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Abstract. With ever increasing amount of available data on protewtein in-
teraction (PPI) networks and research revealing that thesgorks evolve at a
modular level, discovery of conserved patterns in theseorés becomes an im-
portant problem. Recent algorithms on aligning PPI netwdekget simplified
structures such as conserved pathways to render thesem®lgomputation-
ally tractable. However, since conserved structures trearts of functional
modules and protein complexes generally correspond teedmimets of the net-
work, algorithms that are able to extract conserved pattarterms of general
graphs are necessary. With this motivation, we focus heismovering protein
sets that induce subnets that are highly conserved in teectome of a pair of
species. For this purpose, we develop a framework that ity mefines the pair-
wise local alignment problem for PPI networks, models th@bfam as a graph
optimization problem, and presents fast algorithms fos thrioblem. In order to
capture the underlying biological processes correctlybage our framework on
duplication/divergence models that focus on understanttia evolution of PPI
networks. Experimental results from an implementationhef proposed frame-
work show that our algorithm is able to discover conservedrattion patterns
very effectively (in terms of accuracies and computatiaat). While we focus
on pairwise local alignment of PPI networks in this papes,ftoposed algorithm
can be easily adapted to finding matches for a subnet quergétadase of PPI
networks.

1 Introduction

Increasing availability of experimental data relating tfolbgical sequences, coupled
with efficient tools such as BLAST and CLUSTAL have contrigdito fundamental
understanding of a variety of biological processes [1, Plede tools are used for dis-
covering common subsequences and motifs, which conveyifurad, structural, and
evolutionary information. Recent developments in molacbiology have resulted in
a new generation of experimental data that bear relatipesrid interactions between
biomolecules [3]. An important class of molecular inteiactdata is in the form of
protein-protein interaction (PPI) networks, which pravithe experimental basis for
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understanding modular organization of cells, as well aguliggormation for predict-
ing the biological function of individual proteins [4]. Highroughput screening meth-
ods such as two-hybrid analysis [5], mass spectrometnaf&], TAP [7] provide large
amounts of data on these networks.

As revealed by recent studies, PPI networks evolve at a raothwel [8] and conse-
quently, understanding of conserved substructures thralignment of these networks
can provide basic insights into a variety of biochemicalggsses. However, although
vast amounts of high-quality data is becoming availablécieht network analysis
counterparts to BLAST and CLUSTAL are not readily availatdesuch abstractions.
As is the case with sequences, key problems on graphs démradiomolecular inter-
actions include aligning multiple graphs [9], finding freapily occurring subgraphs in
a collection of graphs [10], discovering highly conservetgraphs in a pair of graphs,
and finding good matches for a subgraph in a database of gibaph#n this paper, we
specifically focus on discovering highly conserved subirets pair of PPI networks.
With the expectation that conserved subnets will be partoofplexes and modules,
we base our model on the discovery of two subsets of proteins éach PPI network
such that the induced subnets are highly conserved.

Based on the understanding of the structure of PPI netwbektsare available for
several species, theoretical models that focus on undelistathe evolution of protein
interactions have been developed. Among these, the dtiphiédivergence model has
been shown to be successful in explaining the power-laweattPPI networks [12].
In order to capture the underlying biological processesenbly, we base our frame-
work on duplication/divergence models through definitidndaplications, matches,
and mismatches in a graph-theoretic framework. We thencesthe resulting align-
ment problem to a graph optimization problem and proposeiefii heuristics to solve
this problem. Experimental results based on an implemientaf our framework show
that the proposed algorithm is able to discover conserviedantion patterns very ef-
fectively. The proposed algorithm can be also adapted tanfinchatches for a subnet
query in a database of PPI networks.

2 Related Work

As the amount of cell signaling data increases rapidly,eheave been various ef-
forts aimed at developing methods for comparative netwoiyeis. In a relatively
early study, Dandekar et al. [13] comprehensively aligreglysis metabolic pathways
through comparison of biochemical data, analysis of eleargrmodes, and compar-
ative genome analysis, identifying iso-enzymes, sever@mial pharmacological tar-
gets, and organism-specific adaptations. While such sffigtnonstrate the potential
of interaction alignment in understanding cellular pr@ess these analyses are largely
manual, motivating the need for automated alignment tools.

