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In the study of complex phenotypes, single gene markers can only provide limited insights into the manifestation

of phenotype. To this end, protein-protein interaction (PPI) networks prove useful in the identification of multiple
interacting markers. Recent studies show that, when considered together, many proteins that are connected via phys-

ical and functional interactions exhibit significant differential expression with respect to various complex phenotypes,
including cancers. As compared to single gene markers, these “coordinately dysregulated subnetworks” improve diag-

nosis and prognosis of cancer significantly and offer novel insights into the network dynamics of phenotype. However,

the problem of identifying coordinately dysregulated subnetworks presents significant algorithmic challenges. Existing
approaches utilize heuristics that aim to greedily maximize information-theoretic class separability measures, however,

by definition of “coordinate” dysregulation, such greedy algorithms do not suit well to this problem. In this paper,

we formulate coordinate dysregulation in the context of the well-known set-cover problem, with a view to captur-
ing the coordination between multiple genes at a sample-specific resolution. Based on this formulation, we adapt

state-of-the-art approximation algorithms for set-cover to the identification of coordinately dysregulated subnetworks.

Comprehensive experimental results on human colorectal cancer (CRC) show that, when compared to existing algo-
rithms, the proposed algorithm, NetCover, improves diagnosis of cancer and prediction of metastasis significantly.

Our results also demonstrate that subnetworks in the neighborhood of known CRC driver genes exhibit significant co-

ordinate dysregulation, indicating that the notion of coordinate dysregulation may indeed be useful in understanding
the network dynamics of complex phenotypes.

1. Introduction

Variations among organisms occur in every aspect of biological systems, including their morphology, behavior,
physiology, development and susceptibility to common diseases. Many of these phenotypes are controlled by
multiple genetic and epigenetic factors and are therefore called complex phenotypes (multigenic traits), in
contrast to phenotypes that are controlled by single genes (monogenic or Mendelian traits).1

In the past decade, genome-wide monitoring of gene expression, enabled by DNA microarray technology,
has been commonly used as an important tool for the investigation of complex phenotypes, including human
cancers. Differential analysis of gene expression facilitates identification of genes that are dysregulated with
respect to the phenotype of interest; that is, genes that exhibit significant difference in the amount of mRNA
transcripts present in a range of phenotype and control samples. To date, systematic analyses of differential
gene expression has led to identification of genetic markers associated with many complex diseases, including
leukemia,2 breast cancer,3 lung cancer4 and prostate cancer,5 as well as genes that are associated with tumor
grade, metastasis, and disease recurrence .6–9

While investigation of differential gene expression for individual genes proves useful in identification of
single-gene markers, it offers limited insights into the interplay between multiple interacting factors. There-
fore, research on complex phenotypes rapidly shifts toward identification of multiple genes that are together
differentially expressed. Such multiple markers are likely to shed light on the underlying molecular mecha-
nisms of complex phenotypes. Knowledge of molecular interactions proves extremely useful in identification
of multiple markers, in that it establishes the physical basis for understanding the dynamics of the interplay
between multiple factors, through network models. Indeed, integration of genome-wide expression data with
protein-protein interactions (PPIs) is shown to be useful in extracting subnetworks composed of genes with
correlated expression profiles across diverse conditions.10,11

In the context of complex phenotypes, a range of algorithmic approaches are developed for the identi-
fication of phenotype-implicated subnetworks. Earlier studies quantify differential expression for each gene
individually and search for subnetworks with significant aggregate differential expression.12–15 While these
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Fig. 1. Illustration of the proposed algorithm,NetCover, for identifying coordinately dysregulated subnetworks. (A) Binarized mRNA
expression data with 10 paired samples and 5 genes. A light/dark square indicates that the respective gene is “expressed”/“not expressed”
in the respective sample. (B) Part of human PPI network showing the interactions among the products of these genes. (C) Differential
expression profile for each gene. A black/grey box indicates that the respective gene is up-regulated/down-regulated in the phenotype
(with respect to control) for the respective paired sample (the gene covers the sample positively/negatively). (D) Progress of the algorithm
showing the gene added to the subnetwork at each iteration and the set of samples covered by the corresponding subnetwork. (E) The
resulting subnetwork, comprising of the highlighted genes and solid edges, covers all samples positively.

approaches are useful in relating individual genes that are differentially expressed, they do not necessarily
capture the coordination or synergy in the dysregulation of multiple genes (e.g., genes that do not exhibit
significant differential expression when considered individually, but exhibit significant differential expression
when considered together). Chuang et al.16 address this problem by considering subnetwork activity, defined
as the aggregate expression of gene products in the subnetwork in each sample. Assessment of differential
expression with respect to subnetwork activity enables identification of subnetworks that are coordinately dys-
regulated; i.e., groups of interacting proteins with collective mRNA-level differential expression. As compared
to single gene markers, such subnetwork markers are shown to provide better classification performance in the
prediction of disease progression in breast cancer.16 Similarly, the concept of synergistic differential expression
captures the collective differential expression of a group of genes that are not individually dysregulated.17

