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Abstract

To determine a molecular basis for prognostic differences in glioblastoma multiforme (GBM), we employed a combinatorial
network analysis framework to exhaustively search for molecular patterns in protein-protein interaction (PPI) networks. We
identified a dysregulated molecular signature distinguishing short-term (survival,225 days) from long-term (survival.635
days) survivors of GBM using whole genome expression data from The Cancer Genome Atlas (TCGA). A 50-gene subnetwork
signature achieved 80% prediction accuracy when tested against an independent gene expression dataset. Functional
annotations for the subnetwork signature included ‘‘protein kinase cascade,’’ ‘‘IkB kinase/NFkB cascade,’’ and ‘‘regulation of
programmed cell death’’ – all of which were not significant in signatures of existing subtypes. Finally, we used label-free
proteomics to examine how our subnetwork signature predicted protein level expression differences in an independent
GBM cohort of 16 patients. We found that the genes discovered using network biology had a higher probability of
dysregulated protein expression than either genes exhibiting individual differential expression or genes derived from
known GBM subtypes. In particular, the long-term survivor subtype was characterized by increased protein expression of
DNM1 and MAPK1 and decreased expression of HSPA9, PSMD3, and CANX. Overall, we demonstrate that the combinatorial
analysis of gene expression data constrained by PPIs outlines an approach for the discovery of robust and translatable
molecular signatures in GBM.
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Introduction

Glioblastoma multiforme is the most common primary brain

tumor in adults and, unfortunately, also the most fatal. While

GBMs are categorized histologically, the nature of the disease

leads to significant variability in both tumor classification and

patient outcome. To more specifically define the disease and

simultaneously reveal the etiology, an unbiased search for

‘‘molecular signatures’’ of GBM has been undertaken by several

groups [1,2], resulting in a variety of GBM markers which,

unfortunately, have modest overlap. Given the large degree of

molecular heterogeneity of GBMs, analysis of thousands of patient

samples may be required to identify comprehensive gene sets by

conventional statistical approaches [3]. However, suggestions that

these myriad lists can be integrated via a systems-level analysis, e.g.

using molecular networks to find consensus marker sets [4], may

help to simplify the observed heterogeneity. In such an approach,

an individual gene can affect the algorithmic contribution of a

neighboring gene when they coexist in pathways or networks that

act to integrate molecular heterogeneity.

While approaches measuring gene expression across a group

can capture gene interaction effects, they often employ summary

measures, e.g. averaging, that omit valuable information regarding

inter- and intra- patient differences. In this work, we hypothesize

that the considerable patient-to-patient variability of GBM can be

simplified into molecular networks by identifying molecular ‘‘state

functions’’ using the computational method, CRANE (for

Combinatorially dysRegulAted subNEtworks) [5]. The use of

molecular states – where the binary expression pattern of a gene

set is considered as a whole – allows us to identify subsets of genes

whose configuration (i.e. the expression pattern rather than

expression level alone) distinguishes between the two phenotypes

of interest. In this approach, we do not assign a single expression

state to a phenotype, but, rather, we search for the set of all states

matching a particular phenotype. These expression states are

grounded in well-known sets of biological interaction data, as

defined by curated protein-protein interaction (PPI) networks.

We applied CRANE to the gene expression data collected by

The Cancer Genome Atlas [6] for patients with primary (de novo)

GBM. We identified novel subnetwork signatures of survival,
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which we then tested against an independent gene expression

dataset. We also hypothesized that mRNA dysregulation analyzed

in the context of PPI subnetworks more efficiently translates to

detectible dysregulation at the protein level. To test this, we

examined protein expression of selected targets using label-free

proteomics in a retrospectively selected set of GBM tumor

samples. The workflow presented here is a prototype for

identifying manageable subsets of genomic and proteomic targets

to ultimately drive the design of cost-effective clinical assays for

predicting patient survival – a much desired endpoint for clinicians

and patients alike.

Results

Subnetwork Signature Discovery
We began by using GBM patient information and microarray

data from The Cancer Genome Atlas [6] (TCGA) as compiled by

Verhaak et al. [7]. CRANE, an established method for mining

molecular networks [5] (illustrated in Figure 1), successfully

identified several subnetworks that were informative in separating

short-term (STS) from long-term survivors (LTS) using TCGA

mRNA data. The expression patterns for individual genes

comprising the top ten states within subnetwork 1 are shown in

Figure 1, illustrating how the varied configurations of an individual

subnetwork drive the identification of specific subgroups of

patients. As an example, note that subnetwork state 3

(LHLHLHLLLL) occurs in two short-term survivors, whereas

subnetwork state 4 (LHLHLLLLLL) occurs in two long-term

survivors; though state 3 and state 4 differ only in the switch of one

gene from H to L, they predict opposite outcomes. Also, note that

the top ten states using these 10 targets only capture 39% of the

total patients, reflecting the significant heterogeneity at the patient

level. The complete list of subnetwork signature genes can be

found in Table S1.

