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The main goal of systems medicine is to provide predictive models of the patho-
physiology of complex diseases as well as define healthy states. The reason is
clear—we hope accurate models will ultimately lead to more specific and sensitive
markers of disease that will help clinicians better stratify their patient populations
and optimize treatment plans. In addition, we expect that these models will
define novel targets for combating disease. However, for many complex diseases,
particularly at the clinical level, it is becoming increasingly clear that one or a
few genomic variations alone (e.g., simple models) cannot adequately explain the
multiple phenotypes related to disease states, or the variable risks that attend
disease progression. We suggest that models that account for the activities of
many interacting proteins will explain a wider range of variability inherent in
these phenotypes. These models, which encompass protein interaction networks
dysregulated for specific diseases and specific patient sub-populations, will be
constructed by integrating protein interaction data with multiple types of other
relevant cellular information. Protein interaction databases are thus playing an
increasingly important role in systems biology approaches to the study of disease.
They present us with a static, but highly functional view of the cellular state, and
thus give us a better understanding of not only the normal phenotype, but also
the overall disease phenotype at the level of the whole organism when certain
interactions become dysregulated.  2010 John Wiley & Sons, Inc. WIREs Syst Biol Med 2010
DOI: 10.1002/wsbm.121

INTRODUCTION

Protein–protein interaction (PPI) networks are
important datasets driving basic and translational

research. The datasets may capture direct interactions
between proteins (physical), or indirect interactions
(functional), and often both. As the regulated activities
of proteins (e.g., enzymes, receptors, transcription
factors, etc.) are the most important and immediate
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effectors of molecular phenotype, providing models
of their regulated behavior and their interactions
with a myriad of environmental factors is critical
to understanding the wide spectrum of phenotypes.
Of particular importance to researchers, studying
the concerted interactions of many proteins as they
function together in a network provides specific
guidance for validation strategies that are well-suited
to establishing the mechanistic cause(s) of disease.
Genomic-based studies such as genome-wide profiling
for driver mutations, mRNA expression (microarray
or RNAseq) profiling, or genome-wide association
studies (GWAS), have defined disease susceptibility
genes and loci, and in turn have provided important
targets for disease classification and mechanistic
insight. However, in many cases they have limited
application in informing clinical prognosis or driving
the discovery of new drug targets. The likely reason
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for this is that DNA and RNA are not the proper
end-point context in which to fully understand
mechanisms of disease or the dysregulated molecular
networks that we hypothesize cause and drive its
progression. Genomic approaches are not by any
means lacking, but function is frequently integrated
downstream from genes and thus similar attention
must be paid to protein function and integration to
provide a complete picture of the phenotype.

Increasingly, we have advanced our technical
capability to perform high-dimensional screens of
the proteome to detect significant changes in
thousands of proteins varying in disease. Similar
increases in our understanding of the interactome
of model organisms and humans are occurring as
are improvements in ascertaining the confidence of
these interactions. The integration of multiple data
types, along with the wealth of genomic data, in
the topological context of a PPI network layers
these data within an ideal substrate that is well-
suited to powerful computational methods, to create
more accurate models of both health and disease.
These models will likely drive novel approaches to
personalized medicine, where we better understand
the genetic background of patients and can predict
their proteome response to the environment in the
context of their interacting gene products. Still,
many significant challenges remain to developing
a network-based understanding of biology. These
include incompleteness of the human interactome,
both in terms of the interactions that occur in a specific
context and their regulatory logic, and how this
incompleteness impacts our ability to mine these data.

