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Abstract

The past few years have seen tremendous advances in distributed storage infrastructure. Unstructured and structured overlay networks have
been successfully used in a variety of applications, ranging from file-sharing to scientific data repositories. While unstructured networks
benefit from low maintenance overhead, the associated search costs are high. On the other hand, structured networks have higher maintenance
overheads, but facilitate bounded time search of installed keywords. When dealing with typical data sets, though, it is infeasible to install every
possible search term as a keyword into the structured overlay.

State-of-the art semantic indexing techniques have been successfully integrated into peer-to-peer (P2P) systems using semantic overlays.
However, exiting approaches are based on the premise that the fundamental ingredient of semantic indexing, a semantic basis for the underlying
data, is globally available, which is not likely to be the case in practice. Therefore, development of techniques to efficiently compute basis
vectors for data distributed across peers is important for large-scale deployment of semantic indexing in P2P systems.

In this paper, we present a novel structured overlay that integrates aspects of semantic indexing using non-orthogonal matrix decompositions,
with the hash structure of the overlay. We adopt PROXIMUS, a recursive decomposition method for computing concise representations for binary
data sets, to locally identify latent patterns in data distributed across peers. To enable efficient consolidation of patterns, we rely on distributed
hash tables (DHT), commonly used in various applications in P2P networks. The discrete nature of non-orthogonal matrix decomposition
is well suited to the binary key structure of DHTs, resulting in an indexing method, PMINER, that enables the network to deliver efficient
and accurate responses to semantic queries. We present the algorithmic underpinnings of PMINER and demonstrate its excellent performance
characteristics on real, as well as synthetic data sets.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Developments in data-acquisition technologies, combined
with advances in digital storage and high-speed communi-
cations, enable collection and archival of large distributed
data sets. A highly visible example of such an infrastructure
is in bioinformatics, where researchers accumulate terabytes
of sequence, expression, and interaction data in publicly ac-
cessible repositories. In commercial enterprise, retailers such
as Walmart record terabytes of customers’ transactions daily.
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These large data sets are generally multi-attributed (high di-
mensional), discrete, and distributed. For typical applications,
collecting all of the data to a single central location is infeasi-
ble, due to associated overheads, privacy concerns, and resource
constraints. Therefore, querying and analyzing these data sets
require the development of distributed techniques.

Peer-to-peer (P2P) systems have emerged as attractive solu-
tions for a number of distributed applications, such as file shar-
ing [3], archival storage [11], backup [7], web caching [14],
and information retrieval systems [31], among others. More re-
cently, researchers have explored the integration of data anal-
ysis and mining techniques into P2P systems [10]. Given the
large amount of data already residing in P2P networks, decen-
tralized solutions to data mining problems have the potential
for new and exciting applications.
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In this paper, we examine the problem of affecting semantic
queries on structured P2P networks. Semantic indexing tech-
niques can be integrated into P2P systems using distributed
hash tables (DHTs), however, a key component of semantic
indexing, computation of basis vectors, remains unresolved
in P2P networks. The core idea of our approach is integrat-
ing semantic indexing techniques into a P2P system to enable
smart query processing, while avoiding centralized mechanisms
and global communication, with minimum a priori informa-
tion that is globally available. Specifically, we integrate binary
non-orthogonal matrix decompositions, which extract discrete
latent semantic vectors from binary data sets, into a DHT to
build a distributed storage infrastructure capable of supporting
semantic queries. As we illustrate, the key advantage of binary
decompositions in this application comes from their discrete
nature, which ideally suits the distributed indexing techniques
commonly used in P2P systems.

The proposed storage infrastructure, PMINER, builds on the
ideas of PROXIMUS [18,19] and its coarse-grained paralleliza-
tion, CONQUEST [6], to develop an efficient and completely
decentralized P2P system for decomposing binary data sets
distributed across peers. In PMINER, peers are organized into
a semantic overlay to compute an approximate binary non-
orthogonal matrix decomposition. To facilitate integrity be-
tween peers, we adopt a coarse-grained parallelization approach
that relies on the principle of subsampling. This strategy has
been shown to be effective in minimizing communication over-
head while maintaining the quality of the solution. Peers com-
pute rank-one approximations of the matrices that represent
their local data and go through consolidation phases to achieve
global low rank approximations.

In the consolidation phase, peers find patterns that are
similar and can be merged together to compute a single rank-
one approximation across multiple peers. This enables iden-
tification of global patterns in the network. The key issue in
performing matrix decompositions in a P2P network is one of
performing this computation without any centralized mecha-
nism or global communication. We achieve this by using DHTs
to index approximation vectors in such a way that similar vec-
tors are hashed to neighboring peers in the overlay. Then, local
computation groups are formed by peers whose identifiers are
within a given bounded Hamming distance from each other.
Peers consolidate their approximation vectors with those in
their computation groups, to identify similar patterns.

DHTs provide the ideal substrate for this approach, since
peers are identified by binary strings. We hash binary vectors
to peers, i.e., map them to a lower dimensional binary space,
to: (i) preserve proximity, i.e., ensure that vectors close to each
other are hashed to keys (hence, peers) that are close to each
other, and (ii) the keys are distributed uniformly. Consequently,
approximation vectors are indexed efficiently, since a peer with
a specific identifier can be found within a bounded number of
hops (commonly O(log N)) in an N-node network. Moreover,
the first property provides accurate consolidation by ensuring
that potentially similar vectors are processed together in a com-
putation group, while the second property ensures that load
balance is maintained.

We implement a prototype system for PMINER and evaluate
its performance on a cluster of 18 workstations. To evaluate a
larger P2P network, each workstation runs multiple processes
representing different peers. In the evaluation of the system, we
use both real-world and synthetically generated data sets. The
real-world data set is a database of customer’s transaction from
Walmart. The quality of an approximation can be measured in
terms of precision, recall, and number of patterns discovered
(compression). Our experiments show that PMINER achieves
levels of precision and recall that are close to that of the under-
lying serial algorithm. We also investigate distributed perfor-
mance issues of our system and show that it achieves excellent
speedup.