Subnetwork Signature Testing
To investigate the reproducibility of CRANE subnetworks in

predicting survival, we tested the TCGA-discovered subnetworks’

classification performance on an independent GBM dataset

published by Lee et al. [8]. In this analysis, subnetwork discovery

and training of the classifier was done on the TCGA data, and

testing of the classifier was done on the Lee et al. data. In this test

of the TCGA training set, the targets were fixed by the training

data (Table S1), and classification accuracy on the Lee et al. data

was incrementally calculated for each 10-gene subnetwork (see

Methods). We achieved a maximum classification accuracy of 80%

when using the top 5 subnetworks generated by CRANE from

TCGA data (Figure 2, further details in Table S2); we henceforth

refer to this 50 gene set as the subnetwork signature. With only 1

subnetwork, or 10 genes, the positive predictive value (PPV) of

short-term survival is slightly better than random chance (57%)

Figure 1. Workflow of the CRANE algorithm for detecting
combinatorially dysregulated subnetworks. We begin by map-
ping patient-specific, binarized mRNA expression data onto a protein
interaction network. Then, we identify subnetworks whose pattern of
expression – the subnetwork state function – can separate short-term
and long-term survivors. Measures of separation are the support (the
fraction of samples containing a particular subnetwork state), the
fraction of long/short-term survivors, and the J-value (see text for
description). In the table (bottom), the top ten states of the first TCGA
subnetwork are shown. Each row represents a different state of the
subnetwork. Each character in the state function (first column)
represents the expression state of a particular gene in the subnetwork,
where ‘‘L’’ and ‘‘H’’ stand for ‘‘low’’ and ‘‘high’’ expression, respectively.
doi:10.1371/journal.pcbi.1003237.g001

Author Summary

Glioblastoma multiforme (GBM) is the most common and
aggressive brain tumor in adults, and, while the median
survival time for treated patients is approximately one
year, subgroups of patients respond differently to the
same treatments, with some patients showing little
improvement and other patients living far longer than
expected. These differences in treatment response indicate
that the tumors may show molecular differences that we
can harness to tailor cancer therapy. To this end, we
sought to identify biomarkers of patient survival in GBM.
To improve the applicability of our molecular markers to
other patient groups, we constrained our markers using
maps of protein-protein interactions, and we also em-
ployed a unique computational strategy that incorporates
patient-to-patient molecular variability into the results. We
identified a set of 50 genes comprising a subnetwork
signature that successfully separated GBM patients by their
survival times. Our approach to identifying this subnet-
work signature also improved our ability to identify its
protein products in an independent cohort of patients. In
the ongoing search to improve cancer detection and
treatment, our work represents a successful strategy for
identifying reproducible biomarkers that can more effi-
ciently lead to the discovery of druggable protein targets.

Network Signatures in Glioblastoma
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while the PPV for long-term survival is 74%. The PPV for short-

term survival reaches 90% with 5 subnetworks while the

maximum observed PPV for long-term survival was 85% with

four subnetworks. The cumulative value of using multiple

networks – each with a defined set of states – is illustrated in

Figure 1. For example, state 1 in sub-network 1 (LLLLLLLLLL) is

seen in 21% of patients, while the next 9 states cover only an

additional 18% of patients (total of 39% for the top ten states).

Thus, the heterogeneity of the patient population cannot be

captured even with 10 binarized states from a single subnetwork;

multiple subnetworks (each with multiple states) are needed to

provide adequate patient coverage and clinically useful prediction

accuracy.

Analysis of Known GBM Molecular Subtypes
Known molecular subclasses of GBM exhibit differences in

survival [9,10], and we examined whether our subnetwork

signature was acting as a surrogate for known subtypes. A well-

accepted basis for the molecular subtyping of GBMs was recently

established by Verhaak et al. using an 840-gene signature [7].

Only four of our top 50 CRANE targets – phospholipase C

(PLCG1), paxillin (PXN), transforming growth factor beta 3

(TGFB3), and topoisomerase (TOP1) – overlap with this list,

strongly suggesting that our subnetwork signature is not classifying

patients by these existing subtypes. Since the CRANE targets may

be acting as proxies for the 840 genes, we also checked for an

association between our predefined survival groups and molecular

Figure 2. The top five CRANE subnetworks representing a signature of survival in glioblastoma. Gene names are indicated within the
nodes; edges represent either protein-protein interactions (turquoise), or proteins found together as partners within a complex (violet). Subnetworks
are added into the classifier in clockwise fashion (from 1 to 5); after the addition of each subnetwork, an updated positive predictive value (PPV) is
calculated, as shown along the periphery for prediction of both short-term (pink) and long-term (purple) survival.
doi:10.1371/journal.pcbi.1003237.g002

Network Signatures in Glioblastoma
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subtype using the molecular subtype calls made by Verhaak et al.

for the 173 ‘‘core’’ TCGA samples (i.e. those samples most

representative of a molecular subtype). When using the 50-gene

subnetwork signature for classification, our LTS group consisted of

21% Classical, 35% Mesenchymal, 38% Proneural, and 5%

Neural samples while our STS group consisted of 13% Classical,

37% Mesenchymal, 42% Proneural, and 8% Neural samples.

Using a chi-square test of independence, we found that these

molecular subtypes are not significantly associated (p-value.0.05)

with membership in our survivor groups in the TCGA data.

To examine the extent to which our subnetworks were

capturing true differences in survival, we investigated the

concordance between the predictions of the network-based

classifier and the survival times of the 166 patients in the Lee et

al. dataset. As seen in Figure 3, significant differences in survival

are apparent between patient groups predicted by the 50-gene

subnetwork signature (p-value,1e-6, logrank test), indicating the

expected performance of the CRANE classifiers within the test

dataset. We then compared CRANE’s performance against the

four subtypes proposed by Verhaak et al. Though the Verhaak

signatures were not designed to segregate patients by survival, the

Proneural subtype has slightly longer survival than the other

subtypes (Figure 3). By the logrank test, there is no significant

difference among the four Verhaak subtype survival curves; the

four subtypes track the survival curve of the CRANE long-term

survivors while the curve for the CRANE short-term survivors is

quite distinct.