As partially complete interactomes of several speciesinecvailable, researchers
have explored the problem of identifying conserved topiglaigmotifs in different
species [8, 14]. These studies reveal that many topologioéfs are significantly con-
served within and across species and proteins that areineghim cohesive patterns
tend to be conserved to a higher degree. A publicly availeddk PathBLAST, adopts



the ideas in sequence alignment to PPI networks to discaresecved protein path-
ways across species [11]. By restricting the alignment thyays,i.e., linear chains
of interacting proteins, this algorithm renders the aligminproblem tractable, while
preserving the biological implication of discovered patte

Since the local alignment of PPI networks for patterns irféine of general graphs
leads to computationally intractable problems, tools dame simplified models are
generally useful. However, as functional modules and pmatemplexes are likely to
be conserved across species [8], algorithms for alignimgige graphs are required for
understanding conservation of such functional units. kcant study, Sharan et al. [15]
have proposed probabilistic models and algorithms fortifieng conserved modules
and complexes through cross-species network comparismilaBto their approach,
we develop a framework for aligning PPI networks to discaugdisets of proteins in
each species such that the subgraphs induced by these edtiglally conserved. In
contrast to existing methods, our framework relies on tégcal models that focus on
understanding the evolution of protein interaction neksor

3 Theoretical Models for Evolution of PPI Networks

There have been a number of studies aimed at understandiggtieral structure of PPI
networks. It has been shown that these networks are powsgrlphsj.e., the relative
frequency of proteins that interact withproteins is proportional té—7, wherevy is a
network-specific parameter [16]. In order to explain thisspelaw nature, Barabasi and
Albert have proposed [16] a network growth model based ofepgatial attachment,
which is able to generate networks with degree distribusionilar to PP1 networks.
According to this model, networks expand continuously bgitoin of new nodes and
these new nodes prefer to attach to well-connected nodes joheng the network.
Observing that older proteins are better connected, E&grand Levanon [17] explain
the evolutionary mechanisms behind such preference byttdegsh of selective pres-
sure on maintaining connectivity of strongly connectedgires and creating proteins
to interact with them. Furthermore, in a relevant studys ibbserved that the interac-
tions between groups of proteins that are temporally clogied course of evolution are
likely to be conserved, suggesting synergistic selectimng network evolution [18].
A common model of evolution that explains preferential@traent and power-law
nature of PPI networks is the duplication/divergence mdulis based on gene dupli-
cations [12,19-21]. According to this model, when a genaigidated in the genome,
the node corresponding to the product of this gene is alsticdiged together with its
interactions. An example of protein duplication is showrFigure 1. A protein loses
many aspects of its functions rapidly after being duplidafehis translates into di-
vergence of duplicated (paralogous) proteins in the isterae through deletion and
insertion of interactions. Deletion of an interaction inRl Retwork implies the elimi-
nation of an existing interaction between two proteins dwstructural and/or functional
changes. Similarly, insertion of an interaction into a P&tlwvork implies the emergence
of a new interaction between two non-interacting protegagised by mutations that
change protein surfaces. Examples of insertion and dalefiinteractions are also il-
lustrated in Figure 1. If a deletion or insertion is relatedtrecently duplicated protein,
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Fig. 1. Duplication/divergence model for evolution of PPI netwarktarting with three interac-
tions between three proteins, proteinis duplicated to ada into the network together with its
interactions (dashed circle and lines). ThenJoses its interaction withs (dotted line). Finally,
an interaction betweem; andu is added to the network (dashed line).

it is said to be correlated; otherwise, it is uncorrelate®d][Bince newly duplicated
proteins are more tolerant to interaction loss becausedcfn@ancy, correlated dele-
tions are generally more probable than insertions and ueleded deletions [12]. Since
the elimination of interactions is related to sequencellewtations, one can expect a
positive correlation between similarity of interactiorofiles and sequence similarity
for paralogous proteins [20]. It is also theoretically sindvat network growth models
based on node duplications generate power-law distribsi{i22].

In order to accurately identify and interpret conservatibimteractions, complexes,
and modules across species, we base our framework for thiedlignment of PPI net-
works on duplication/divergence models. While searchardifghly conserved groups
of interactions, we evaluate mismatched interactions ardlpgous proteins in light
of the duplication/divergence model. Introducing the @pis of match (conservation),
mismatch (emergence or elimination) and duplication, Wlaece in accordance with
widely accepted models of evolution, we are able to discalignments that also allow
speculation about the structure of the network in the comammestor.