The concept of coordinate dysregulation is quite promising in generating novel insights into the network
dynamics of complex phenotypes. However, the problem of identifying subnetworks with significant coordi-
nate dysregulation is intractable. Furthermore, since the objective function associated with this problem is
combinatorial in nature,17 bottom-up heuristics that grow subnetworks to greedily maximize the objective
function may seriously lack global awareness. Motivated by these considerations, we formulate this problem
as a variation of the well-known set-cover problem. The proposed approach is illustrated in Figure 1. As seen
in the figure, we first quantize a gene expression dataset with paired samples into binary expression levels.
Then, for each gene, we identify individual samples that are covered (can be discriminated as phenotype or
control) by the expression level of that gene. Subsequently, we search the human protein-protein interaction
(PPI) network for subnetworks composed of genes that together cover all samples in the dataset. Since the
genes in such a subnetwork complement each other in discriminating phenotype and control, we expect that
these subnetworks may have a modular role in the manifestation of phenotype.

In the next section, we formally introduce the proposed framework. We argue that this formulation better
suits to the notion of coordinate dysregulation from a biological perspective, in that it captures the coordination
between multiple genes at a sample-specific resolution. Furthermore, we theoretically establish the relationship
between set-cover and information-theoretic formulation of coordinate dysregulation. We then adapt state-of-
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the-art approximation algorithms for set-cover to the problem of identifying minimal subnetworks that cover
all samples in a dataset. In Section 3, we evaluate the biological relevance of identified subnetworks in the
context of diagnosis and prognosis of human colorectal cancer (CRC). Comprehensive experimental results
show that, subnetworks identified by the proposed algorithm, NetCover, outperform subnetworks identified
by existing algorithms in terms of accurate classification of tumorigenic and metastatic samples.

2. Methods

In this section, we first introduce the notion of coordinate dysregulation and provide the motivation for the pro-
posed algorithmic approach. Then, based on an information-theoretic formulation of coordinate dysregulation,
we demonstrate the relationship between the problem of identifying coordinately dysregulated subnetworks
and the well-known set-cover problem. Finally, we propose a cover-based algorithm for the identification of
coordinately dysregulated subnetworks and discuss how the subnetworks identified by our algorithm can be
used for the diagnosis and prognosis of complex diseases.

2.1. Coordinately Dysregulated Subnetworks

In the context of a specific phenotype, a group of genes that exhibit significant differential expression and
whose products are connected to each other through physical and functional interactions may be useful in
understanding the network dynamics of the phenotype. This is because, the patterns of (i) collective differ-
ential expression and (ii) connectivity in PPI network are derived from orthogonal sources (sample-specific
mRNA expression and generic protein-protein interactions, respectively). Thus, they provide corroborating
evidence indicating that the corresponding subnetwork of the PPI network may play an important role in the
manifestation of phenotype. In this paper, we refer to the collective differential expression of a group of genes
as coordinate dysregulation. A group of coordinately dysregulated genes that induce a connected subnetwork
in a PPI network is thus called a coordinately dysregulated subnetwork.

Dysregulation of a gene with respect to a phenotype. For a set V of genes and U of samples, let Ei ∈ R|U|
denote the properly normalized18 gene expression vector for gene gi ∈ V, where Ei(j) denotes the relative
expression of gi in sample sj ∈ U . Assume that the phenotype vector C annotates each sample as phenotype or
control, such that Cj = 1 indicates that sample sj is associated with the phenotype (e.g., taken from a tumor
tissue) and Cj = 0 indicates that sj is a control sample (e.g., taken from a normal tissue). Then, the mutual
information I(Ei;C) = H(C) − H(C|Ei) of Ei and C is a measure of the reduction of uncertainty about
phenotype C due to the knowledge of the expression level of gene gi. Here, H(X) = −

∑
x∈X p(x) log p(x)

denotes the Shannon entropy of discrete random variable X with support X . The entropy H(Ei) of the
expression profile of gene gi is computed by quantizing Ei properly. Clearly, I(Ei;C) provides a reasonable
measure of the dysregulation of gi, since it quantifies the power of the expression level of gi in distinguishing
phenotype and control samples.

Coordinate dysregulation. Now let G = (V, E) denote a PPI network where the product of each gene gi ∈ V
is represented by a node and each edge gigj ∈ E represents an interaction between the products of gi and
gj . For a given subnetwork of G with set of nodes S ⊆ V, Chuang et al.16 define the subnetwork activity of
S as ES = 1√

|S|

∑
gi∈S Ei, that is the aggregate expression profile of the genes in S. Then, naturally, the

dysregulation of subnetwork S is given by I(ES ;C), which provides a measure of the reduction of uncertainty
about phenotype C due to the knowledge of the aggregate expression level of the genes in S. In the following
discussion, we refer to I(ES ;C) as the coordinate dysregulation of S.