Next, we discuss the extant technologies that
have been used to build PPIs, followed by novel
examples of the application of PPIs to the research
of human disease, and finally a discussion of integra-
tive computational approaches using PPIs. The focus
of this review is by no means intended to diminish
the importance of studies based on genetic interac-
tion networks—studies that have also furthered our
understanding of complex disease phenotypes. For
a recent review of genetic interaction networks see
Dixon et al.1

EXPERIMENTAL STRATEGIES
FOR MAPPING PPIS

PPI mapping is a key component of systems-based
approaches to understanding cellular function. This
section will focus on efforts to map eukaryotic PPIs.
Multiple experimental and computational methods
have been used to identify and infer PPIs. How-
ever, genome-wide protein interaction maps have been

largely generated using two complementary technolo-
gies: yeast two-hybrid (Y2H) and affinity-purification
mass-spectrometry (AP-MS). High-throughput Y2H
techniques were developed from initial observations
that transcription factor activity can be reconstituted
from physically separate activation (AD) and binding
(BD) domains brought into close proximity.2 By fusing
the BD and AD to bait and prey proteins, respectively,
the interaction of the bait and prey may be tested
through reconstitution of transcription factor activity.
Large-scale application of this technique is achieved
by mating thousands of different yeast strains each
expressing a different bait or prey fusion.3 In contrast
to the genetic approach used in Y2H, AP-MS relies
on biochemical purification of protein complexes with
subsequent identification of complex members using
mass-spectrometry.4 AP-MS combines the specificity
of antibody-based protein purification with the sensi-
tivity of mass-spectrometry and enables detection of
protein complexes under approximately physiological
conditions. In a similar fashion to Y2H, improve-
ments on an initially low-throughput technique have
led to the development of work-flows that can identify
hundreds or thousands of protein complexes. Current
AP-MS strategies typically make use of tagged bait
proteins that are expressed in cells and then puri-
fied with an antibody against the tag.5 Aside from
their dissimilar experimental approaches, Y2H and
AP-MS provide different but complementary views of
the protein interactome; Y2H detects binary protein
interactions, whereas AP-MS detects co-membership
in protein complexes. Both techniques have been
applied to multiple model organisms. Initial studies
focused on prokaryotes and yeast,6–10 whereas more
recent applications have focused on the human protein
interactome.11–13

Concomitant with the volumes of data that
are generated from protein interactome studies,
many studies have focused on the development of
computational methods for prediction and analysis
of protein interactions. Of particular relevance to
this review, are the twin challenges of quality and
coverage of current protein interactome maps. Both
Y2H and AP-MS generate false positive and false
negative results for multiple reasons. For example,
in the conventional Y2H assay, bait and prey
proteins that are not correctly localized to the nucleus
may be recorded as false negatives. In addition,
the conventional Y2H assay suffers from auto-
activation whereby BD fusions can activate reporter
gene expression in the absence of any interaction,
generating false positives.14 On the other hand, sticky
proteins that are purified regardless of the identity
of the bait protein are a significant source of false
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positives in AP-MS data.12 With both Y2H and
AP-MS, false negatives may occur with classes of
proteins that are incompatible with the technology
(e.g., membrane or extra-cellular proteins) or with
weak, transient interactions or interactions only
occurring under specific cellular conditions (e.g.,
phosphorylated states or localization signals). As the
technologies mature, systematic quantification of error
rates and comparisons of results across studies and
technologies are underway.15 In the latter study, Y2H
and AP-MS datasets were concluded to be of similar
quality albeit providing different representations of
the protein interactome; binary Y2H interactions
were found to be enriched for transient signaling
interactions and interactions between complexes,
whereas AP-MS datasets favored detection of proteins
within a complex.

Estimations of the number of interactions occur-
ring, for example, in a typical human cell are useful
guides to the scale of the challenge in obtaining a
‘complete’ interaction map. Different approaches yield
different estimates; however, the size of the human
interactome (presumably the set of protein–protein
interactions occurring under a given set of condi-
tions) has been estimated to be between 154,000 and
369,00016 or as large as 650,000 interactions.17 With
the magnitude of this challenge and the incomplete-
ness of current interactome maps, several groups have
focused on designing more efficient strategies for map-
ping PPIs. A ‘pay-as-you-go’ strategy whereby likely
network hubs are identified from each successive inter-
action proteomics experiment and then used as baits
themselves was proposed to maximize the efficiency
in terms of the number of baits required to cover the
interaction network.18 Alternatively, an approach that
combines prioritization of binary interactions accord-
ing to their probability of occurrence with pooling
strategies was proposed to reduce the cost of covering
the complete interactome.19 These authors stressed the
need for multiple pass interaction screening to provide
sufficient confidence and coverage and emphasized the
importance of experimental design in future global
studies of the interactome. In the absence of a com-
plete human interactome map, the remainder of this
review will focus on data-mining strategies that can
and have been used to identify significant subnetworks
from incomplete interactome maps.