4 Pairwise Local Alignment of PPl Networks

In light of the theoretical models of evolution of PPI netk®rwe develop a generic
framework for the comparison of PPI networks in two diffdrepecies. We formally
define a computational problem that captures the underlgialpgical phenomena
through exact matches, mismatches, and duplications. @efirmulate local align-
ment as a graph optimization problem and propose greedyithgs to effectively

solve this problem.

4.1 The Pairwise Local Alignment Problem

A PPI network is conveniently modeled by an undirected gréf§ty, E), whereU
denotes the set of proteins and’ € FE denotes an interaction between proteins U
andw’ € U. For pairwise alignment of PPI networks, we are given two fworks
belonging to two different species, denoted®{, E) and H(V, F'). The homology
between a pair of proteins is quantified by a similarity meaghat is defined as a



functionS : (UUV) x (UUV) — R. Foranyu,v € U UV, S(u,v) measures the
degree of confidence in andv being orthologous if they belong to different species
and paralogous if they belong to the same species. We as$atnsitilarity scores
are non-negative, wherg(u, v) = 0 indicates that; andv cannot be considered as
potential orthologs or paralogs. In this respetis expected to be highly sparseg.,
each protein is expected to have only a few potential ortyety paralogs. We discuss
the reliability of possible choices for assessing protairilarity in detail in Section 4.4.

For PPI networksG(U, E) and H(V, F), a protein subset paiP = {U,V} is
defined as a pair of protein subsétsC U andV C V. Any protein subset paiP
induces a local alignmet(G, H, S, P) = { M, N, D} of G andH with respect taS,
characterized by a set of duplicatioPs a set of matched, and a set of mismatches
N. The biological analog of @uplicationis the duplication of a gene in the course
of evolution. Each duplication is associated with a penaltyce duplicated proteins
tend to diverge in terms of their interaction profiles in tbad term [20]. Amatch
corresponds to a conserved interaction between two ogbakprotein pairs, which
is rewarded by a match score that reflects our confidence mgrotein pairs being
orthologous. Amismatch on the other hand, is the lack of an interaction in the PPI
network of one of the species between a pair of proteins wbhasmlogs interact in
the other species. A mismatch may correspond to the emerdersertion) of a new
interaction or the elimination (deletion) of a previouskysting interaction in one of the
species after the split, or an experimental error. Thusnymaishes are also penalized to
account for the divergence from the common ancestor. Weigwdermal definitions
for these three concepts to construct a basis for the fotionlaf local alignment as an
optimization problem.

Definition 1. Local Alignment of PPI networks. Given protein interaction networks
G(U,E), H(V, F), and a pairwise similarity functiol' defined over the union of their
protein setsU U V, any protein subset paiP = (U, f/) induces a local alignment
A(G,V, S, P) = {M,N,D}, where

M= {u,u € U,v,0 €V :8u,v)>0,8u,v)>0ue€Ewv ecF} (1)
N ={u,v € lz,v,v’e ‘:/:S(u,v) >0,S(w,v) >0,uu € E,v' ¢ F}
U{u,u’ € U,v,v" € V: S(u,v) > 0,8, v)>0,uu ¢ E,vv’" € F}
D={u,u/ €U:Su,u)>0}U{v,v’ €V:S,) >0} (3)

Each matchM € M is associated with a score(M). Each mismatchv € N and
each duplicationD € D are associated with penaltieg N) andd(D), respectively.
The score of alignmed (G, H, S, P) = {M, N, D} is defined as:

o(A)= Y uM) =Y v(N)= Y (D). (4)

MeM NeN DeD

()

We aim to find local alignments with locally maximal scoredding an analogy
to sequence alignment [23high-scoring subgraph pal. This definition of the lo-
cal alignment problem provides a general framework for thegarison of PPI net-
works, without explicitly formulating match scores, misieta and duplication penal-
ties. These functions can be selected and their relativieibations can be tuned based



on theoretical models and experimental observations &ce&fely synchronize with
the underlying evolutionary process. Clearly, an appaiprbasis for deriving these
functions is the similarity score functiofi. We discuss possible choices for scoring
functions in detail in Section 4.4.