Identification of coordinately dysregulated subnetworks. Clearly, identification of subnetworks with
maximal I(ES ;C) is an intractable computational problem. Simple greedy approaches to this problem grow
subnetworks by starting from a single protein and adding to the subnetwork the proteins in its network
neighborhood. At each step, the protein in the neighborhood that maximally increases I(ES ;C) is added to
the subnetwork. While such algorithms are useful in identifying subnetworks with reasonably high coordinate
dysregulation, they are biased toward identifying subnetworks with very few genes that exhibit significant
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individual dysregulation. Consider, for example, a group of genes that are marginally dysregulated with respect
to the phenotype, when considered individually. Assume that these genes exhibit significant dysregulation when
considered together (i.e., have a large I(ES ;C)). This group of genes is not likely to be identified by such an
algorithm since the individual contribution of each gene to the dysregulation of the subnetwork will not be
apparent at any stage of the algorithm until all genes are added to the subnetwork. Indeed, in our experiments
on a gene expression dataset (GSE8671) with 8987 genes and 32 samples of colorectal adenomas paired with
those of normal mucosa, such an algorithm assigns 84% of the genes to subnetworks composed of at most two
genes. However, for effective investigation of the systems biology of complex phenotypes, larger subnetworks
with weaker individual, but stronger coordinate dysregulation are very interesting since they offer insights
beyond what single gene markers can provide. In the following discussion, we propose a novel framework that
utilizes biological insights into the dysregulation of genes at a sample-specific resolution, to develop algorithms
for more effective discovery of such coordinately dysregulated subnetworks.

2.2. Coordinate Dysregulation and Set Cover

We now show that the problem of identifying coordinately dysregulated subnetworks can be formulated as a
variation of the set-cover problem. For this purpose, consider a binary representation of the gene expression
data of interest. Binary representation of gene expression is commonly utilized for several reasons, including
removal of noise, algorithmic considerations, and tractable biological interpretation of identified patterns. Such
approaches are shown to be effective in the context various problems, ranging from genetic network inference19

to clustering20 and classification.21 There are also many algorithms for effective binarization of gene expression
data.22 For our purposes, let Êi denote the binarized expression profile of gene gi (we discuss how we binarize
a gene expression dataset in our experiments in Section 3). We say that gene gi is expressed (or “on”) in
sample sj if Êi(j) = 1 and not expressed (or “off”) if Êi(j) = 0.

In order to illustrate the relationship between coordinate dysregulation and set-cover, we introduce various
concepts that provide insights into the dysregulation of genes at a sample-specific resolution. For this purpose,
we assume that the gene expression data is paired; that is, there is one-to-one correspondence between phe-
notype and control samples. This is indeed the case for many available gene expression datasets that monitor
complex phenotypes, e.g., for each sample taken from a cancerous tissue of a patient, a control sample is also
taken from the part of the tissue without the lesion. This approach controls for the noise and bias that might
be introduced by the biological variability among different tissues or individuals. Formally, we assume that
|U| = 2n is even, and for each 1 ≤ j ≤ n, the pair of samples sj and sj+n are phenotype and control samples
that are associated with each other (i.e., they come from the same individual or tissue). A sample instance of
binary gene expression data with paired samples is shown in Figure 1(A). We can now define the positive and
negative cover for a gene.

Definition 1. Positive and Negative Cover Set of a Gene. A gene gi is said to cover a sample
sj positively/negatively if it is up-regulated/down-regulated in the phenotype sample with respect to con-
trol (Êi(j) = 1 and Êi(j + n) = 0/ Êi(j) = 0 and Êi(j + n) = 1). The set of samples that are covered
positively/negatively by gi is called the positive/negative cover set of gi and denoted Pi = P(gi)/Ni = N (gi).

Note here that the notion of up- or down-regulation of a gene with respect to a sample depends on
the procedure for binarization of expression levels. For this reason, we systematically evaluate the effect of
binarization on the performance of our algorithms in Section 3.

The positive and negative cover sets of the genes in Figure 1(A) are shown in Figure 1(C). As seen in
the figure, gene B covers S2 positively since it is expressed in C2 while it is not expressed in N2. Overall,
the positive cover set of gene B is given by P(B) = {S2, S3, S4} and its negative cover set is given by
N (B) = {S8, S9}. Observe that, since gene B is dysregulated with respect to samples S2, S3, and S4, it can be
used to distinguish phenotype and control samples based on its expression in a given sample. However, clearly,
the statistical power (or reliability) of gene B in distinguishing phenotype and control samples depends on the
number of samples that it covers. Moreover, the samples S8 and S9, which are covered negatively by gene B
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interfere with its power in distinguishing phenotype and control samples, since the signals provided by these
two groups of samples are conflicting with each other.