Given that younger patients tend to have better prognosis [11],

we also tested for differences in the age distributions of the two

CRANE predicted groups of patients. The age distributions of

patients classified by the 50-gene subnetwork signature were

similar (Figure S3), and a logrank test indicated that there is

insufficient evidence to conclude that the age distributions differ (p-

value = 0.14). Overall, the above tests show that our CRANE gene

expression subtypes are distinct from the Verhaak subtypes and

represent novel, age-independent subtype classifications for GBM.

Subnetwork Signature Proteomics Validation
CRANE examines heterogeneity at the mRNA level to produce

state-based classifiers, and we hypothesized that the identified

subnetworks transduce this heterogeneity into protein-level differ-

ential expression. We tested this hypothesis by examining protein-

level changes in an independent cohort of 16 patients from the

Ohio Brain Tumor Study, 10 of which were STS and 6 were LTS

based on the criteria outlined above. We employed a label-free

proteomic approach using ultra-long chromatographic gradients,

which permitted the accurate identification and quantification of

5019 peptides from 1491 proteins across the patient samples.

Differential expression of proteomic targets was defined using a

mixed model of peptides, and we report p-values for the

differential expression of each protein. Using this model, 338

proteins were significantly up- or down-regulated at a p-

value#0.05 (Table S3). We did not make false-discovery rate

corrections for these p-values as this is not an unbiased discovery

experiment. Instead, we were interested in modeling how

proteomic expression varied for pre-specified subsets of genes.

Although proteomics has less dynamic range than gene expression

analysis, the above method permitted the confident identification

and quantification of over one-third of the CRANE subnetwork

signature (17/50 targets). Of the 17 targets of interest that were

identified and measured (see Table 1), five proteins were

significantly down-regulated and two were significantly up-

regulated in LTS. Interestingly, these 7 proteomic targets have

modest classification potential at the level of individual gene

expression, as illustrated by the irregularity of their gene

expression patterns in the TCGA dataset (Figure S2).

To explore the prognostic potential of the proteomic targets, we

used classification and regression trees (CART) to identify patterns

of proteins that would robustly classify STS from LTS using the

significant proteomic targets; for classification, we used the 7

significantly differentially expressed proteomic targets, as well as

YWHAQ, which was of borderline significance. This yielded a

Figure 3. Survival curves comparing various classifiers when tested on the dataset of Lee et al. (GEO ID: GSE13041). While the Verhaak
subtypes – Proneural, Classical, Neural, and Mesenchymal – do not show statistically significant differences in survival, the top 5 CRANE subnetworks
clearly distinguish short-term from long-term survivor groups.
doi:10.1371/journal.pcbi.1003237.g003

Network Signatures in Glioblastoma
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simple 2-gene protein-level classifier, illustrated in Figure S4.

Using only CANX and MAPK1, the classifier is able to correctly

identify 100% of long-term survivors in the group and 90% of

short-term survivors. For example, when CANX has a normalized

value greater than 21.05 and MAPK1 is less than 0.50, we can

identify 9 of our short-term survivors, though such high sensitivity

and specificity are likely indicative of over-fitting.

To explore our hypothesis that the use of network topology

improves our ability to detect targets at the protein level, we

compared the performance of CRANE-identified targets versus

that of individual gene markers in identifying dysregulated

proteins. The ‘‘individual gene markers’’ refers to a set of the

most differentially expressed genes selected without respect to any

underlying interaction structure. Specifically, we identified all

genes with a fold-change $2 between the 86 LTS and STS

survivors in the TCGA data and then ranked these genes

according to their absolute t-statistic (i.e. the difference in group

means divided by the pooled standard deviation). Of the top 200

individual gene markers, only one – ACTG1 – overlapped with

the 50-gene subnetwork signature. Thus, 49/50 genes identified

using a network-based classifier could not be discovered based on

conventional analysis of individual gene markers.

As seen in Figure 4A, the use of an interaction network in an

mRNA-based classifier markedly improves our ability to identify

targets differentially expressed at the protein level compared to

examination of individually dysregulated genes. Specifically,

CRANE identified dysregulated subnetworks that were better

represented in the proteomic data, and these subnetworks included

more differentially expressed proteins when compared to dysreg-

ulated individual gene markers. When interrogating the proteo-

mics data for the top 200 network-based genes (i.e. the top 20

CRANE subnetworks), over 50 proteins were identified (25%) and

18 of these subnetwork proteins showed differential expression

(36% differentially expressed among those identified). In contrast,

when using the top 200 differentially expressed individual genes,

21 were identified via proteomics (10%) and only 3 showed

significant changes (14% differentially expressed among those

identified). Fitting a linear regression model to the data, we find

that individual gene markers yield differentially expressed proteins

at a rate of 1.5% (relative to the number of genes used), whereas

the network-based approach has a rate of return of 9.8% - a 6.5-

fold improvement in the yield of our proteomics validation

experiment.