A sample instance of the pairwise local alignment probleghi@wvn in Figure 2(a).
Consider the alignment induced by the protein subsetlfzﬁa# {u1,us2,usz,us} and
V = {v1,v2,v3}, shown in Figure 2(b). The only duplication in this alignrhém
(u1,us). If this alignment is chosen to be a “good” one, then, basetherexistence
of this duplication in the alignment, if (us,v1) < S(u1,v1), we can speculate that
u; andwv; have evolved from the same gene in the common ancestor, whike an
in-paralog that emerged from duplication @f after split. The match set consists of
interaction pairs(ulul, vlvl), (U]_UQ,U]'U]_), (U1U3,1)11)3), and(u2u4, ’Ul’Ug). Observe
thatv; is mapped to both; andus in the context of different interactions. This is as-
sociated with the functional divergencewf andw, after duplication. Moreover, the
self-interaction ofv, in H is mapped to an interaction between paralogous proteins
in G. The mismatch set is composed(@f u4, v1v2), (ugusz, v1v1), (uaus, v1v3), and
(usug, v3v2). The interactiorusuy in G is left unmatched by this alignment, since the
only possible pair of proteins iif that are orthologous to these two proteinsarand
v2, Which do not interact irH. One conclusion that can be derived from this alignment
is the elimination or emergence of this interaction in on¢hefspecies after the split.
The indirect path betweery andwv, throughv; may also serve as a basis for the tol-
erability of the loss of this interaction. We can also simatribute this observation to
experimental noise. However, if we includgin V as well, then the induced alignment
is able to matchuzu, andvsvy. This will strengthen the probability that this interactio
existed in the common ancestor. Howevgrcomes at the price of another duplication
since it is paralogous t@,. This example illustrates the challenge of correctly miatgh
proteins to their orthologs in order to reveal the maximunoani of reliable informa-
tion about the conservation of interaction patterns. Oudehtranslates this problem
into a trade-off between mismatches and duplications,rfagaselection of duplicate
proteins that have not quite diverged in the alignment.

4.2 Alignment Graphs and the Maximum-Weight Induced Subgrah Problem

It is possible to collect information on matches and misimascbetween two PPI net-
works into a single alignment graph by computing a modifietsiea of the graph
Cartesian product that takes orthology into account. Aésgyappropriate weights to
the edges of the alignment graph, the local alignment proldefined in the previous
section can be reduced to an optimization problem on thimalent graph. We define
an alignment graph for this purpose.

Definition 2. Alignment Graph. For a pair of PPI networks=(U, E), H(V, F'), and
protein similarity functionS, the corresponding weighted alignment gra@iiV, E) is
computed as follows:

V={v={u,v}:ueUwveVandS(u,v) > 0}. (5)
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Fig. 2. (a) An instance of the pairwise local alignment problem. phateins that have non-zero
similarity scores i(e., are potentially orthologous), are colored the same. Nwée4 does not
necessarily induce a disjoint grouping of proteins in peact(b) A local alignment induced
by the protein subset pa{ru1, uz, us, ua} and{v1, v2,vs}. Ortholog and paralog proteins are
vertically aligned. Existing interactions are shown byigbhes, missing interactions that have an
existing ortholog counterpart are shown by dotted linedidSiteractions between two aligned
proteins in separate species correspond to a match, odeoselidotted interaction between two
aligned proteins in separate species correspond to a nosnftoteins in the same species that
are on the same vertical line correspond to duplications.

In other words, we have a node in the alignment graph for eathgf ortholog pro-
teins. Each edgev’ € E, wherev = {u, v} andv’ = {«/,v'}, is assigned weight

w(vv') = p(un,vv") — v(uu', vv') — §(u,u’) — 6(v,v"). (6)

Here, p(uu’,vv") = 0 if (uu’,vv’) ¢ M, and similarly for mismatch and duplication
penalties.

Consider the PPI networks in Figure 2(a). To construct theesponding alignment
graph, we first compute the product of these two PPI netwarkétain five nodes that
correspond to five ortholog protein pairs. We then put an dxgeeen two nodes of
this graph if the corresponding proteins interact in bottwoeks (match edgg interact
in only one of the networksfismatch edgeor at least one of them is paralogousi{
plication edgg resulting in the alignment graph of Figure 3(a). Note thatweights
assigned to these edges, which are shown in the figure, asonstant, but are func-
tions of their incident nodes. Observe that the edge beteen, } and{us, v, } acts
a match and duplication edge at the same time, allowing aisaty the conservation of
self-interactions of duplicated proteins.