The rest of the paper is organized as follows. In the next sec-
tion, we discuss related work, briefly describe semantic index-
ing techniques, and elaborate on PROXIMUS and CONQUEST. In
Section 3, we describe our system and associated algorithms.
We present experimental results in Section 4. Finally, in Sec-
tion 5 we conclude our discussion.

2. Background and related work

2.1. Matrix decompositions and semantic indexing

Matrix transforms, such as truncated singular value decom-
position (SVD) [12] and semi-discrete decomposition (SDD)
[16], are used extensively for processing and analyzing high-
dimensional data. The applications of these linear algebraic
methods include identification of underlying patterns (e.g.,
principal component analysis [24]), classification, feature ex-
traction, compression, noise elimination, and dimensionality
reduction [30,34]. In information retrieval, the ability of matrix
transforms to identify strong underlying patterns and elimi-
nating noise, thereby capturing latent semantic information, is
effectively used for processing semantic queries [2].

SVD decomposes a matrix A into two orthogonal matrices (U
and V) and a diagonal matrix (�) of singular values, such that
A = U�V T . Columns of the two orthogonal matrices, known
as singular vectors, characterize the dominant patterns (princi-
pal components) in the matrix. Each pair of singular vectors
is associated with a (scalar) singular value, characterizing the
strength of the pattern in the matrix. Therefore, truncating the
decomposition to only a portion of singular vectors that corre-
spond to the largest singular values, leads to an approximation
(Ã = Uk�kVk) that captures semantic information accurately.
This method is known as latent semantic indexing (LSI) in in-
formation retrieval.

A major problem with SVD is that its computation is quite
expensive and the resulting approximation is dense. SDD al-
leviates these problems by computing a fast approximation to
SVD. In this approximation, the entries of singular vectors are
restricted to the set {−1, 0, 1}. This approximation has the ben-
efit of compressing, significantly, the resulting matrices, since
each value can be represented using only 1.5 bits. SDD is
also shown to be effective in LSI. However, despite being a
non-orthogonal matrix decomposition, SDD also suffers from a
problem that is caused by the orthogonality constraint in SVD.
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As in SVD, the most significant approximation vectors corre-
spond to a rank-one approximation to the original matrix, and
each subsequent pair of vectors approximate the residual ma-
trix, which is the difference between the approximated matrix
and the approximation matrix. Therefore, while decomposing
a matrix with only non-negative entries, which is the case in
most applications of semantic query processing, the negative
values in approximation vectors correspond to correction of
extra information introduced by more significant approxima-
tion vectors. This makes the analysis and use of discovered
patterns difficult, and in some cases meaningless (e.g., what
is the physical interpretation of a negative number in binary
data?). PROXIMUS, the non-orthogonal matrix transform used in
PMINER, alleviates this problem by computing binary approxi-
mations to binary data sets.

2.2. Data mining, analysis, and consolidation in P2P networks

Data mining in P2P networks is still in relative infancy.
Datta et al. [10] present a survey of current work in this area,
highlighting the main differences between centralized and P2P
environments. They also specify a set of requirements for P2P
solutions, such as scalability, decentralization, privacy, and
asynchrony, among others. Recent efforts in P2P data mining
concentrate on the computation of basic statistics, such as
averages, sum, maximum, and minimum [15,17]. Kowalczyk
[17] proposes a method, called NEWSCAST, for computing the
mean of data distributed in a P2P network using an epidemic
protocol. The protocol tries to preserve data privacy, while
handling a high transient population of nodes. An evolving
P2P solution for the k-means clustering problem is proposed
in [33]. In this algorithm, peers communicate only locally with
their neighbors and use majority voting to achieve consensus
on the solution. Application of these mining, analysis, and con-
solidation techniques to information retrieval in P2P systems
is promising for efficient and effective query processing.

2.3. Semantic overlay networks

A recent approach that facilitates processing, analysis, and
exchange of semantic information in P2P networks is based on
semantic overlay networks [1,22,31]. The general idea in se-
mantic overlay networks is to group peers with semantically
similar content together. In PSEARCH [31], a P2P information re-
trieval system based on a semantic overlay network, documents
and queries are represented as vectors in a multi-dimensional
Cartesian space. The basis vectors for this semantic space are
computed using LSI. Each document corresponds to a point in
this space, indexing of which is implemented using the DHT
system CAN. This DHT implementation represents the logi-
cal space of peers as a multi-dimensional Cartesian space as
well. Therefore, the resulting placement function for indexing
documents provides the advantage that documents with similar
contents are placed close to each other in the network. A query
is routed toward the point in the semantic space represented by
its respective vector. Consequently, while processing a query,
only the part of the network that contains vectors that are close

to the query vector in the semantic space is searched. This tech-
nique effectively localizes and decentralizes query processing.

One major problem for practical deployment of pSearch,
however, is the computation of the basis for the semantic space.
PSEARCH assumes that the peers in the network share some
global document statistics that allow the computation of a com-
mon basis. However, computing a global basis that captures the
global semantic information is not a straightforward task in a
P2P network. In this paper, we show how the basis vectors can
be computed without requiring decentralized mechanisms and
global communication. We achieve this by taking advantage of
the discrete and hierarchical nature of binary non-orthogonal
decompositions. As in PSEARCH, PMINER also explores the ge-
ometry of the DHT, but the logical space is in the form of a
binary hypercube, which suits the discrete nature of our binary
approximations. Furthermore, hierarchical decomposition does
not suffer from numerical deficiencies posed by orthogonality
constraints, facilitating efficient and accurate consolidation of
basis vectors.