We also explored the proteomic yield of the four Verhaak et al.

subtypes. As shown in Figure 4B, the 210-gene Neural subtype had

the best yield in the proteomics experiment, with 41 targets

identified via proteomics (20% of all targets identified) and 20

showing significant changes (49% differentially expressed among

those identified). However, the number of proteomic targets

identified by the Proneural, Classical, and Mesenchymal subtypes

was considerably lower. While the rate of return for these three

subtypes (ranging from 1%–2.7%) was comparable to that of the

individual gene markers, the rate of return for the Neural subtype

was 9.9%.

Discussion

In this work, we analyzed the mRNA-level heterogeneity of

GBMs using protein interaction networks, arriving at a succinct list

of 50 genes that predicts patient survival at 80% accuracy. Not

only does the unique subnetwork signature show reproducible

prediction of patient survival at the mRNA level, it also exhibits

Table 1. Dysregulated proteins identified within the 50-gene subnetwork signature.

IPI ID Protein Description # of peptides STS mean LTS mean Ratio (LTS/STS) p-value

IPI00784414.1 STAT3 Isoform Del-701 of Signal transducer and
activator of transcription 3

1 0.25 20.42 0.64 0.200

IPI00010697.2 ITGA6 Isoform Alpha-6X1X2B of Integrin alpha-6 1 0.16 20.27 0.65 0.416

IPI00003918.6 RPL4 60S ribosomal protein L4 2 0.29 20.48 0.72 0.029

IPI00026314.1 GSN Isoform 1 of Gelsolin 14 0.17 20.29 0.73 5.29E-04

IPI00020984.2 CANX Calnexin 9 0.25 20.42 0.74 3.77E-05

IPI00607584.1 MYBBP1A Isoform 2 of Myb-binding protein 1A 2 0.15 20.24 0.77 0.289

IPI00017617.1 DDX5 cDNA FLJ59357, highly similar to Probable
ATP-dependent RNA helicase DDX5

3 0.15 20.25 0.79 0.167

IPI00011603.2 PSMD3 26S proteasome non-ATPase
regulatory subunit 3

4 0.18 20.31 0.80 0.052

IPI00007765.5 HSPA9 Stress-70 protein, mitochondrial 13 0.22 20.37 0.80 1.34E-05

IPI00018146.1 YWHAQ 14-3-3 protein theta 5 0.16 20.27 0.86 0.056

IPI00020557.1 LRP1 Prolow-density lipoprotein receptor-related
protein 1

9 0.08 20.14 0.91 0.185

IPI00472160.5 ARHGEF2 Isoform 1 of Rho guanine nucleotide
exchange factor 2

1 20.01 0.02 1.01 0.957

IPI00017292.1 CTNNB1 Isoform 1 of Catenin beta-1 4 20.07 0.12 1.09 0.449

IPI00409684.2 NCKAP1 Isoform 2 of Nck-associated protein 1 2 20.19 0.32 1.29 0.156

IPI00003479.3 MAPK1 Mitogen-activated protein kinase 1 6 20.22 0.37 1.50 3.78E-03

IPI00656138.1 PAK1 Isoform 1 of Serine/threonine-protein
kinase PAK 1

1 20.27 0.44 2.14 0.178

IPI00887273.1 DNM1 Isoform 2 of Dynamin-1 4 20.25 0.42 2.18 6.45E-03

Proteins with p-values,0.05 are in bold. Ratios (LTS-to-STS) were calculated from the raw data.
doi:10.1371/journal.pcbi.1003237.t001
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protein-level dysregulation that segregates short-term from long-

term survivors of glioblastoma – a valuable characteristic in light of

recent evidence suggesting that many mRNA-level signatures have

questionable classification power and modest biological signifi-

cance [12]. Additionally, the 50-gene subnetwork signature

indentified here represents an experimentally tractable number

of targets – measurable in a streamlined proteomics experiment –

while previously discovered target lists are not likely to be

translated into clinical assays due to their large size [7]. While

past work on unsupervised classification of high-grade gliomas was

complicated by the use of mixed WHO grade III and grade IV

patient samples [1,13–16], we herein develop a molecular

signature based solely on primary, untreated grade IV tumors

from the TCGA database. We note the caveat that the number of

subnetworks included in the signature was selected based on the

classification performance on the test (Lee et al.) data and, thus,

requires further validation to be useful as a standalone classifier of

gene expression data. In this work, we choose, instead, to explore

how this 50-gene subnetwork signature behaves at the protein

level.

Figure 4. Proteomic detection and dysregulation of biomarkers discovered using various pipelines. (A) Comparison of the number of
proteomic targets identified using a network-based algorithm for identifying combinatorial gene markers (‘‘CRANE’’) versus one using individual
differentially expressed genes (‘‘Individual Gene Markers’’). (B) Comparison of the number of proteomic targets identified using the subtypes
identified by Verhaak et al. We plot the total number of classifier targets detected in the proteomic experiment (‘‘Identification’’), as well as the subset
of classifier genes showing evidence for differential expression (p-value#0.05) at the protein level (‘‘D.E.’’).
doi:10.1371/journal.pcbi.1003237.g004

Network Signatures in Glioblastoma
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Building upon the success of gene pair classifiers [17], the

network analysis framework presented here identifies multigene

subnetworks based on mRNA state functions – series of 1’s and 0’s

– allowing us to account for patient-level heterogeneity in

expression profiles. While binarization of continuous expression

data certainly involves a loss of information, this concept lends

itself to the design of therapeutic interventions, where targeted

molecular therapies inhibit or activate key ‘‘switches’’ in the

circuits of distinct patient subtypes. For instance, upregulation of

insulin-like growth factor receptor (IGF1R), seen in subnetwork 3,

has been identified in a wide variety of human cancers [18], and in

vitro evidence suggests that this upregulation contributes to

resistance against EGFR inhibitors [19]. Our results suggest that

IGF1R has variable expression – on, or 1, in some tumors and off,

or 0, in others – in patients within the same GBM survival class,

indicating that experimental IGF1R monotherapies [20,21], while

inappropriate as a population-level intervention, may be highly

effective in precisely selected individuals. A binary model of

expression-activation is an oversimplification in some instances,

however, where protein activity does not necessarily correlate with

expression levels, e.g. in the case of kinases.