Based on these observations, we postulate that genes that can distinguish different sets of samples may
be complementary of each other in the manifestation of phenotype. In other words, the dysregulation of genes
involved in similar processes may have similar effects on phenotype, and since such genes are expected to
be functionally related, they are likely to be in close proximity of each other in a network of interactions.
Consequently, if we can identify subnetworks composed of genes that together cover all samples consistently
(i.e., either positively or negatively), then the products of these genes may indeed have a coordinate effect
on the manifestation of the phenotype. These subnetworks may be useful as features for classification of
phenotype and they may reveal targets for theurapetic intervention. Motivated by these considerations, we
formulate the problem of identifying coordinately dysregulated subnetworks as one of identifying minimal
groups of interacting genes that cover all samples either positively or negatively. To provide a theoretical
foundation for this approach, we first show that the cardinality of the cover set of a gene is related to a sound
measure of class separability, namely the mutual information between the expression profile of the gene and
the phenotype vector.

Theorem 1. For any two genes gi, gj ∈ V , if | |Pi| − |Ni| |>| |Pj | − |Nj | |, then I(Êi;C) > I(Êj ;C).

Proof. By definition of mutual information, we have I(Êi;C) − I(Êj ;C) = H(C|Êj) −H(C|Êi). Therefore,
it will suffice to show that | |Pi| − |Ni| |>| |Pj | − |Nj | | implies H(C|Êi) < H(C|Êj). First note that

H(C|Êi) = P (Êi = 0)H(C|Êi = 0) + P (Êi = 1)H(C|Êi = 1). (1)

We will show that H(C|Êi = 0) and H(C|Êi = 1) both decline with growing | |Pi| − |Ni| |, to conclude that
H(C|Êi) also declines with growing | |Pi| − |Ni| |, since P (Êi = 0) and P (Êi = 1) are both positive.

Now, for x, y ∈ {0, 1}, let n(x,y)
i denote the number of samples with phenotype x in which the binary

expression of gi is y; e.g., n(1,0)
i is the number of phenotype samples in which gene gi is not expressed. Then,

clearly

H(C|Êi = 0) = h(p(0)
i ) and H(C|Êi = 1) = h(p(1)

i ). (2)

Here, h(p) = −p log p − (1 − p) log(1 − p) denotes the entropy of a Bernoulli random variable with success

probability p, p(0)
i = n

(0,0)
i

n
(0,0)
i +n

(1,0)
i

, and p(1)
i = n

(0,1)
i

n
(0,1)
i +n

(1,1)
i

. Let n+
i = |Pi|, n−i = |Ni| and let m+

i /m−i denote the

number of samples in which gi is expressed/not expressed in both phenotype and control. Then, we can write:

n
(0,0)
i = n+

i +m−i , n
(0,1)
i = n−i +m+

i , n
(1,0)
i = n−i +m−i , and n

(1,1)
i = n+

i +m+
i . (3)

Consequently,

p
(0)
i =

n+
i +m−i

n+
i + n−i + 2m−i

, (4)

and therefore we have p(0)
i − 1/2 = n+

i −n
−
i

2(n+
i +n−i +2m−i )

. Since p(0)
i − 1/2 assumes its zero at n+

i = n−i and its

derivative with respect to n+
i is always positive, |p(0)

i − 1/2| grows with growing |n+
i − n

−
i |. Since the entropy

function h(p(0)
i ) is maximized at p(0)

i = 1/2 and declines with growing |p(0)
i − 1/2|, we conclude that h(p(0)

i )
(similary, h(p(1)

i )) declines with growing | |Pi| − |Ni| |, completing the proof. �
This theorem establishes that the number of paired samples for which a gene is consistently up- or down-

regulated is directly associated with the information its expression profile provides on the phenotype. It can
be seen from the construction of the proof that this result can also be generalized to the aggregate expression
profile ES of a subnetwork S (where ES is quantized properly). Motivated by this observation, we generalize
the notion of positive and negative cover sets to subnetworks and conjecture that a subnetwork with a larger
consistently positive or negative cover set provides more information on the phenotype.
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Definition 2. Positive and Negative Cover Set of a Subnetwork. For a given subnetwork S ⊆ V,
the positive and negative cover sets of S are respectively defined as P(S) =

⋃
gi∈S Pi and N (S) =

⋃
gi∈S Ni.