2.4. Non-orthogonal decomposition of binary matrices

PROXIMUS [18,19] is an algebraic framework, composed of
novel algorithms and data structures, to compute error-bounded
approximations for binary attributed data sets. It relies on the
idea of non-orthogonal matrix decomposition, which recur-
sively extracts patterns and partitions the matrix accordingly.
At each step, it computes a binary rank-one approximation for
the matrix, to maximize the number of non-zeros captured by
the approximation, while minimizing those that are introduced.
The binary rank-one approximation problem is formulated as
follows.

Definition 1 (Rank-one approximation). Given a matrix A ∈
{0, 1}m×{0, 1}n, find x ∈ {0, 1}m and y ∈ {0, 1}n that minimize
the error:

‖A − xyT ‖2
F = |{aij ∈ (A − xyT ) : |aij | = 1}|. (1)

It can be easily shown that minimizing the error in a rank-
one approximation is equivalent to maximizing [19]

C(A, x, y) = 2xT Ay − ‖x‖2
2‖y‖2

2. (2)

A heuristic solution to this problem relies on an iterative im-
provement strategy. The idea is to find an optimal solution to
x for a fixed y, and then use this solution to x to find a new
y. Clearly, each such iteration only improves the solution, and
the process eventually converges to a local maximum. This re-
sults in an alternating iterative method, that continues until no
improvement on the objective function is possible. The time
complexity of this algorithm is linear in the number of non-
zeros of A. A key issue in converging to a good local maximum
is initialization. We present several initialization strategies and
discuss their effectiveness in [19].

The recursive structure of PROXIMUS is illustrated in Fig. 1.
A rank-one approximation captures the dominant pattern in a
matrix A, and produces pattern vector y and a corresponding
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Fig. 1. Recursive structure of PROXIMUS. The tree shows the recursive de-
composition of a matrix. Each rectangular internal node is a rank-one ap-
proximation and two circular children of these nodes are the matrices that
result from partitioning of parent matrix based on this approximation. The
leaves of the tree correspond to the final decomposition.

presence vector x. These vectors are used to partition A into two
submatrices A1 and A0. A1 contains the rows of A that con-
tain the pattern characterized by y, i.e., those that correspond
to ones in x. A0 contains the remaining rows of A (zeros in x).
Observe that rows of A1 share some a common pattern char-
acterized by y, i.e., they are centered around y in the binary
hyperspace, where each dimension corresponds to a column of
A. What we learn from the rank-one approximation about the
rows of A0, however, is only that they are of certain distance
from y. Therefore, PROXIMUS computes a new rank-one ap-
proximation for A0 and partitions this matrix recursively. On
the other hand, if x and y adequately approximate the non-zero
structure of A1, i.e., the binary hyper-sphere consisting of rows
of A1 centered around y is sufficiently small, then y is iden-
tified as an approximation vector and the recursion stops for
A1. Otherwise, A1 is also recursively partitioned following the
same strategy. To evaluate the adequacy of an approximation,
PROXIMUS uses a threshold on Hamming radius, denoted �, as
the stopping criterion. The Hamming radius �(A, y) of matrix
A, around a vector y, is defined as the maximum of the Ham-
ming distances of A’s rows to y. The recursive algorithm does
not partition a sub-matrix Ai if the following conditions hold
for the rank-one approximation Ai ≈ xiy

T
i :

(1) �(Ai1, yi) < �, where � is the bound on Hamming
radius.

(2) xi(j) = 1∀j , i.e., all rows of Ai are present in Ai1.

If the second condition holds, but not the first, only the rows that
are within � distance from the pattern vector are retained in the
final approximation and the recursion continues for the rest of
the rows. Consequently, in the final decomposition A ≈ XYT ,
for every row A(i) of A, there is at least one row Y (j) of Y such
that the Hamming distance between A(i) and within Y (j) is at
most �. The corresponding entry of X, X(i, j), is equal to 1.

2.5. Coarse-grained parallel algorithms for non-orthogonal
decomposition of binary matrices

CONQUEST [6] is a coarse-grained parallel formulation of
PROXIMUS that relies on the principle of subsampling to re-
duce communication overhead. In CONQUEST, processors com-
pute their local patterns independently and communicate among
themselves to consolidate their patterns. The communication
overhead is minimized using work groups, which are aggregates
of processors that are working on data with similar patterns.
Work groups are formed adaptively according to the patterns
identified by local approximations, where similar patterns are
identified according to being within a bounded Hamming dis-
tance of each other. Patterns are consolidated within each work
group by computing a rank-one approximation to the matrix
composed of approximation vectors, each of which belong to
one of the processors in the work group. More specifically, all
processors compute a rank-one approximation of their matri-
ces and broadcast the resulting pattern vectors in the network.
Upon receiving patterns from all processors, a processor identi-
fies the processors that contain patterns similar to that of itself,
and forms a work group to consolidate their patterns. Proces-
sors within the same work group continue working together
recursively for the rows of their matrix that is represented by
the pattern that characterizes this work group. Therefore, at
each rank-one approximation and subsequent partitioning step,
the work groups are also partitioned along with the matrices.
Note that this generates a tree of work groups as well, and a
processor gets into various work groups throughout the course
of recursive decomposition, to decompose different parts of its
matrix.

We adapt the coarse-grained parallel formulation of
CONQUEST in PMINER as well. However, it is not straightfor-
ward to apply this algorithm to P2P platforms, because of the
requirement for global communication to broadcast approx-
imation vectors. Nevertheless, the coarse-grained nature of
this approach allows application of DHT-based consolidation
schemes, by indexing patterns in peers to preserve their prox-
imity, and forming work groups with respect to locality in the
logical space of peers characterized by the overlay.

3. PMINER: A framework for computing global bases for
binary datasets in P2P systems

PMINER integrates a structured overlay with PROXIMUS to
architect a true semantic overlay network. In PMINER, peers
organized into a semantic overlay compute local rank-one ap-
proximations and go through consolidation phases to achieve
global rank-one approximations. In the consolidation phase, we
aim to find patterns that are similar and that can be merged
together to achieve a common rank-one approximation across
multiple peers. The consolidation phase is performed in multi-
ple rounds of communication by peer groups.