In contrast to proteomic approaches, several groups have

worked on classifying the genomic alterations underlying GBM

[22,23]. Of the 309 unique, validated mutations identified through

sequencing of the TCGA GBM tumor samples, CTNNB1, EP300,

STAT3, and TOP1 also appear in the 50-gene subnetwork

signature. These genomic alterations are likely to play causative

roles in establishing the global state function of the subnetwork

signature. b-catenin (CTNNB1), for instance, complexes with N-

cadherin to coordinate tumor invasiveness [24] and shows some

promise as a prognostic marker [25]. Additionally, TOP1 is

targeted by topoisomerase inhibitors to treat a wide variety of

cancers [26,27]. CRANE identifies these key genes not simply

because they show consistent expression across a group, but,

rather, because their expression levels form a distinct pattern when

viewed in conjunction with the 46 other genes in the milieu. This is

in line with the known patient-to-patient variability in the

mutational landscape of cancer [28]. In this light, the presence

or absence of common mutations in patient subgroups differen-

tially disrupts network state functions, and a single chemothera-

peutic agent is unlikely to be effective in every patient.

We hypothesized that the underlying network structure would

ultimately lead to differences in protein expression between

survival groups. Using a mixed model accounting for inter-peptide

dependencies within a protein, we identified 7 dysregulated

proteins out of a total of 17 detected in the proteomics experiment

from the 50-gene subnetwork signature. Though the stochastic

nature of proteomics workflows may have discouraged their use as

validation platforms, we demonstrate that ultra-long chromato-

graphic gradients coupled with high-resolution mass spectrometers

allow us to probe the signaling networks of interest in a high-

throughput fashion, with chromatographic reproducibility (Figure

S1) sufficient for the development of targeted assays (i.e. using pre-

specified lists of M/Z values to measure daughter peptides of

network targets).

To gauge how the interaction network influenced our success in

identifying dysregulated protein targets, we compared the

proteomic performance of CRANE against that of a signature

based on differentially expressed individual genes. We found a

marked improvement in our ability to detect protein-level changes

in identified markers when a network-guided combinatorial

algorithm is used to detect mRNA-level dysregulation signatures

(see Figure 4), and the improved representation of subnetwork

targets in the proteomic data can be attributed, in part, to the use

of the PPI network. Sources of experimental bias in the

measurement of protein expression can be similar to those in the

identification of PPIs (i.e. more abundant proteins are more easily

identified). However, when we consider the fraction of differen-

tially expressed proteins among all proteins identified, the top 200

CRANE targets always deliver more than 30% precision in

identifying differentially expressed proteins, reaching a maximum

of 43% when 150 targets are evaluated. In contrast, when we

consider the products of the top 200 individual gene markers (i.e.

those having significant mRNA differential expression), the

fraction of differentially expressed proteins reaches a maximum

of only 14%. Assuming the trend in discovery is linear, the

network-based approach affords a nearly 7-fold improvement in

the rate of discovery of differentially expressed proteins. As a

testament to the combinatorial aspect of our analysis, our seven

differentially expressed proteomic targets (in Table 1) would not

have been discovered if we had based our classifier on individually

differentially expressed genes, for these proteins did not exhibit

consistent mRNA expression across survival groups in the TCGA

data (Figure S2). While it is well known that dysregulation at the

level of individual gene expression does not necessarily correlate

with protein expression (the mRNA-to-protein correlation is 0.43

for humans [29]), our observations clearly suggest that combina-

torial, network-based mRNA-signatures serve as better indicators

of post-transcriptional dysregulation when compared to sets of

differentially expressed single genes. This result speaks to the

ability of network-based algorithms to reproducibly detect

dysregulated proteins at the population level, as opposed to

uncovering the relationship between mRNA expression and

protein expression within a single sample. As an alternative

explanation, the network-based targets may point to proteins that

are more abundantly expressed and for which dysregulation can

be more efficiently measured.

Given that the Verhaak et al. subtypes were constructed

through hierarchical clustering of gene expression data, we

expected that their yield in a proteomics experiment would largely

compare to the performance of individual gene markers (which

were constructed based on ranked differential expression). While

this was the case for Proneural, Classical, and Mesenchymal

subtypes, the Neural subtype performed relatively well in

predicting differentially expressed proteins, yielding proteomic

targets at a rate comparable to the CRANE signatures. This

suggests that the Neural subtype contains hidden network

structure that boosts the visibility of the group at the protein level

and/or that both the CRANE signature and the Neural subtype

contain classes of proteins (e.g. structural and metabolic proteins)

that are more amenable to proteomic measurement. In support of

the latter hypothesis, the top gene ontology (GO) term in the

Neural subtype was nucleotide metabolic process (GO:0009117, p-

value = 4.72e-5) [7], and metabolic enzymes are typically well-

represented in proteomic experiments [30].