The weighted alignment graph is conceptually similar todttikology graph of Sha-
ran et al. [15]. However, instead of accounting for simtianf proteins through node
weights, we encapsulate the orthology information in edghts, which also allows
consideration of duplications effectively. This constroe of the alignment graph al-
lows us to formulate the alignment problem as a graph opétidna problem defined
below.

Definition 3. Maximum Weight Induced Subgraph Problem.Given graphG(V, E)
and a constant, find a subset of node¥, € 'V such that the sum of the weights of the
edges in the subgraph induced Wyis at leaste, i.e, W (V) =3 [ g w(vv') > e
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Fig.3. (a) Alignment graph corresponding to the instance of Fig).2(Note that match
scores, mismatch and duplication penalties are functidngn@dent nodes, which is not
explicitly shown in the figure for simplicity. (b) Subgrapmmduced by node seV =
{{u1,v1}, {u2,v1}, {us,v3}, {us,v2}}, which corresponds to the alignment shown in Fig. 2(b).

{ua,va}

Not surprisingly, this problem is equivalent to the locagjament of PPl networks
defined in the previous section, as formally stated in thiediohg theorem:

Theorem 1. Given PPI networksG, H, and a protein similarity functionS, let
G(V,E,w) be the corresponding alignment graphVfis a solution to the maximum
weight induced subgraph problem 61V, E, w), thenP = {U, V'} induces an align-
mentA(G, H, S, P) with o(A) = W(V), whereU = {u € U : Jv € V s.t.{u,v} €
ViandV ={veV:3uecUs.t{uv} eV}

Proof. Follows directly from the construction of alignment graph.

The induced subgraph that corresponds to the local alighineRigure 2(b) is
shown in Figure 3(b).

It can be easily shown that the maximum-weight induced sajifyproblem is NP-
complete by reduction from maximum clique, by assigning waight to edges and
—oo to non-edges. This problem is closely related to the maxiradge subgraph [24]
and maximum dispersion problems [25] that are also NP-cetaphithough the posi-
tive weight restriction on these problems limits the apgdiion of existing algorithms to
the maximum weight induced subgraph problem, the natureeo€dnservation of PPI
networks makes a simple greedy heuristic quite effectivéfe local alignment of PPI
networks.

4.3 A Greedy Heuristic for Local Alignment of Protein Intera ction Networks

In terms of protein interactions, functional modules anat@in complexes are densely
connected while being separable from other modiilesa protein in a particular mod-
ule interacts with most proteins in the same module eitherctiy or through a com-
mon module hub, while it is only loosely connected to the oéghe network [26].
Since analysis of conserved motifs reveals that proteihgghly connected motifs are
more likely to be conserved suggesting that such dense sratf parts of functional
modules [8], high-scoring local alignments are likely tarespond to functional mod-
ules. Therefore, in the alignment graph, we can expect tlaeins that belong to a



procedure GREEDYMAWISH(G)
> Input G(V, E,w): Alignment graph 6 repeat
> Input e: Threshold on subgraph weight 7V — V U {v}
> Output V: Subset of selected nodes 8 W—W+g®¥)

> g(v): Gain of addingv into V 9 for eachv € (V\ V) s.t¥v € E do
> W: Total subgraph weight 10 g(v) — g(v) +w(¥v)

1 for eachv € V do 11 v —argmax . v\ vy 9(v)

2 g(v) — w(vv) 12 until g(v) <0

3 w(v) =3 wegw(VV') 13 ifW>0

4 V0O, W0 14 then return V

5 v« argmax,.,w(v) 15 else return{)

Fig. 4. Greedy algorithm for finding a set of nodes that induces arsbgof maximal total
weight on the alignment graph.

conserved module will induce heavy subgraphs, while b&ingdly connected to other
parts of the graph. This observation leads to a greedy #tgoithat can be expected to
work well for the solution of the maximum weight induced stdggh problem on the

alignment graph of two PPI networks. Indeed, similar apphea are shown to perform
well in discovering conserved or dense subnets in PPI n&s\db, 27]. By seeding a

growing subgraph with a protein that has a large number ocf@med interactions and
small number of mismatched interactiorig( a conserved huband adding proteins

that share conserved interactions with this graph one byibisgossible to discover a
group of proteins with a set of dense interactions that ansexwed, likely being part

of a functional module.