3.1. Problem definition

Consider the following scenario: there are p peers in a P2P
network, with peer i hosting mi documents to share with other
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peers. Here, we use the term document to specify a data el-
ement that is of interest in its entirety, which, for example,
may correspond to a scientific article, a transaction, or a bio-
logical sequence in a practical application. The documents are
composed of terms, dereferenced by a common dictionary of n
terms. In practice, the terms may correspond to words, items,
or features. In total, there are m = ∑p

i=1 mi documents in the
network.

A semantic query by a peer specifies a set of terms and aims
to locate and possibly retrieve all documents in the network
that are relevant to these terms. The purpose of PMINER is to
provide an indexing mechanism that efficiently and accurately
identifies relevant documents for a query, by finding a compact
representation of documents that is consistent throughout the
network, with minimum requirement on a priori knowledge
about the global statistics of the documents in the network. In
algebraic terms, this representation is characterized by a set of
basis vectors.

We model documents and queries as vectors in n-dimensional
binary hyperspace, such that each term corresponds to a dimen-
sion. If a document contains a term, then the corresponding
entry of the document vector is equal to one; it is zero other-
wise. Based on this model, the non-orthogonal decomposition
problem in P2P systems is formulated as follows:

Definition 2 (Binary non-orthogonal matrix decomposition in
a P2P network). Given m binary vectors v ∈ {0, 1}n, distributed
across p peers, find a set of k binary approximation vectors
w ∈ {0, 1}n, k>m, such that for any input vector v, there is an
output vector w, with d(v, w)��. Here d(v, w) = ‖v − w‖2

denotes the Hamming distance between v and w, which is equal
to the number of bits they differ at.

This problem is one of identifying the basis vectors that are
used for indexing the documents. The above definition does
not explicitly specify where the approximation vectors are to
be located in the network, since this is handled by the index-
ing scheme. However, it should be noted that the aim here is to
provide a global view of the approximation; that is, each peer
has quick access to the basis vectors, as facilitated by the in-
dexing scheme. Indeed, in PMINER, the DHT implementation
used for indexing documents is also used for efficiently consol-
idating approximation vectors, resulting implicitly in a global
set of basis vectors.

3.2. Distributed hash table systems

DHTs are used in a number of P2P systems to provide place-
ment and location of objects in a network of cooperating peers.
The main goal of such systems is to provide two basic oper-
ations, namely PUT and GET. PUT takes a key and an item
and places them at a specific peer in the network, and GET
takes a key and retrieves the value previously stored under that
key from the network. Peers are generally identified by binary
strings of fixed length. A key is computed using a hash func-
tion shared by the peers and the item is placed at a peer whose

identifier is closest to the key. The notion of closeness varies
from system to system. Chord [29], for instance, places a key at
the peer whose ID follows the numeric value of the key in the
virtual space, while Pastry [27] places a key at the peer whose
id is numerically closest to the key. Other systems of interest,
such as CAN [25] and Kademlia [23], map the peer IDs to a
logical space and locate keys in peers based on proximity in
this space. DHTs provide the infrastructure for building more
complex systems, such as distributed file systems [9,20,28],
name services [8], web caching [14], information retrieval sys-
tems [31], and publish-subscribe systems [4]. The organization
of peers in a DHT, based on their identifiers, provides an ideal
substrate for processing binary patterns resulting from local
matrix approximation.

3.3. Computing global approximation vectors in a P2P system

The process of computing basis vectors and processing
queries in PMINER is illustrated in Fig. 2. On the right-hand
side of the figure, the flow of processing a semantic query is
shown. This approach mirrors methods that are successfully
used in semantic overlay based information retrieval in P2P
systems, such as PSEARCH. However, existing approaches as-
sume that a set of basis vectors that are used to process queries
in semantic indexing schemes, are globally available. This
task, which is one of computing a global approximation to a
collection of matrices that are distributed across peers, is not
straightforward. However, as shown on the left-hand side of
Fig. 2, use of binary non-orthogonal matrix decompositions
makes it possible to use DHTs effectively to perform this task
efficiently, providing high levels of accuracy. In this section,
we present an algorithm that achieves this task by integrating
binary matrix decompositions with a DHT implementation
based on a representation of the logical space of peers as a
binary hypercube. The main contributions of this paper are
highlighted (shaded) in Fig. 2.

In PMINER, we use a variant of Kademlia to organize nodes
into a semantic overlay, in which peer identifiers and hash keys
are represented as binary vectors. The logical space of peers
in Kademlia is shown in Fig. 3. In the figure, each leaf cor-
responds to a peer with the specified identifier. As in the hy-
percube interconnect [21], messages are routed by fixing a bit
of the identifier at each hop. For example, when a message is
being routed from peer 0010 to 1011, 0010 fixes the first un-
matched bit between the source and target identifiers, and sends
its message to peer 1010, which is a logical neighbor in the
overlay, as shown in the figure. Then, peer 1010 fixes the next
bit and routes the message to its final destination, 1011. The
distance between any two peers in the overlay is specified by
the XOR of their identifiers, which is indeed equal to the Ham-
ming distance between them. Since hash keys in the DHT im-
plementation are also binary vectors, this provides an efficient
way for routing key-item pairs to their destination.

In PMINER, every peer has its own binary matrix Ai of
size mi × n. Each row of this matrix corresponds to a docu-
ment hosted by the peer. Our approach for computing a global
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Fig. 2. The flow of basis computation and query processing in PMINER. This chart illustrates that the indexing mechanism used for processing queries also
allows computation of basis vectors, which in turn is necessary to effectively process semantic queries. In this paper, we focus on efficient computation of
basis vectors in a P2P system, as highlighted by the shaded region.
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Fig. 3. Peer groups of nodes 0010 and 1010: arrows point to the computation neighbors of peers 0010 and 1010. The leaves of the tree represent the peers.
The internal nodes are used to better illustrate the embedded tree in the id space.

approximation to the matrix

A =

⎡
⎢⎢⎢⎢⎣

A0

A1

. . .