2.3. Minimal Covering Subnetwork Problem

We now formulate the coordinately dysregulated subnetwork identification problem as one of identifying min-
imal subnetworks that cover all samples either positively or negatively. Similar set-cover based approaches are
also shown to be effective in feature selection.23 Here, rather than searching for the “best” subnetwork in the
entire network, we look for the “best” subnetwork associated with a given gene. This is because, from a biolog-
ical perspective, it is not necessarily true that a single subnetwork that maximizes an objective criterion over
the entire network will be the only relevant subnetwork. On the contrary, for various applications including
identification of subnetwork markers for classification, multiple subnetworks are useful. Furthermore, in un-
derstanding the relationship between the manifestation of phenotype at different levels of cellular control (e.g.,
genomic sequences, gene expression, protein expression), researchers may be interested in finding subnetworks
associated with known genetic markers. Indeed, in Section 3.5, we demonstrate that subnetworks associated
with known genetic markers (“driver genes”) of colorectal cancer (CRC) are more effective in classification of
CRC as compared to subnetworks associated with random genes. Furthermore, proteomic targets that are iden-
tified based on differential protein expression, when used as seeds for identification of dysregulated subnetwork
markers, are shown to provide significant insights into the systems biology of complex phenotypes.24

Definition 3. Minimal Covering Subnetwork Associated with a Gene. For a set of paired samples
U , a set of genes V with binary expression profiles Êi ∈ {0, 1}|U|, a PPI network G = (V, E) and a gene gi ∈ V,
the minimal covering subnetwork associated with gi is defined as a subnetwork Si ⊆ V satisfying the following
conditions:

(1) gi ∈ Si.
(2) Si is a local subnetwork, i.e., ∀ gj ∈ Si, ∃ gk ∈ Si such that δ(gj , gk) ≤ `, where δ(gj , gk) denotes the

network distance between gj and gk, and ` denotes an adjustable threshold that specifies the desired
locality of the subnetwork (if ` = 1, the subnetwork is connected).

(3) Si covers all samples either positively or negatively, i.e., P(Si) = U or N (Si) = U .
(4) If P(Si) = U (N (Si) = U), then |N (Si)| (|P(Si)|) is minimum over all subnetworks that satisfy the above

three conditions.
(5) Si is minimal, i.e., ∀gj ∈ Si, subnetwork Si \ {gj} does not satisfy the above conditions.

Condition (1) ensures that the subnetwork is indeed associated with the gene of interest. Condition (2)
ensures that the genes in the subnetwork are functionally associated with each other. Condition (3) ensures
that for each paired sample, there is at least one gene in the subnetwork that can distinguish phenotype and
control. Condition (4) ensures that the noise introduced by the genes that are dysregulated in the opposite
direction is minimal. Finally, condition (5) ensures that there are no redundant genes in Si.

Note that the minimal covering subnetwork problem is similar to the minimum connected cover (MCC)
problem introducted by Ulitsky et al.25 However, there is a fundamental conceptual difference between the
two problems. MCC searches for subnetworks in which multiple genes are dysregulated in each phenotype
sample. On the contrary, minimal covering subnetwork problem explicitly looks for subnetworks composed of
genes that are complementary of each other in distinguishing phenotype and control samples.

2.4. Algorithm for the Identification of Minimal Covering Subnetworks

There is a clear conceptual and mathematical similarity between the minimal covering subnetwork problem
and the well-known set-cover problem. An instance of the set-cover problem consists of a finite set X and a
family F of subsets of X, such that the union of all the sets in F constitute X. The set-cover problem asks
for a minimum size subset C ⊆ F such that the union of all sets in C is equal to X. Clearly, the minimal
covering subnetwork problem is a special case of this NP-hard problem.26 Here, the selection of sets in C
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(which corresponds to Si) are further constrained by (i) the network locality of the genes in Si and (ii) a
second collection of associated sets, union of which is to be minimized. We here adapt a polynomial-time
approximation algorithm for this well-studied problem, which works by picking, at any stage, the set that
covers the maximum number of remaining uncovered elements.27

The proposed algorithm for the identification of minimal covering subnetworks, NetCover, is illustrated
in Figure 1. For a given gene gi, assume without loss of generality that |Pi| > |Ni|. Then, NetCover identifies
the minimal covering subnetwork associated with gi as follows:

(1) Initialize subnetwork: Si ← {gi}
(2) Initialize set of uncovered samples: T ← U \ Pi
(3) Initialize set of neighboring genes: Q ← {gj ∈ V : δ(gi, gj) ≤ `}
(4) For all genes gj ∈ Q, compute P ′j ← Pj ∩ T
(5) Find the genes in Q with maximum |P ′j | and let gk be the gene among these genes with minimum |Nj |
(6) Update subnetwork: Si ← Si ∪ {gk}
(7) Update set of uncovered samples: T ← T \ P ′k
(8) Update set of neighboring genes: Q ← Q∪ {gj ∈ V : δ(gk, gj) ≤ `} \ {gk}
(9) If T = ∅ or Q = ∅, return Si; otherwise, go to step (4)

Since the cardinality of Q is bounded by |V| and the loop (4)-(9) can be repeated at most |V| times, the
worst-case running time of this algorithm is O(|V|2). However, in our experiments on several colorectal cancer
datasets, we observe that the algorithm successfully identifies covering subnetworks that are fairly small (i.e.,
the loop exists with T = ∅ after a few iterations).

