since
in the case of uncorrelated missing interactions, after a
sufficient number of interactions are removed, the net-
work distance between the homologs of two interacting
proteins in one species becomes infinite in the network of
another species.

However, as evident in Figure 2(c), MOPHY's performance
is significant (p <0.01) with respect to the random algo-
rithm even when 20% of the interactions are removed
from the networks at random. Moreover, note that the
performance of the randomized method is not affected by
noise, and the performance of MOPHY becomes equivalent
to that of the randomized method at the presence 100%
noise (i.e., random edge swapping is repeated for a suffi-
ciently large number of iterations). These results indicate
that the biological signals captured by MOPHY depend on
network topology and the use of network proximity and
modularity provide significant information on conserva-
tion of function that is beyond sequence similarity.

Results on Extant PPI Networks
We test our method on the available PPI networks from
seven diverse species. The PPI data is obtained from the
Database of Interacting Proteins (DIP) [35]. These net-
works include those of D. melanogaster (7471 proteins,
22656 interactions), S. cerevisiae (4968 proteins, 17286
interactions), E. coli (1848 proteins, 5930 interactions), C.
elegans (2646 proteins, 3977 interactions, H. sapiens
(1334 proteins, 1539 interactions), H. pylori (710 pro-
teins, 1359 interactions), and M. musculus (414 proteins,
337 interactions). Although the network sizes in this data-
base vary dramatically for different species, MOPHY can
effectively deal with such incompleteness by considering
each pair of species separately and considering the conser-
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vation smaller network's modules in the larger network
(as discussed in Section Phylogenetic Tree Reconstruction).

To reconstruct the phylogeny of these seven networks via
MOPHY, we use the most specific modules that contain at
least three proteins and set the coverage to 50%. While
identifying homolog proteins, we set the BLAST E-value
threshold score  to 0.05. As in our experiments on simu-
lated data, we compare MOPHY with four alternate meth-
ods; (i) RDL, (ii) using random modules, (iii) using only
protein similarities, and (iv) random homolog selection
method. For reference, we also consider the phylogenetic
tree that is reconstructed based on sequenced genomes
[36], which is shown in Figure 3(a). The phylogenetic
trees reconstructed based on the seven PPI networks by
MOPHY, RDL, using only protein similarities, using ran-
dom modules and random homolog selection method
are shown in Figures 3(b), (c), (d), (e)) and 3(f) respec-
tively. Unlike other methods, the tree reconstructed by
MOPHY complies well with common knowledge on the
underlying phylogeny of these seven diverse species and is
also consistent with the whole genome based phylogeny.
It should be noted that, as evident in Figure 3, network-
based distance measures tend to overestimate evolution-
ary distances between extant species. Therefore, methods
for normalizing the estimated distances between net-
works are necessary.

Incidentally, these results also provide evidence support-
ing the Coelomata topology in the Coelomata vs. Ecdysozoa
debate regarding the evolutionary relationship between
nematodes, anthropodes, and vertebrates, which has also
been supported recently through rigorous analysis of the
conservation patterns in intron positions [37]. It is worth
to note that, due to limited availability of data, PPI net-
works differ significantly in size from one species to
another. This actually introduces a lot of artificial varia-
tion between networks, which might, on a common graph
measure, overwhelm desired biological signals. Indeed, as
seen in Figure 3(c), RDL is significantly affected by the var-
iability in data availability; it assigns mouse PPI network
to the same clade with prokaryotic networks, presumably
because the interaction data for this species is quite lim-
ited. On the other hand, by focusing on the signals har-
bored by some more informative modules, we avoid the
interference of this global difference among networks. The
discriminative power of MOPHY suggests that functional
modules identified on PPI networks are important carriers
of evolutionary messages. These functional hotspots con-
vey some information beyond that of the apparent graph-
ical variation among the networks, which help overcome
the artificial bias commonly introduced to PPI networks
by noise or unavailability of protein-protein interactions.

Conclusion
In this paper, we propose a phylogenetic framework for
analyzing modularity in protein-protein interaction net-
works. Our approach is motivated by the premise that
biomolecular interactions and their modularity are likely
to provide direct functional information on the evolution
of biological systems. We also develop a method based on
the simulation of network evolution to evaluate phyloge-
netic tree reconstruction methods. Comprehensive exper-
imental results on simulated, as well as real data show that
our algorithm is highly successful in reconstructing the
underlying phylogenies based on PPI networks, is quite
robust to noise, and performs significantly better than
existing network-based phylogeny reconstruction algo-
rithms on available protein-protein interaction data.
These results demonstrate the promise of modularity-
based approaches in comparative network analysis and
motivate the study of the evolution of network modular-
ity within a phylogenetic framework.
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