Ap−1

⎤
⎥⎥⎥⎥⎦ (3)

is based on a coarse-grained distributed formulation, in which
each peer first computes its local rank-one approximation Ai ≈
xiy

T
i . Then, as in CONQUEST, the peers cooperate to consolidate

their approximation vectors, so that patterns that are common
to several pairs will be identified. To avoid broadcast of approx-
imation vectors, which is expensive in a P2P network, we use
a DHT implementation specified by Kademlia. The idea is to
index similar approximation vectors (i.e., those with small
Hamming distance) close to each other in the overlay, so that
consolidation can be performed by cooperating only with neigh-
bors in the overlay. For this reason, for each pattern vector y, we
compute a hash key h(y) ∈ {0, 1}r , which is an r-dimensional

binary string, satisfying the following properties:

(1) Accuracy: The hash function is proximity preserving, i.e.,
for any y, y′ ∈ {0, 1}n, d(h(y), h(y′)) < d(y, y′). This
property ensures that pattern vectors that are of at most �
Hamming distance from each other are indexed at peers that
are of at most � hops away from each other in the overlay.
Consequently, if the bound on Hamming radius is �, then
it is possible to identify pattern vectors that can be merged
with each other by consolidating with only peers that are
in the �-neighborhood of each peer.

(2) Load balance: The hash function h(y) is uniformly
distributed, i.e., for any b ∈ {0, 1}r and y ∈ {0, 1}n,
P [h(y) = b] ≈ 1

2r . This property ensures that the ex-
pected number of pattern vectors indexed at each peer is
approximately equal to that at other peers in the network,
balancing the load across peers.

We now propose a hash function that generates an
r-dimensional binary key for an n-dimensional binary vector,
which satisfies these two properties.
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3.3.1. Key computation and placement
In most applications, the underlying data matrix is highly

sparse and the distribution of terms in documents is skewed.
Consequently, the approximation vectors are sparse and the
distribution of non-zeros in entries is non-uniform. To deal with
the uneven distribution of non-zeros, we propose a proximity
preserving hash function that takes into account the distribution
of non-zeros in the underlying data.

Let y = [y(0) y(1) . . . y(n − 1)]T be an n-dimensional bi-
nary vector. The hash function h(y) computes an r-dimensional
binary vector b = h(y) = [b(0) b(1) · · · b(r −1)]T . This hash
function aggregates multiple bits in y into a single bit in b. To
ensure uniform distribution, these bits are chosen adaptively
such that the probability that the aggregated bit is set will be as
close as possible to 1

2 , i.e., P [b(i) = 0] ≈ 1
2 for each 1� i�r .

Without loss of generality, the aggregated bits are chosen to be
consecutive.

Let si be the number of bits in y that are aggregated into the
ith bit of b and fi be the index of the first of these bits. Then
each bit of the hash function b = h(y) is defined as follows:

b(i) =

⎧⎪⎨
⎪⎩

0 if
fi+1−1∑
j=fi

y(j) = 0;
1 otherwise

(4)

for 1� i�r , where

f0 = 0,

fi = fi−1 + si−1 for 1� i < r.
(5)

The ith bit of h(y) is therefore equal to the OR of si bits in y,
starting from the fi th bit. Consequently, the choice of si , for
1� i�r , is critical to ensure uniform distribution of the keys.

Let the relative frequency of the term j in the collection of
documents be qj = ‖AT (j)‖2/m, where AT (j) denotes the
jth column of matrix A. This simple statistic, which provides a
reliable estimate of the probability that a given term exists in
an arbitrary document, can be estimated and maintained using
available procedures discussed in the previous section [17].

In PMINER, uniformity of the keys is achieved by choosing
si as follows:

si = argmin
0��<n

∣∣∣∣∣∣
1

2
−

fi−1+�−1∏
j=fi−1

(1 − qj )

∣∣∣∣∣∣ . (6)

In other words, si specifies the size of the set of consecutive bits
in y, starting from fi , which minimizes the difference between
1
2 and the probability that all of the bits in the set will be zero.
This ensures that all binary vectors of length r are equally likely.
The shortcoming here is the possibility that either: (i) si = 0
for i�j for some j, where

∑j
i=0 si = n, or (ii)

∑r−1
i=0 si < n.

Case (i) corresponds to the situation where there are more bits
than necessary in the key space, which is easily alleviated, as
we discuss below. Case (ii), on the other hand, means that
the number of dimensions in the key space is not sufficient to
capture the variance in the semantic space. This case, however,
is unlikely since the documents are highly sparse. Moreover, it
is possible to choose r adaptively to alleviate this problem.

Once vectors in semantic space are hashed to the r-
dimensional binary space, it is necessary to further map the
keys to peers. In PMINER, the prefix of a key is used to deter-
mine the peer in which it is indexed. We denote the identifier
of this peer as �(h(y)). Observe that this choice implicitly
handles case (i) above by disregarding the si’s that are equal to
zero. Solution to case (ii) requires that there are enough peers
to capture the dimensionality of documents in the network,
which is true for most large scale systems.

We now show that the hash function h(y) preserves prox-
imity between binary vectors, which is required for accurately
consolidating patterns.

Theorem 1. The hash function h: {0, 1}n → {0, 1}r , given by
Eqs. (4)–(6), is proximity preserving. In other words, for any
y, y′ ∈ {0, 1}n d(h(y), h(y′))�d(y, y′).