2.5. Using Minimal Covering Subnetworks for Classification

To quantify the discriminative potential (hence, relevance to the manifestation of phenotype) of discovered
subnetworks, we use these subnetworks to build classifiers for diagnosis and prognosis of the phenotype. For
this purpose, for a given gene expression dataset, we first discover the minimal covering subnetwork for all
genes in the human PPI network. Then, since the minimal covering subnetworks for more than one gene might
be identical, we eliminate the subnetworks that are redundant. Subsequently, we score each of the remaining
subnetworks according to their coordinate dysregulation (I(ES , C)). Then we select the K non-redundant
subnetworks with maximum I(ES , C). Here, we consider a subnetwork redundant if it shares a gene with
a subnetwork that is already selected. The number of selected subnetwork features, K, is designated as an
adjustable parameter. Finally, we use the aggregate expression profiles (ES) of these selected subnetworks to
compute feature vectors for each sample. We then use these feature vectors to train and test classifiers for the
prognosis and diagnosis of the phenotype of interest, as we discuss in the next section.

3. Results and Discussion

In this section, we comprehensively evaluate the performance of the proposed algorithm in the context of
human colorectal cancer (CRC) and compare its performance with the greedy algorithm by Chuang et al.,16

which aims to directly maximize the additive mutual information by greedily growing subnetworks. We then
investigate the biological relevance of coordinately dysregulated subnetworks in the network neighborhood of
genes that are implicated in CRC according to gene association studies.

3.1. Human Colorectal Cancer (CRC)

Colorectal Cancer (CRC) is the third most common cancer and second leading cause responsible for cancer
related death in the western world.28 CRC generally starts with a simple, benign tumor. Most often, these
growths go undetected, even for years, before they develop into malignancies. Therefore, until the symptoms
of cancer are developed, diagnosis of cancer is rather difficult. Monitoring of differential gene expression is
therefore useful for diagnosis of cancer at early stages, as well as prognosis of the development of the tumor
and therapeutic outcome. Furthermore, since most deaths are related to diagnosis of CRC in late stages,
understanding of the network dynamics of CRC thorough its various stages may be very useful in development
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of more effective therapeutic intervention strategies. To this end, if coordinately dysregulated subnetworks that
are identified with respect to dysregulation at a particular stage can successfully classify disease at another
stage, such subnetworks may be identified as those that are important in the development of disease. For
this reason, in our experimental studies, we use a particular dataset to identify coordinately dysregulated
subnetworks and use these subnetworks to develop classifiers for the diagnosis and prognosis of CRC with
respect to other datasets.

3.2. Datasets

In our experiments, we use three CRC-related microarray datasets obtained from GEO (Gene Expression
Omnibus, http://www.ncbi.nlm.nih.gov/geo/index.cgi). These datasets, which are referenced here by
their accession number in the GEO database, are the following:

• GSE8671 contains the expression profiles of 8,987 genes across 32 prospectively collected adenomas paired
with those of normal mucosa.29

• GSE10950 contains the expression profiles of 18,171 genes across 24 normal and tumor pairs.30

• GSE6988 contains the expression profiles of 17,104 genes across the following tissue samples: paired tissues
of 25 normal colorectal mucosa, 27 primary colorectal tumors, 13 normal liver and 27 liver metastasis, and
20 primary colorectal tumors without liver metastasis.31

The human protein-protein interaction data used in our experiments is obtained from the Human Protein
Reference Database (HPRD http://www.hprd.org). This dataset contains 35023 binary interactions among
9299 proteins, as well as 1060 protein complexes consisting of 2146 proteins. The binary interactions contain
in vivo, as well as in vitro interactions obtained via high-throughput screening. We integrate the binary
interactions and protein complexes using a matrix model (i.e., each complex is represented as a clique of the
proteins in the complex), to obtain a PPI network composed of 42781 binary interactions among 9442 proteins.