We also examined gene ontology (GO) term enrichment of our

CRANE signature using DAVID [31], and we compared the

results to the enrichment of the Verhaak et al. subtypes. Of the

CRANE GO terms significant at the 0.01 level, only 6 overlapped

and were significant (p-value#0.01) in the Verhaak et al. dataset,

including terms such as ‘‘regulation of transcription,’’ ‘‘regulation

of cell proliferation,’’ and ‘‘cytoskeletal organization’’ (see Table

S4 for the complete list of significant overlapping terms). The most

significant and informative GO terms found in the CRANE

signature included items such as ‘‘protein kinase cascade’’

(GO:0007243, p-value = 3.98e-8), ‘‘I-kappaB kinase/NF-kappaB

cascade’’ (GO:0007249, p-value = 6.56e-5), and ‘‘regulation of

programmed cell death’’ (GO:0043067, p-value = 8.08e-5), all of
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which were absent or not significant in the Verhaak et al. subtypes

(see Table S5 for the complete list of terms significant in the

CRANE signature). These results indicate that the CRANE

subnetwork signature emphasizes kinase cascades and the NF-kB

pathway. NF-kB expression has been shown to be positively

correlated with astrocytoma grade and inversely correlated with

patient survival [32]. Importantly, deletions of NF-kB inhibitor a
(NFKBIA) and amplifications of EGFR have been shown to be

mutually exclusive events in GBM [33], suggestive of underlying

genomic subtypes. Our work recapitulates the importance of

understanding patient-to-patient variability in NFKB signaling to

better direct therapeutic decisions.

Seven subnetwork targets were validated using proteomics, and

these proteins have interesting connections to both glioma and

cancer. For example, HSPA9 is not only upregulated in a variety

of cancers [34,35], but its expression also correlates with glioma

grade and the proliferative potential of cells [36]. In our data,

HSPA9 is strongly (fold change = 0.80) and significantly (p-

value = 1.34e-5) downregulated in the tumors of long-term

survivors, suggesting that, even between tumors of the same

grade, HSPA9 biology may differentially affect patient survival.

Similarly, we found that calnexin (CANX) has 0.74-fold dimin-

ished protein expression in long-term survivors, and this result is in

line with the observation that CANX expression is significantly

correlated with the transition from angiogenesis-independent to

angiogenesis-dependent (i.e. more invasive) tumor growth in

xenografts [30]. In turn, PSMD3, a subunit of the 26S

proteasome, was also found to be downregulated in the tumors

of long-term survivors, which is in line with the promising results

of proteasome inhibitors in pre-clinical studies [37,38]. More

recently, a novel role for PSMD3 was proposed by Okada et al.,

who identified a SNP near the gene associated with the regulation

of neutrophil count by both GWAS and eQTL analysis [39]. It has

long been recognized that cancer and inflammation are synergistic

processes [40], and it appears that increased neutrophil activity is

associated with highly infiltrative gliomas [41,42]. Given the

potential role of PSMD3 in neutrophil recruitment in GBMs, our

data are consistent with a hypothesis that downregulation of

PSMD3 leads to less neutrophil-mediated inflammation and

longer survival.

In assessing patient outcomes of GBM, we argue that the most

informative prediction is whether or not a patient has a poor

prognosis, i.e. is a ‘‘short-term survivor,’’ as this prognosis

identifies patients who are poor candidates for the standard of

care and for whom more aggressive therapies may be beneficial.

To demonstrate the therapeutic potential of proteomic targets, we

used CART to identify a decision tree useful in classifying our

proteomic cohort. We found that two proteins could effectively

classify our cohort of 16 patients with near perfect sensitivity and

specificity, though this result may be due to overfitting in our

cohort. Nonetheless, this result illustrates how gene expression

targets may be translated into clinical proteomics biomarkers.

We note that the many of the GBM patients with a poor

prognosis in our proteomic validation cohort did not receive the

full standard of care: surgery, radiation, and chemotherapy.

Consequently, survival classification in our study is not a proxy for

response to the standard of care. In future clinical work, efforts

should be directed to identifying cancer survivors matched on

treatment protocols to allow for the identification of molecular

features that render them susceptible to various therapies. While

our 50-gene network signature is currently useful for prognosti-

cation, analysis of a treatment-matched cohort would potentially

allow for the identification of targets to guide therapeutic decision

making.

Methods

Source Data
The results published here are in part based upon data

generated by The Cancer Genome Atlas (TCGA) pilot project

established by the NCI and NHGRI. Information about TCGA

and the investigators and institutions who constitute the TCGA

research network can be found at http://cancergenome.nih.gov/.

Patient data was obtained from TCGA, where clinical data and

corresponding microarray data were available for 200 glioblasto-

ma patients [6]. Samples run on three different array platforms –

the Affymetrix U133A GeneChip, the Affymetrix Human Exon

GeneChip, and a custom-made Agilent array – were pooled into a

composite dataset by Verhaak et al. [7], and these data were used

for further analysis. To select only de novo GBM, we removed those

patients with a pretreatment history, a histologic classification of

‘‘treated primary GBM’’, or a prior history of glioma. We also

excluded patients whose final vital status (living vs dead) was

unknown. The remaining patients were separated into two groups

based on survival, taking the top 25% (43 patients, surviving.635

days, ages 11–83) as long-term survivors and the bottom 25% (43

patients, surviving,225 days, ages 39–85) as short-term survivors.