HUMAN DISEASE—GOING BEYOND
GENES

Soon after Francis Crick published the central dogma
of biology in 1970, the race was on to discover the
genetic basis for a vast number of human diseases,

many of which are monogenic.20 However, many
complex diseases such as diabetes and common
cancers have polygenic causes. Patients afflicted with
these diseases present a major challenge to clinicians,
not only because of the genetic complexity but also due
to polymorphic variation across patients.21–24 With
respect to genetics, human colorectal cancer (CRC),
the second leading cause of cancer death in the USA
and UK, is one of the most thoroughly researched of all
human cancers. In a recent landmark study,25 genome-
wide profiling was used to identify 69 candidate driver
genes significantly mutated in a sizeable cohort of
CRC biopsies, yet up to half of the tumor samples
used in the screen did not contain mutations in
one or more of these genes. However, with the
recognition that pathways and not individual genes
drive tumorigenesis,26 a subsequent network analysis
of these genes27 revealed that a number of them co-
located on canonical signaling pathways in CRC. [By
pathway we mean a regulated sequence of protein
interactions directed toward a particular outcome in
the cell, such as the transcription of certain genes,
apoptosis, etc. A signaling pathway refers to a special
type of pathway that is activated (or deactivated) by
the binding of a ligand, typically to a cell surface
receptor. For example, the WNT-signaling pathway,
which is often constitutively active in CRC]. This study
and others, where genetic variations were identified
that associate with disease, reveal the power of PPIs as
a context in which to understand how a disparate
constellation of mutant gene products, known to
cluster in the human PPI network,28 can shed light
on the functional patho-physiology of the disease.
Likewise, many expression profiling experiments
related to human CRC (>30 found at the Gene
Expression Omnibus)29 have revealed panels of genes
whose overall expression profile can classify various
CRC disease states, but frequently panels from similar
experiments only partially overlap, and even separate
analyses of the same dataset can lead to strikingly
few predictor genes in common.30 However, when
gene expression data are combined with PPI data,
the integrative approach may greatly advance our
understanding of the functional basis of disease,31 as
can the addition of expression proteomic data32,33 or,
more generally, structural proteomic data.34 Although
common cancers like CRC are thought to be driven by
somatic mutations, the pathways and networks that
mediate the dysregulation at the level of the proteome
are far less well understood. This and similar evidence
from large-scale studies in other diseases, plus the
rapid growth in the size and annotation of human
PPIs, are increasing enthusiasm for network-based
approaches for elucidating the mechanistic causes of
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many diseases. The shift from single gene targets
toward network-based targets is beginning to gain
acceptance in the field of drug discovery35,36 as well
as among researchers and clinicians eager for better
prognostic markers to improve disease stratification
in patients.37–39

Beyond their application to the study of
individual diseases, PPIs are now being employed to
search for modular subnetworks that may play a role
in more than one disease, in an effort to identify new
disease susceptibility genes. For instance, Goh et al.40

constructed a human disease network and a disease
gene network using data obtained from the Online
Mendelian Inheritance in Man (OMIM) database.
When overlaid on a high-confidence human PPI, they
observed that disorders and genes of the same class
are more frequently linked to each other compared
to random organizations of both. They also observed
that the products of genes essential for life exhibit
high degree (number of links to other proteins) in
the PPI network compared to non-essential genes,

whereas non-essential disease genes (1) exhibit lower
degrees and (2) their mRNA expression pattern does
not correlate with the expression pattern of the rest
of genes in the cell. A similar study by Barrenas
et al.41 started with GWAS data obtained from a well-
annotated catalog of SNPs associated with human
disease. They largely corroborated the finding of Goh
et al. and also observed that proteins in the close
‘neighborhood’ of disease subnetworks provide an
important class of new candidate genes. Motivated
by these insights, many computational methods that
prioritize candidate genes in a linkage interval based
on network proximity and connectivity to known
disease genes have been developed.42–44 See Figure 1
for a schematic representation of integrative network-
based approaches.