In order to reduce the effect of systematic experimental bias in high-throughput microarray experiments,
the expression profile of each gene in each dataset is normalized to have a mean value of zero and standard
deviation of one across all the samples. For the identification of subnetworks, these normalized expression
values are then binarized by setting the largest α% of the normalized expression values to 1 and all of the rest
to 0. Here, α is an adjustable parameter that specifies the fraction of “expressed” genes in the dataset. This
tunable binarization scheme is chosen with a view to investigating the effect of binarization on the performance
of NetCover (related experimental results are provided at the end of this section). In the experimental results
reported in the following discussion, α is set to 25% since this value is found to be optimal for the performance
of NetCover in all experiments. Note here that binary expression levels are used only for the identification
of dysregulated subnetworks via NetCover. On the other hand, coordinate dsyregulation of subnetworks
is computed by quantizing the aggregate expression profiles into eight bins, since this value is found to be
optimal for the performance of Chuang et al.’s greedy algorithm. Therefore, the performance methods other
than NetCover does not depend on α.

3.3. Experimental Design

NetCover is implemented in Matlab. Using this implementation, two different sets of coordinately dysreg-
ulated subnetworks are generated based on the datasets GSE8671 and GSE10950. In order to evaluate the
classification performance of these subnetworks, extensive experiments are performed by using various types of
classifiers and different classification problems. Three classification problems are considered for this purpose:

• Diagnosis of samples in GSE10950. Subnetworks discovered using GSE8671 are used to predict the class
(cancerous vs. non-cancerous) of samples in GSE10950.
• Diagnosis of samples in GSE6988. Sets of subnetworks discovered using GSE8671 and GSE10950 are used

to predict the class (cancerous vs. non-cancerous) of samples in GSE6988.
• Prognosis of samples in GSE6988. Subnetworks that are discovered using GSE8671 and GSE10950 are

used to classify the 27 colorectal tumors with liver metastasis and 20 without liver metastasis in GSE6988
into metastatic vs. non-metastatic classes.
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For each of these problems, two types of classification tests are performed:

• Cross-classification (CC): The classifier is trained on one dataset and tested on another dataset (note
that this is not applicable to the prognosis of samples in GSE6988, since other datasets do not contain
metastasis information).
• Leave-one-out cross-validation (LOOCV): For each sample in a dataset, one sample is left out and the

classifier is trained using the remaining samples in that dataset, which is then used to classify the corre-
sponding sample. The performance of the classifier is evaluated by repeating this procedure for all samples.

For each instance, two types of classifiers are used: (i) a quadratic regression model, provided by Matlab’s
classify function and (ii) a support vector machine (SVM), provided by Matlab’s svmclassify function.
3.4. Classification Performance in Diagnosis and Prognosis of Colorectal Cancer

In this section, we report systematic experimental results on the diagnostic and prognostic performance of the
subnetwork markers identified on GSE10950 and GSE8671 datasets on classifying samples in the GSE10950
and GSE6988 datasets. The performance of each of these sets of subnetwork markers is compared against
(i) the subnetwork markers identified by Chuang et al.’s greedy approach16 (also implemented in Matlab for
comparison purposes), and (ii) single gene markers. NetCover takes about 10 minutes for the identification
of subnetworks associated with all genes in each of GSE10950 and GSE8671, while the greedy algorithm takes
about 30 minutes to complete the same task. The subnetwork markers that are identified by Chuang et al.’s
algorithm are ranked and used for classification in the same way as the subnetwork markers identified by
NetCover. Similar to subnetwork markers, single gene markers are ranked based on their individual mutual
information with the phenotype and the top k markers are used for classification for 1 ≤ k ≤ K.

The number of (subnetwork or single gene) markers, denoted K, is used as a free parameter for building,
training, and testing the performance of classifiers. For each 1 ≤ K ≤ 50, the performance of the classification
is measured using ‘Area Under ROC Curve’(AUC) criterion. AUC is a measure of the overall performance of a
classifier, which accounts for the trade-off between the precision (selectivity) and recall (sensitivity) achieved
by the classifier. Here, precision is defined as the fraction of true positives among all samples classified as
phenotype by the classifier, while recall is defined as the fraction of true positives among all true phenotype
samples. AUC is a measure of the average precision across varying values of recall (or vice versa) and an AUC
of 1.0 indicates that the classifier provides perfect precision without sacrificing recall. Therefore, a value of
AUC closer to 1.0 indicates better performance of a classifier. Note that, when prediction of the classifier does
not depend on an adjustable threshold (i.e., there is only a single point on the ROC curve), the AUC value
returned by Matlab is equal to the arithmetic mean of precision and recall. In those cases, other measures such
as the harmonic mean of precision and recall (known as F-measure) are considered more reliable; however, in
our experiments, AUC and F-measure provided similar results while comparing different classifiers.