Subnetwork Signature Discovery
CRANE [5] was employed to discover subnetworks of proteins

coordinately dysregulated at the level of mRNA; the MATLAB

code is available. The global human protein-protein interaction

network was compiled from publicly available interactions in the

Human Protein Reference Database [43], and the CRANE search

algorithm was constrained to subnetworks of consisting of at most

d~10 proteins. We binarized gene expression data by setting the

genes in the top quartile of expression intensity to H (high

expression) and all others (bottom 75%) to L (low expression). This

threshold for high expression (25%) was previously shown to be

most effective in identifying discriminative subnetworks using a

range of datasets [5]. After binarizing the data, we were interested

in identifying subnetworks whose ‘‘state’’ – the binary sequence of

H’s and L’s – was informative in regards to the phenotype (STS vs

LTS). This is formulated as an optimization problem, where the

objective function to be maximized is the mutual information

between phenotype and expression state, the J-value. Mutual

information is a measure of the reduction in our uncertainty of a

patient’s phenotype, given observations of the subnetwork’s

expression state. More precisely, denoting the phenotype random

variable with C and letting F denote the k-dimensional binary

random variable representing the expression state of a subnetwork

of size k, the mutual information between the expression state and

phenotype is defined as I C,Fð Þ~H Cð Þ{H CDFð Þ. Here, H Cð Þ
denotes the entropy of the phenotype random variable, and

H CDFð Þ denotes the entropy of the phenotype given the

expression state of the subnetwork, F . The entropy of a random

variable X is defined as H(X )~{
P

x[A px log (px), where A

denotes the set of all possible values of X and px denotes

Pr X~xf g.
We refer to a particular expression state of a particular

subnetwork as a ‘‘state function.’’ For a state function, the J-value

is defined as the amount of information provided by that particular

state on the phenotype, i.e. its contribution to the mutual

information between phenotype and the state of the corresponding

subnetwork. Namely, for a given state function f for a subnetwork

composed of k proteins (i.e., f is an observation of random variable

F ), the J-value is defined as

J(C,f )~pf

P

c[fSTS,LTSg
pcDf log (pcDf =pc). Here, pc denotes
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Pr C~cf g, and pcDf denotes Pr C~cDF~ff g. It can be shown

that I(C,F )~
P

f J(C,f ).

In this analysis, we first identified high-scoring subnetworks

according to their J-values and then sorted these high-scoring

subnetworks according to their mutual information for survival.

Additional parameters used to assess a network’s prediction

accuracy are the support (the fraction of samples containing a

particular subnetwork state, pf ); the confidence (the fraction of

long-term survivors possessing a particular subnetwork state,

pLTSDf ); and the anti-confidence (the fraction of short-term

survivors possessing a particular subnetwork state, pSTSDf ). A

subnetwork and an associated state function have a high J-value if

the state function provides high support, high confidence, and low

anti-confidence (or, symmetrically, high anti-confidence and low

confidence).

Subnetwork Signature Testing
To test the network features discovered using TCGA, we

explored their prediction accuracy using an independent GBM

microarray dataset, GSE13041, available via the Gene Expression

Omnibus [8]. After removing patients known to have received

prior radiotherapy, chemotherapy, and/or temozolomide treat-

ment, a total of 166 patients remained; using the survival time cut-

offs as before, the short-term survivor group consisted of 41

patients (ages 34–86), and the long-term survivor group consisted

of 50 patients (ages 22–78).

A neural network (NN) was trained on the TCGA data using the

top k subnetworks (ranked by mutual information, where k is a

variable), and test performance was gauged using classification

accuracy, calculated as Accuracy~ SzL
T

, where S is the number of

correctly predicted short-term survivors, L is the number of

correctly predicted long-term survivors, and T is the total number

of test samples in the test dataset. We calculated the cumulative

classification accuracy for k ranging from 1 to 10, i.e. examining

accuracy of the best performing network alone, and then

examining the performance of the best two networks, and then

the best three networks, etc. Overall classification accuracy

reached a maximum of 80% when using k = 5 subnetworks, each

composed of size d = 10 genes (Table S2).

For comparison, we assessed how the four GBM subtypes

proposed by Verhaak et al. stratified patient survival in the testing

dataset, GSE13041. We first removed pretreated patients from the

testing dataset, and the data was then log transformed, median

centered, and normalized by each array’s standard deviation; gene

expression was inferred by averaging probe-level expression. For

the 840 genes in the Verhaak et al. GBM subtype classifier, we

calculated the Spearman correlation coefficient between the

centroid expression profiles (derived from the TCGA dataset)

and each sample in the testing dataset, assigning each sample to

the subtype with maximum correlation.

Patient Description for Proteomics
Ethics statement. The Case Comprehensive Cancer Center

Institutional Review Board approved this study at a full board

review.