Although the power of network-based appro-
aches paired with equally powerful computational
algorithms is promising, the importance of tradi-
tional wet-bench validation of the discovered can-
didate genes, subnetworks, or pathways cannot be
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FIGURE 1 | Network-based disease modeling approach. Beginning with a model of disease, e.g., human tissues, cell culture, or relevant animal
models, one may assay for significant changes between disease and control (e.g., mutations or differentially expressed genes or proteins or SNPs,
etc.). The result of any one of these assays (or, theoretically, more than one) is used to ‘seed’ a computational search of the PPI for candidate
subnetworks discriminative of the disease (see Box 1 for an example). The approach is motivated by the hypothesis that gene products with a role in
disease tend to cluster in the interactome. Further computational modeling can be employed to assess the classification power of the candidate
subnetworks to discriminate control from disease, and more importantly provide a basis for validation by perturbation analysis (e.g., siRNA screening)
to drive validation of disease biomarkers for clinical utility.
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understated. The validation of one or more candidate
gene products and its role in disease is an impor-
tant and necessary step in the translation of basic
research to clinic utility. Next, we will discuss in
more detail several integrative approaches that have
been used in the context of network biology and dis-
ease, approaches that in many cases have provided
candidate targets that merit validation.

NETWORK-BASED INTEGRATION
OF GENE AND PROTEIN EXPRESSION
DATA

PPI networks provide static and qualitative descrip-
tions of the wiring of cellular systems.45,46 Molecular
expression data (e.g., mRNA expression, protein
expression), on the other hand, provides quantita-
tive information on the molecular composition of the
system in different samples, conditions, tissues, or
over time.47,48 Consequently, it is natural to integrate
these two sources of information to gain mechanis-
tic insights on complex diseases. Indeed, integration
of molecular expression data with protein–protein
interactions is shown to enhance modularization of
networks.49–55 In other words, in the quest for iden-
tifying modular groups of proteins, co-expression
patterns provide additional information to the con-
nectivity patterns (e.g., high connectivity) indicative
of modular function. Taylor et al.56 also investigate
modularity in the context of phenotypic differences
and report alterations in network modularity in
cancer. Furthermore, interpretation of gene expres-
sion in the context of protein–protein interactions
is shown to improve the identification of disease
genes.57–59 These results indicate that identification
of subnetworks that are dysregulated in a disease
of interest may provide new insights in discovery of
disease-related genes, improved diagnosis and prog-
nosis, and development of systems-level intervention
strategies.

In one of the early algorithmic studies, Ideker
et al.60 propose a method for identifying dysregu-
lated subnetworks with respect to GAL80 deletion
in yeast. This method is based on first assessing the
dysregulation (differential expression) of each gene
individually and then searching for connected sub-
networks enriched in dysregulated genes. Variations
of this method are shown to be effective in identi-
fying multiple genetic markers in prostate cancer,61

breast cancer,56 melanoma,62 aging,63–65 Alzheimer’s
disease58 and drug response.66 All of these meth-
ods use network information to interpret the dys-
regulation of individual genes at the systems-level;
however, they can be considered univariate analyses

from a statistical perspective, as they assess differential
expression individually for each gene.67