Proof. For arbitrary i, 0� i < r , let b(i) and b′(i) be the ith
bit of h(y) and h(y′), respectively. Let zi = [y(fi) y(fi +
1) . . . y(fi + si)] and z′

i = [y′(fi) y′(fi + 1) . . . y′(fi + si)]
be the si-dimensional binary vectors that generate b(i) and
b′(i), respectively. Clearly, d(b(i), b′(i))�1. Moreover, if
d(zi, z

′
i ) = 0, then y(j) = y′(j) for fi �j �fi +si , so we have

d(b(i), b′(i)) = 0. Hence, d(b(i), b′(i))�h(zi, z
′
i ) always

holds. Therefore, d(h(y), h(y′)) = ∑r−1
i=0 d(b(i), b′(i))�∑r−1

i=0 d(zi, z
′
i ) = d(y, y′). �

Note that h(y) does not necessarily preserve distance, i.e.,
there is no guarantee that patterns that are distant from each
other will be indexed to distant peers. However, for our pur-
poses, this case is not relevant, since consolidation is performed
on the pattern vectors, not keys. Furthermore, uniformity of
distribution of keys ensures that, even though a peer may be
responsible for consolidating multiple unrelated patterns, this
load is distributed evenly throughout the network.

3.3.2. Pattern consolidation
The actions performed by peers in PMINER can be divided

into three parts: (i) group formation; (ii) local matrix approx-
imation and partitioning, and (iii) consolidation within the
neighborhood. Group formation is performed when peers join
the network, in order to recognize the peers that will cooperate
to consolidate pattern vectors. Upon joining the network, a
peer uses its identifier to generate a set of keys whose values
are at Hamming distance one from its identifier. It then routes
these keys in the DHT and requests all peers responsible for
the keys to recognize itself as their immediate neighbor in
the overlay. These immediate neighbors form the computation
group for that particular peer. In, Fig. 3 the neighboring peers
of peers 0010 and 1010 are shown. Observe that, other than
itself, the neighbors of 0010 are all at Hamming distance two
from peer 1010.

The peer with ID �(h(y)) is the rendezvous point (target of
the distributed hash) for pattern vector y. Observe that, once all
peers with pattern vector y route their pattern to peer �(h(y)),
this peer has all the information about the patterns that are at
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Fig. 4. Consolidation algorithm executed by all peers. Note that in practice,
all �i rows are not replicated but they are accounted for implicitly.

distance zero from y. Therefore, if the bound on Hamming ra-
dius, �, is equal to zero, then this peer can safely consolidate
the patterns by itself, without communicating with any other
peer in the network. This ensures that all pattern vectors that
are within the specified radius (zero) are considered for being
merged. Now consider the case � = 1. Then, by Theorem 1, all
pattern vectors that could potentially be merged with y reside
either at peer �(h(y)) or its immediate neighbors in the over-
lay. Generalizing this observation, we conclude that, for given
bound on Hamming radius, �, all pattern vectors that need to
be considered for consolidation with y reside at most � hops
from peer �(h(y)).

The consolidation phase consists of running PROXIMUS on
the matrix composed of pattern vectors that are indexed within
the computation group of a peer. This allows consolidation of
the peer’s pattern vectors with those that differ by at most one
bit from these vectors. This procedure is repeated in rounds.
In each round, pattern vectors that potentially differ by one
more bit are also propagated. Therefore, at the ith round, a
pattern vector is consolidated with all pattern vectors in the
network that are at most at Hamming distance i from itself.
Consequently, if the bound on Hamming radius is set to �,
consolidation is performed in � rounds.

The steps a peer pi executes in PMINER can be summarized
as follows:

(1) Peer i computes a rank-one approximation of its local ma-
trix Ai , producing a presence vector xi and a pattern vector
yi .

(2) Peer i routes yi and the number of ones in xi , �i = eT
1 xi ,

to �(h(yi)). The number of ones in the presence vector
indicates the strength of yi in Ai , i.e., how many rows
it approximates. This information is necessary to accu-
rately weigh the strengths of pattern vectors in the global
matrix A.

(3) Peer i receives all pattern vectors yj such that �(h(yj )) =
i. It runs the consolidation procedure shown in Fig. 4, and
routes the consolidated pattern vectors back to their owners.

(4) Upon receiving its own consolidated pattern vector, peer i
partitions the rows of Ai , using the presence vector xi and
the consolidated pattern ŷi corresponding to yi . It then re-
cursively decomposes the two resulting matrices, as shown
in Fig. 1.

We illustrate pattern consolidation using a simple example.
Let �, the bound on Hamming radius, be set to one. Assume

that a peer r, with identifier 01110111, received the following
patterns to be consolidated:⎡

⎢⎢⎣
y1 | 0 1 1 1 0 1 1 1
y2 | 0 1 1 1 0 0 1 1
y3 | 0 1 1 1 0 0 1 1
y4 | 0 1 1 0 0 1 1 1

⎤
⎥⎥⎦

Each row in the matrix represents a pattern discovered by some
peer in the network. Observe that r is the rendezvous point for
y1 and that y2 . . . y4 were sent to r by its computation neighbors.
The rank-one approximation of the matrix produces the vectors
x = [1 1 1 1] and y = [0 1 1 1 0 0 1 1]. The original matrix
cannot be represented by these two vectors only and needs to
be partitioned, since y is at Hamming distance two from y4 and
� is set to one. After a new partition, the resulting patterns are:[

0 1 1 1 0 0 1 1
0 1 1 0 0 1 1 1

]
.

In this case, peer r returns the first row of the matrix as the
consolidated pattern for y1. One point not considered in the
above discussion is the strength of the patterns. The example
assumes that all patterns have the same strength. If we assume
that y1 comes from a larger matrix and its strength is larger
than the sum of the strengths of y2 and y3, the consolidation
procedure would return the following pattern:

[
0 1 1 1 0 1 1 1

]
.

Observe that this last pattern is at Hamming distance one from
all patterns in the original matrix. Pattern strengths are not
accounted for in CONQUEST. In Section 4, we show that one of
the reasons PMINER achieves better results than CONQUEST is
the inclusion of pattern strengths in the consolidation phase.

4. Experimental results

In this section, we present experimental results to investi-
gate various performance aspects of PMINER. The main goal
of the experiments is to compare results obtained by PMINER

with the results obtained by PROXIMUS (serial implementation).
More specifically, we investigate aspects of performance and
quality of results, such as speedup, precision, recall, and com-
pression ratio. We also investigate system parameters exclusive
to PMINER, such as load balancing and messages processed per
node. A qualitative comparison of PMINER with CONQUEST is
also presented.