For proteomic analysis, tumor samples were obtained retro-

spectively from 18 patients diagnosed with GBM surgically

resected at University Hospitals Case Medical Center, with no

prior radiotherapy or chemotherapy. Brain tumor tissue was snap

frozen 15–30 minutes post tumor resection. One patient was

removed as they had an incorrectly documented length of

survival; a second patient was removed as their sample’s liquid

chromatography-mass spectrometry (LC-MS) profile was classi-

fied as an outlier by principle component analysis. Of the

remaining 16 patients, ten patients had survival time of 9 months

or shorter (short term survivors; STS) and 6 patients had survival

time of 18 months or longer (long term survivors; LTS). Average

survival time in months for STS was 4.8 months and for LTS was

25.5 months. Both survival groups had the same proportion of

females (60%) and similar average age at diagnosis (64.3 years for

STS; 61.5 years for LTS). The STS had an average post-

operative Karnofsky Performance Score (KPS) of 63.3 while the

LTS had an average KPS of 80. All LTS patients received post-

operative temozolomide and radiation while only 2 and 7 of the

STS received post-operative temozolomide and radiation,

respectively.

30–50 mg of tumor sample was rinsed twice with ice cold

phosphate buffered saline (Pierce), and lysed in 450 mL 4%

sodium dodecyl sulfate buffered with 50 mM Tris; protease and

phosphatase inhibitors (Pierce) were also added. After probe

sonication and centrifugation, 150 mL of the lysate was reduced

with dithiothreitol (10 mM in solution) and alkylated with

iodoacetamide (550 mM in solution). The protein fraction was

collected through crashing three times with ice cold acetone.

After drying, the protein pellet was resuspended in 200 mL 70%

trifluoroacetic acid, and protein concentration was quantified

using a Bradford assay. We raised the volume of 150 mg of

protein to 100 mL and digested the protein overnight using

cyanogen bromide (300 mg). After drying the sample, the peptides

were resolubilized in 100 mL of 50 mM ammonium bicarbonate

and 4 M urea. The sample was vortexed and then diluted to

attain a final urea concentration of 1 M. The samples were then

digested overnight with trypsin at 37uC. The digestion was

quenched with trifluoroacetic acid, and salts were removed using

a C18 column (Nest Group). After drying the cleaned eluent, the

sample was resolubilized in 100 mL of 0.1% formic acid in

preparation for LC-MS/MS. As successful application of a label-

free LC-MS/MS approach hinges on robust and reproducible

retention times and MS1 intensity stability, an external spike-in of

trypsin digested yeast enolase (400 fmole, on-column) was

included in all the GBM samples to monitor instrument

performance parameters for each LC-MS run; see Figure S1

for representative chromatograms.

After lysing the samples and isolating the protein fraction, the

16 samples were analyzed by LC-MS/MS with 4 hour gradients;

raw data processing and normalization was performed in Rosetta

Elucidator (see Supplemental Methods for mass spectrometry

parameters).

Statistical Methods
To identify statistically significant proteomic changes, missing

values were imputed using the median intensity per peptide within

each survival group, and the data was standard normalized for

each peptide. We used a mixed model to compare the group-wise

protein intensity differences of interest, with the survival group set

as a fixed effect and the peptide set as a random effect, which

allowed us to account for the within-protein correlation of the

peptides inherent in mass spectrometry-based proteomic experi-

ments [44]. In the results, we only compare differences between

various prespecified protein sets observed in the data, namely the

proteins coded by the following genes: the genes in the top-ranking

subnetworks identified by CRANE (200 genes in total), the genes

in the Verhaak molecular subtypes (840 genes in total), and the top

200 genes with the most significant individual differential

expression. Using a likelihood ratio test, a p-value#0.05 for the

proteins of interest was considered significant and no correction

for multiple hypothesis testing was performed. These statistical
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analyses were performed using R 2.13.2 and SAS version 9.2 (SAS

Institute Inc., Cary, NC).

Supporting Information

Figure S1 Retention time plots for three representative

proteomic samples illustrating the quality of chromatographic

reproducibility. We have shown the 20–220 minute time period

out of the total 4 hour run time.

(TIF)

Figure S2 Heatmap of mRNA expression from the TCGA

dataset for the 7 differentially expressed proteomic targets. The

TCGA tumor samples are rank-ordered by survival, which is

shown along the bottom as the number of days till death.

(TIF)

Figure S3 Distributions of the long-term survivors (LTS) and

short-term survivors (STS) as defined by the CRANE subnetwork

signature. (Top) Survival curves of LTS vs STS. (Bottom) Age

distributions of LTS and STS groups. By the log-rank test, there is

insufficient evidence to conclude that the age distributions differ (p-

value = 0.14).

(TIF)

Figure S4 Classification and regression tree for the proteomic

targets. Using CANX and MAPK1 alone, all 6 of our long-term

(LT) survivors and 9 of our short-term (ST) survivors are classified

correctly.

(TIF)

Table S1 List of 50 genes in the subnetwork signature of survival

for primary GBM.

(PDF)

Table S2 Classification results of CRANE subnetworks discov-

ered from the TCGA patient cohort and tested on an independent

patient dataset (GSE13041). Results reflect classification accuracy

of testing incremental combinations of subnetworks (e.g. classifi-

cation results of Subnetwork 3 represent the use of subnetworks 1,

2, and 3 in classifying the independent patient dataset).

(PDF)

Table S3 Differential expression of proteomic targets (p-

value#0.05) identified in a cohort of 16 GBM patients.

(XLS)

Table S4 List of significant GO terms overlapping between the

Verhaak subtypes and CRANE 50-gene subnetwork signature.

(XLS)

Table S5 List of GO terms significant (p-value#0.05) in the

CRANE 50-gene subnetwork signature.

(XLS)
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