The overall performance of the subnetwork and single gene markers is evaluated in Figure 2. In this figure,
to systematically evaluate the performance of the subnetwork and single gene markers across different values of
K, we report (i) average AUC across all values of K, ranging from 1 to 50 (average performance of the classifier)
and (ii) maximum AUC across this range of K (optimal performance of the classifier that can be obtained
by adjusting the number of markers accurately). As seen in the figure, in all three experiments (diagnosis of
GSE10950, diagnosis and prognosis of GSE6988), subnetworks identified by NetCover demonstrate better
classification performance compared to subnetworks discovered by greedy algorithm and single gene markers for
both classification procedures and classifier types used. This observation indicates that NetCover discovers
subnetworks that are more relevant in terms of the network dynamics of the progression of CRC, in that
subnetworks identified in one dataset can distinguish samples in another data set better, as compared to
single gene markers or subnetworks identified by another state-of-the-art algorithm.

3.5. Coordinately Dysregulated Subnetworks Associated with Hallmarks of CRC

In recent years, comparative genomic studies of CRC have revealed many genes with mutations that may
be associated with colorectal cancer. These “Hallmarks of CRC” include APC, CTNNB1, KRAS, HRAS,
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Fig. 2. Comparison of the classification performance of subnetwork markers identified by NetCover against subnetwork markers iden-
tified by Chuang et al.’s algorithm and single gene markers. In each figure, the AUC for diagnosis and prognosis of samples in GSE8671,
GSE10950, and GSE6988 datasets is shown for different combinations of classification and performance evaluation methods. For each
configuration, average and maximum AUC (i.e., the best classification that can be obtained by accurately adjusting the number of fea-
tures) are measured across number of markers ranging from 1 to 50. (A) Average, (B) maximum AUC for cross-classification (CC) using
support vector machines (SVM). (C) Average, (D) maximum AUC for CC using Quadratic Regression (QR). (E) Average, (F) maximum
AUC for leave-one-out cross-validation (LOOCV) using SVM. (G) Average, (H) maximum AUC for LOOCV using QR.
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Fig. 3. Classification performance of coordinately dysregu-
lated subnetworks associated with genes that are known to be
susceptible for CRC, as compared to subnetworks associated
with randomly selected genes.

Fig. 4. Effect of binarization on the performance of Net-
Cover. The graph shows the area under ROC curve for three
instances with respect to fraction (α) of genes that are con-
sidered as “expressed”.

SMAD4, TGFBR2, MYC, SRC and DCC.28 To investigate whether the neighborhood of these genes con-
tain coordinately dysregulated subnetworks that may be relevant in the manifestation of CRC, we discover
coordinately dysregulated subnetworks associated with these genes using both NetCover and Chuang et
al.’s greedy algorithm, on datasets GSE8671 and GSE10950. Then, we use the subnetworks identified on each
dataset to classify the samples in the other dataset. In Figure 3, the AUC provided by these classifiers is com-
pared against the AUC provided by the same number of subnetworks associated with randomly selected genes.
As can be seen in the figure, the subnetworks associated with the hallmarks of CRC demonstrate very high
classification accuracy for both datasets. Furthermore, NetCover identifies larger subnetworks with better
classification performance, as compared to the greedy algorithm. These results indicate that the coordinately
dysregulated subnetworks associated with the CRC driver genes can be used to understand the effect of the
mutations in the driver genes on the dysregulation of the other genes within the context of network dynamics.
These subnetworks may also be useful in discovering proteins that are related to disease-causing genes but
may not exhibit significant individual dysregulation.32

3.6. Effect of Binarization

In order to investigate the effect of binarization on the performance of the proposed algorithm and to choose the
cutoff level at which to binarize the gene expression data, we fix α, which specifies the fraction of “expressed”
genes in the dataset, at values of 5%, 10%, 25% and 50%. Then we use NetCover to discover the dysregulated
subnetworks at each level of α and perform systematic experiments whose results are reported in Figure 4. It
can be observed from the figure that the subnetworks discovered at α = 25% show best performance for all
instances. For this reason, we choose the cutoff level at which 25% of the genes are “expressed” to binarize
the gene expression data.

4. Conclusion

In this paper, we propose a novel computational approach for identifying coordinately dysregulated subnet-
works in a complex phenotype like cancer. Our algorithm integrates protein-protein interaction data with
clinical gene expression data to capture the coordinated dysregulation of multiple interacting genes. Applica-
tion of our algorithm on human colorectal cancer (CRC) datasets shows its potential in identifying subnetworks
with high relevance to disease progression. However, our current algorithm is defined in terms of paired gene
expression data; that is, datasets where there is a one-to-one relationship between control and phenotype
samples. Extension of this approach to unpaired datasets will broaden the application of the proposed frame-
work. Furthermore, the subnetwork identification algorithm implemented here is based on an approximation
algorithm for the set-cover problem. Development of algorithms for more effective search of the subnetwork
space may lead to identification of more biologically relevant subnetworks. Finally, detailed investigation of
the subnetworks identified by NetCover may shed light into the network dynamics of CRC.
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