4.1. System setup and datasets

PMINER uses a modified version of Bamboo [26,32] as its
underlying DHT. As discussed in Section 3, a key k in PMINER

is installed at the node whose id shares the longest prefix with
k. Bamboo, on the other hand, installs a key k at a node that
is numerically closest to k. We modify Bamboo to take into
account PMINER’s key placement. The rank-one approximation
and partition of matrices are implemented in C. The experi-
ments are performed on Purdue/CERIASs Reassure testbed [5],
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Table 1
Parameters used to generate the synthetic traces

Number of transactions (-ntrans) 3,000,000
Average items per transaction (-tlen) 10
Number of different items (-nitems) 100,000
Average length of maximal pattern (-patlen) 10
Correlation between patterns (-corr) 0.1–0.5
Average confidence in a rule (-conf) 0.6–0.9
Number of patterns (-npats) 2500–4000

Please, refer to [13] for a description of the generator and its parameters.

Table 2
PROXIMUS’s parameters used in the serial experiments

Algorithm for rank-one approximation (-a) Discrete (1)
Initialization strategy (-i) Partition (4)
Minimum size of a cluster (-c) 1
Bound on normalized hamming radius (-e) 1–7

For more details about these parameters, please, refer to [19].

a cluster of 18 dual Athlon PCs networked over a Gbit Ether-
net switch. This setup allows us to investigate more precisely,
metrics of parallel performance, such as speedup. We run 15
peers on each machine for a total of 270 peers. Unless other-
wise stated, we use this many peers for the experiments, the
exception is the experiment that investigates load balancing.

We use two different types of data sets in the experiments,
real-world data and synthetically generated data. The first
data set is a database of customer’s transactions (suitably
anonymized) from Walmart. The database is translated into a
matrix with 34,239 columns (items) and 974,158 rows (trans-
actions). The matrix is very sparse, with an average number of
items per transaction equal to 6.3. The second set of inputs is
generated using the synthetic data generator developed by the
IBM Quest Research Group [13]. We generate multiple syn-
thetic data sets by varying the number of underlying patterns,
correlation between patterns, and confidence of a pattern. The
average number of items per transaction is set to 10. The av-
erage correlation between pairs of patterns is varied from 0.1
to 0.5 and the confidence of a pattern is varied from 0.6 to
0.9. Since the results obtained when the average correlation is
varied does not present significant differences, we show only
the results for a correlation of 0.1. Table 1 summarizes the
parameters used in different synthetic data sets. These choices
are by no means exhaustive, but they cover scenarios observed
to be representative of general performance results; similar
parameters are used in [6].

For the serial results, we run PROXIMUS with the parameters
described in Table 2. We use the discrete rank-one approxima-
tion, the partition initialization scheme, and we vary the bounds
on the Hamming radius to investigate the levels of compres-
sion, precision, and recall.

4.2. Quality of results

The main idea of PROXIMUS, and consequently PMINER, is to
construct an approximation Ã = XYT of a matrix A, such that

‖A − Ã‖2
F is minimized. X and Y are matrices representing the

presence and pattern vectors. A natural measure of the quality
of the approximation is the error in the approximation. The
error is defined as the number of ones in the residual matrix,
given by the following expression:

error = ‖A − Ã‖2
F = |{aij ∈ (A − Ã) : |aij = 1|}|.

Since the error depends on the size of the input matrix, we
use normalized metrics to evaluate the quality of the results.
In data mining, precision and recall are well accepted metrics
for evaluating search strategies. Precision is the ratio of the
number of relevant records retrieved to the total number of
records (relevant and irrelevant) retrieved. Recall is the ratio of
the number of relevant records retrieved to the total number of
relevant records present in a data repository. In our context, we
define precision as the percentage of ones in the approximation
matrix that are also present in the original matrix. Precision is
given by the following expression:

precision = ‖A&Ã‖2
F

‖Ã‖2
F

= |{(i, j) : A(i, j) = Ã(i, j) = 1}|
|{(i, j) : Ã(i, j) = 1}| .

We define recall as the percentage of ones in the original matrix
that are also present in the approximation matrix. Recall is
given by the following expression:

recall = ‖A&Ã‖2
F

‖A‖2
F

= |{(i, j) : A(i, j) = Ã(i, j) = 1}|
|{(i, j) : A(i, j) = 1}| .

Fig. 5 shows the results for precision and recall for the Wal-
mart data set as the bound on the Hamming radius is varied.
As can be noted, PMINER achieves precision results slightly
lower than PROXIMUS. The differences can be considered neg-
ligible, with the results of PMINER all well above 90%. Re-
call, on the other hand, is slightly better in PMINER. This small
improvement in recall can be explained by the extra patterns
identified by PMINER. Since, PMINER discovers more patterns
than PROXIMUS, some patterns that are compressed, and conse-
quently altered, in PROXIMUS, are left unchanged in PMINER.
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Fig. 5. Precision and recall for the Walmart data set.
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Fig. 6. Precision of various schemes for the synthetic data set.

In this particular data set, PMINER is able to better capture the
entries of the original matrix (better recall), while inserting few
extra ones (worse precision).

Fig. 6 shows the precision results for the synthetic data sets.
We show results for two values of underlying patterns (2000
and 4000) and two values of pattern confidence (60% and
90%). Other parameter values show similar behavior. In these
cases, the differences again can be considered negligible, with
PMINER performing better in one situation (2000 and 60%) and
PROXIMUS performing better in other situation (4000 and 90%).
The other two cases do not show a clear difference.

Fig. 7 shows the recall results. The parameters used are the
same as in the previous case. In these experiments, we observe
the same behavior from the two approaches as the one observed
in the case of precision.