Using a multivariate approach, Chuang et al.68

attempt to capture sample-specific variation in gene
expression while identifying dysregulated subnet-
works. They define subnetwork activity as the average
mRNA-level expression of the proteins in the sub-
network. They then develop an information-theoretic
scheme to assess the dysregulation of a subnetwork
in terms of the mutual information between the sub-
network activity and sample class (e.g., normal vs
tumor). This captures the coordination of multiple
genes in discriminating normal and disease samples.
The difference between this multivariate approach and
earlier univariate approaches is illustrated in Figure 2.
When used as features for classification, these coordi-
nately dysregulated subnetworks clearly outperform
single gene markers in predicting metastasis of breast
cancer.68

Although quite useful, additive subnetwork
activity captures the coordination between the dysreg-
ulation of interacting gene products only to a limited
extent. Observing that coordinated changes in the
mRNA-level expression of interacting proteins can
exhibit combinatorial patterns as well, Chowdhury
et al.69 formulate coordinate dysregulation combina-
torially and search for subnetwork state functions
that are indicative of different stages of cancer. When
used in conjunction with neural networks to train
subnetwork-based classifiers, this method is shown to
deliver excellent performance in predicting metastasis
of colon cancer. The difference between additive and
combinatorial coordinate dysregulation is illustrated
in Figure 3. A sample subnetwork indicative of liver
metastasis in colorectal cancer, identified using the
combinatorial formulation of coordinate dysregula-
tion, is shown in Figure 4.

As a stronger notion, Anastassiou70 formulates
the synergistic dysregulation of a subnetwork as the
coordinate dysregulation that is not explained by
smaller parts of the subnetwork. Synergy provides
a stronger notion than coordinate dysregulation, as it
corrects for the coordinate dysregulation of the sub-
sets of the subnetwork, thereby capturing the pattern
of dysregulation that emerges only when all genes in
the subnetwork are considered (hence the term syn-
ergy). Although computation of synergy and identifi-
cation of synergistic subnetworks are computationally
intractable problems for arbitrary subnetwork size,70

pair-wise assessment of synergy generates synergy net-
works for complex diseases, which can be interpreted
in the context of physical interactions between pro-
teins to gain mechanistic insights.71 Besides coordinate
dysregulation, differential co-expression is also shown
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FIGURE 2 | Univariate versus multivariate assessment of subnetwork dysregulation. A hypothetical example illustrating the difference between
univariate and multivariate approaches to identifying dysregulated subnetworks. A hypothetical subnetwork S of the human PPI network is shown in
(a). Genes are shown as nodes; interactions between their products are shown as edges. In (b) and (c), each row shows a coding gene’s expression
level in control and phenotype samples. (b) and (c) each display different hypothetical scenarios for gene expression data. The last row shows
subnetwork activity, which is computed as the average of the expression of these five genes in each sample.68 Dark red shows high expression, light
gray shows moderate expression, and light green shows low expression. The dysregulation (differential expression) of a gene (or a subnetwork) is
measured in terms of how much its expression profile (or activity) can discriminate phenotype and control. Ideker et al.60 define subnetwork
dysregulation as the aggregate significance of the dysregulation of each gene, normalized by the number of genes in the subnetwork. We consider
this a univariate approach as the dysregulation of each gene is assessed separately and then the results are combined to assess the dysregulation of
the subnetwork. On the contrary, Chuang et al.68 define the dysregulation of the subnetwork as the mutual information between phenotype and
subnetwork activity, i.e., how much the average expression of the genes in the subnetwork can discriminate phenotype and control. We consider this
a multivariate approach as the dysregulation of all genes in the subnetwork are assessed together to compute the dysregulation of the subnetwork.
In (b), all genes exhibit maximum dysregulation, as each of them can perfectly discriminate phenotype and control. Consequently, the univariate
approach can correctly identify this subnetwork as a dysregulated subnetwork, as all genes in the subnetwork are dysregulated. On the other hand, in
(c), each gene exhibits moderate individual dysregulation, so the subnetwork would not be considered a dysregulated subnetwork by the univariate
approach. However, in this case, the subnetwork activity can perfectly discriminate phenotype and control, thereby capturing the coordinate
dysregulation of the genes in this subnetwork. This example demonstrates the potential of multivariate approaches in discovering dysregulated
subnetworks, beyond what can be discovered by a univariate approach.

to be effective in identifying sets of genes that are
co-expressed in disease samples although not being
co-expressed in control samples and vice versa.72,73

Assessment of differential expression in terms of
mRNA expression is useful as a proxy to changes in
the abundance of functional proteins74 and enables
identification of interacting proteins that are dys-
regulated at the transcriptional level.75 However,
mRNA expression explains the variation in protein
expression only to a limited extent76–78 and may not
capture patterns of posttranslational dysregulation.79

As network-based analyses primarily focus on inter-
actions among functional proteins, it is valuable to
support these analyses with differential analyses of
protein expression.80,81 However common technolo-
gies can quantify only a limited fraction of the proteins
in the cell at one time.82 Nibbe et al.32 address
this problem by seeding the search for transcrip-
tionally dysregulated subnetworks with differentially
expressed proteins. Namely, they first identify dif-
ferentially expressed proteins in late stage colorectal

cancer using 2D-DIGE and map these proteins on
a network of human protein–protein interactions.
Subsequently, they identify proteins that exhibit signif-
icant crosstalk to these proteomic seeds, and assess the
coordinate dysregulation of subnetworks composed
of these significant crosstalkers. Cross-classification
experiments show that this method can identify a
compact set of subnetworks that are highly repro-
ducible and very useful as features for classification of
tumorigenic phenotype.33 Proteomic approaches are
also useful in characterizing the network mechanisms
of cancer, as they can be used to derive causal models
for cellular signaling.83

CONCLUSION

Systems-based approaches to study human disease
serve to remind us that biology is fast becoming
an information science. The challenge to construct
a more complete and accurate human interactome is
large, but so is the opportunity to mine and integrate

 2010 John Wiley & Sons, Inc.



WIREs Systems Biology and Medicine Protein–protein interaction networks and subnetworks in the biology of disease

G4

G3

G2

G1

Control Phenotype

N1 N2 N3 N4

G1
G2
G3

G4

E(S)

P1 P2 P3 P4

Control Phenotype

N1 N2 N3 N4

G1
G2
G3

G4

E(S)

P1 P2 P3 P4

(a) (b)

(c)

FIGURE 3 | Additive versus combinatorial coordinate dysregulation. A hypothetical example illustrating the difference between additive and
combinatorial formulations for subnetwork dysregulation. A hypothetical subnetwork S of the human PPI network is shown in (a). Genes are shown
as nodes, interactions between their products are shown as edges. In (b) and (c), each row shows a coding gene’s expression level in control and
phenotype samples. (b) and (c) each display different hypothetical scenarios for gene expression data. The last row shows subnetwork activity, which
is computed as the average of the expression of these four genes in each sample.68 Please refer to Figure 2 for description of subnetwork activity and
additive coordinate dysregulation.68 In contrast to additive coordinate dysregulation, combinatorial coordinate dysregulation is defined in terms of
how much the expression state of a subnetwork can discriminate control and phenotype samples.69 Here, the state of a subnetwork refers to the
combination of expression levels of all genes in the subnetwork. In (b) and (c), the state of the subnetwork in each sample is given by the first four
entries of the column corresponding to that sample (e.g., in (b), the subnetwork has expression state MHML in sample N2, whereas it has state
HHMM in sample P2, where H, M, and L, respectively, denote high expression, moderate expression, and low expression). In the case shown in (b),
subnetwork activity perfectly discriminates control and phenotype, so the subnetwork is considered dysregulated according to the additive
formulation of subnetwork dysregulation. On the other hand, in the case shown in (c), neither the expression of individual genes in S,nor the
subnetwork activity of S can discriminate control and phenotype. However, combination of the expression states of the genes in S can perfectly
discriminate between control and phenotype (either G1 and G3 or G2 and G4 are expressed in normal samples, whereas in phenotype samples, either
G1 and G2 or G3 and G4 are expressed). This example demontsrates the potential power of combinatorial approaches in discovering dysregulated
subnetworks, beyond what can be discovered by additive approaches.