4.3. Compression

The main goal of PMINER is to produce a small set of vec-
tors that captures the dominant patterns present in the input
matrix. Since the size of real data sets is expected to be large,

significant levels of compression are required for a distributed
solution to be useful. PMINER achieves between 61% and 80%
compression for the synthetic data sets, and between 39% and
65% compression for the Walmart data set. Figs. 8 and 9 show
the compression ratios achieved by PMINER and by PROXIMUS.
As we can see, PMINER performs slightly worse than a central-
ized and serial implementation. In the worst case, PMINER finds
43.98% more patterns than the serial implementation for the
synthetic data sets and 36.23% more patterns for the Walmart
data set. These results are considerably better than the ones pro-
duced by CONQUEST. CONQUEST, in the worst case, discovers
as many as 2.5 times more patterns than the serial implementa-
tion [6]. Moreover, the loss in compression does not affect the
quality of the results, since the levels of precision and recall
achieved by PMINER are similar to, and in some cases better
than, the serial implementation. The loss in compression is a
consequence of the design of the consolidation algorithm that
tries to reduce the communication overhead as much as possi-
ble. In the consolidation phase, peers exchange just the rank-
one approximation to consolidate local patterns with the global
matrix.
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4.4. Speedup

As discussed in the previous section, PMINER produces
results with levels of accuracy similar to PROXIMUS. We now
discuss the parallel performance of PMINER. A measure of
quality of a parallel/distributed solution is the (fractional)
reduction in execution time (speedup) that we obtain using
a parallel/distributed solution. The speedup from PMINER

varies significantly depending on the input parameters. Ta-
bles 3 and 4 show the speedup results for the two types of
data sets. The best speedup results are achieved when the
Hamming radius is set to small values and when the com-
pression is low (the number of patterns increases). In some
cases, we observe super-linear speedup. As discussed in [6],
super-linear speedup is achieved because of the effects of
subsampling. The amount of computation performed by the
parallel solution is not the same as its serial counterpart. The
side effect of this reduced computation is an increase in the
number of patterns discovered, as discussed in Section 4.3.
The speedups from PMINER reduce as the Hamming radius
increases. This reduction can be attributed to two factors. First,
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Fig. 9. Compression ratios achieved by PMINER and by PROXIMUS on the synthetic data sets. Figures on the left show the results for PROXIMUS and figures on
the right show results for PMINER. The figures on top represent data sets generated with 60% of pattern confidence, and the figures at the bottom represent
data sets generated with 90% of pattern confidence.

Table 3
Speedup results for the Walmart data set

Hamming radius Serial time P2P time Speedup

1 61224.75 1075.71 56.92
2 59878.09 1792.97 33.40
3 55066.68 2453.70 22.44
4 51740.84 3438.02 15.05
5 49852.31 3486.22 14.30
6 48495.11 3989.33 12.16
7 47750.87 4555.83 10.48

The times above are expressed in seconds.

as the Hamming radius increases, PMINER spends more time
synchronizing the peers. Each peer must synchronize with its
neighbors before advancing to a new round of computation.
Second, with the increase in the Hamming radius, PROXIMUS

spends significantly less time to converge to the final solution.

4.5. Load balancing

We now evaluate the ability of the hash function defined
in Section 3.3.1 to balance the load among the peers. Given
a set of K keys and N nodes, the expected number of keys
per node is given by K/N . We adopt the definition of load
balancing from Chord [29] and say that the load is balanced
if each node receives at most (1 + ε)K/N keys, with ε =
O(log N). Fig. 10 shows the number of messages each node
receives. The middle line represents the average number of
messages (K/N ) and the top line represents K/N log N . We
observe an uneven distribution of keys per node in the left
graphic of Fig. 10. This uneven distribution, however, is not
severe, with all nodes receiving a number of keys well below
the defined threshold for balanced load. We can better distribute
the keys by utilizing virtual peers [29]. With virtual peers, each
peer joins the network with multiple ids, i.e., it covers multiple
ranges of the id space. The right graphic of Fig. 10 shows the
results when each peer is responsible for two virtual peers. As
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Table 4
Speedup for the synthetic data sets

HR P2P time/speedup
2000 2500 3000 3500 4000

1 1562.8/27.61 1883.1/24.81 2236.1/21.89 2479.9/20.73 2650.6/20.15
2 2510.1/12.61 2974.7/11.91 3453.1/11.03 2878.3/14.08 4300.5/9.87
3 3466.6/7.52 4245.9/7.21 4760.7/7.06 5728.9/6.16 5959.4/6.40
4 4482.4/4.83 5223.5/4.96 5913.6/4.77 6770.4/4.56 7427.9/4.41
5 5599.4/3.23 6241.8/3.45 7046.0/3.42 8524.6/3.11 8833.6/3.20

The values 2000 to 4000 represent the number of underlying patterns in the data sets. The serial times (not shown) ranged from 18069.7 to 53385.3 s, and
the P2P times ranged from 1562.8 to 8833.6 s.
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shows the results when two virtual nodes are used.

 1

10

100

1000

10000

100000

1e+06

0 50 100 150 200 250 300

M
e
s
s
a
g
e
s

Nodes

Synthetic Dataset - (Patterns = 4000, HR = 1)

Messages

Average

Av*Lg (n)

Fig. 11. Messages processed per node for the synthetic data set.

we can see, the curve is smoothed out considerably, with the
maximum number of messages in a node smaller than half of
the threshold.

Fig. 11 shows the number of messages processed per node
for the synthetic data set. We show only one example here;
other parameters produce similar results. In this case, the load
is better distributed, even without the use of virtual nodes.

5. Conclusion

In this paper, we present a framework, PMINER for per-
forming semantic queries in structured peer-to-peer (P2P) net-
works, using binary non-orthogonal matrix decompositions. We
present algorithms for efficient computation of latent semantic
vectors and associated search. We demonstrate excellent per-
formance of our scheme in terms of precision and recall, re-
source requirement (load balancing), as well as speedups, in
the context of real applications as well as synthetic workloads.
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