the vast data that exist today. In the context of
computational models, PPIs present a pivotal point
of integration in the overall approach to study the
end-point interactions thought to directly cause and
sustain the progression of complex human diseases.
AP-MS and Y2H will continue to be the workhorse
strategies to build a more complete interactome.
However, we expect that curated PPIs, where the
database of interactions is based on evidence from
traditional low-throughput experiments reported in
the literature,84,85 will continue to improve both in
terms of coverage and accuracy, notwithstanding their
inherent bias toward well-studied proteins.86 It is
critical to systems biology that both high- and low-
throughput methods continue to make contributions
to high-confidence PPIs, in order to catch up to the
development of sophisticated computational models
which, having made a head start in other fields,
await further development of these databases. Similar
to other examples in nature, modeling complex
diseases present us with a formidable challenge.87 We
suggest that a more integrative approach to modeling
molecular phenotype, where PPIs play an important
role, will drive the discovery of better disease markers
which, when validated, can be readily translated to
the clinic to improve patient outcomes.

BOX 1

A NETWORK INTEGRATION APPROACH

In a given disease state, certain genes may
be mutated, or chromosomal aberrations may
obtain—genes inserted, deleted, or duplicated.
Scores of genes may be differentially expressed,
or many proteins differentially expressed or
modified. We now know siRNAs have a reg-
ulatory role and certain SNPs associate with
disease. All these changes ultimately resolve to
one or more functional processes in the cell
that sustain the phenotype. The PPI network
presents an optimal context in which to model
the function. Further, the human PPI network is
not randomly organized; in cancer, for instance,
mutation ‘hotspots’ exist, certain disease subnet-
works have been shown to overlap, and studies
of biological networks reveal they have certain
mathematical properties that can be exploited
by algorithms to identify specific features.

For instance, consider a set of proteomic
disease targets, denoted S. To identify proteins
that are functionally associated with the proteins
S, we use a network of protein interactions.
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FIGURE 4 | A sample subnetwork of the human PPI network with a state function indicative of liver metastasis in human colorectal cancer. This
subnetwork was identified by the CRANE algorithm on the GSE6988 dataset obtained from Gene Expression Omnibus (GEO). The topology of the
network that connects the proteins in this subnetwork is shown on the left panel. The mRNA expression profiles of the subnetwork proteins in
metastatic and non-metastatic samples are shown on the right panel. For this subnetwork, the state function LLLLLH (in the order of rows of the gene
expression matrix, where L and H, respectively, indicate low and high expression) indicates metastasis, i.e., a sample is likely to be metastatic if the
first five genes exhibit low expression, but Osteopontin shows high expression. The overall combinatorial coordinate dysregulation of this subnetwork
is 0.72. (Reprinted with permission from Ref 69. Copyright 2010 Springer).

Let G = (V , E) denote the network of protein
interactions, where V consists of all proteins
in the network (S is a subset of V), and an
undirected edge uvεE represents an interaction
between proteins uεV and vεV Our objective is to
compute a score a(v) for each protein vεV, where
a(v) quantifies the network crosstalk between v
and the proteins in S. Here, network crosstalk
is a measure of the network proximity of v to
the proteins in S, as well as the multiplicity
of network paths in between. This measure of
crosstalk is used as an indicator of functional
association between proteins. Using this model
of crosstalk, and a method analogous to Google’s

page rank algorithm—an algorithm that scores
the importance of a document on the web
based on the importance of the documents
that link to it, where the importance of other
documents are defined similarly in a mutually
reinforcing manner—small subnetworks can be
discovered that are strongly associated with
the disease targets. This model leverages the
observation that disease genes often cluster
together in the PPI network. The candidate
subnetworks may then be rank ordered by
an information-theoretic measure (e.g., mutual
information) to provide a basis for biological
validation.
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