A sketch of the greedy algorithm for finding a single consdrgabgraph on the
alignment graph is shown in Figure 4. This algorithm growslagsaph, which is of lo-
cally maximal total weight. To find all non-redundant “goalignments, we start with
the entire alignment graph and find a maximal subgraph.dfshbgraph is statistically
significant according to the reference model described tti®@e 4.5, we record the
alignment that corresponds to this subgraph and mark itesidtle repeat this process
by allowing only unmarked nodes to be chosen as seed untillograph with positive
weight can be found. Restricting the seed to only non-atigrales avoids redundancy
while allowing discovery of overlapping alignments. Figalwe rank all subgraphs
based on their significance and report the correspondiggraknts. A loose bound on
the worst-case running time of this algorithn(O$| V| |E|), since each alignment takes
O(|E|) time and each node can be the seed at most once. Assumingehmtrhber of
orthologs for each protein is bounded by a constant, thedfitee alignment graph is
linear in the total size of the input networks.

4.4 Selection of Model Components

In order for the discovered PPI network alignments to bedgialally meaningful, se-
lection of the underlying similarity function and the moslébr scoring and penalizing
matches, mismatches, and duplications is crucial, as inake of sequences.
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Similarity Function. Since proteins that are involved in a common functional nedu
or more generally, proteins that interact with each otheswslocal sequence similar-
ities, care must be taken while employing pairwise sequatigament as a measure
of potential orthology between proteins. Furthermore Javaligning two PPI networks
and interpreting the alignment, only duplications thatespond to proteins that are du-
plicated after the split of species are of interest. Suckgim@airs are called in-paralogs,
while the others are called out-paralogs [28]. Unfortulyatistinguishing between in-
paralogs and out-paralogs is not trivial. Therefore, wegassimilarity scores to protein
pairs conservatively by detecting orthologs and in-paysiasing a separate algorithm,
INPARANOID [28], which is developed for finding disjoint drlog clusters in two
species. Each ortholog cluster discovered by this alguoriith characterized by two
main orthologsone from each species, and possibly several other inqugrdfom
both species. The main orthologs are assigned a confideheeaofal.0, while the in-
paralogs are assigned confidence scores based on therersiatilarity to the main
ortholog in their own species. We define the similarity betwevo proteing andv as

S(u,v) = confidence(u) x confidence(v). (7)

This provides a normalized similarity function that takeduses in the intervdD, 1] and
quantifies the confidence in the two proteins being orthalsgo paralogous.

Scores and PenaltiesMatch scoreA match is scored positively in an alignment to re-
ward a conserved interaction. Therefore, the score repietee similarity between the
two interactions that are matched. Since the degree of oeatgn in the two ortholog
protein pairs involved in the matched interactions neederdhe same, itis appropriate
to conservatively assign the minimum of the similaritiethattwo ends of the matching
interaction to obtain:
pw(un,vv") = @S (uu', vv'), (8)

where S(uu’,vv") = min{S(u,v), S(v',v")} and ii is a pre-determined parameter
specifying the relative weight of a match in the total aliggmhscore. While we use
this definition of S(uw’, vv’) in our implementationS(u,v) x S(u’,v") provides a
reliable measure of similarity between the two proteinair

Mismatch penaltySimilar to match score, mismatch penalty is defined as:

v(uu',vv') = vS(uu',vv'), 9)

wherer is the relative weight of a mismatch. With this penalty fuoct each lost inter-
action of a duplicate protein is penalized to reflect the jgace of duplicate proteins.

Duplication penaltyDuplications are penalized to account for the divergend¢bef
proteins after duplication. Sequence similarity providesrude approximation to the
age of duplication and likelihood of being paralogs [21]nde, duplication penalty is
defined as:

S(u,u') = 6(d — S(u,u')), (10)
wherejd is the relative weight of a duplication add> max,, . cv S(u, ') is a param-
eter that determines the extent of penalizing duplicati@ansidering the similarity
function of (7), settingl = 1.0 results in no penalty for duplicates that are paralogous
to the main ortholog with 100% confidence.
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4.5 Statistical Significance

To evaluate the statistical significance of discovered{sighring alignments, we com-
pare them with a reference model generated by a random sdutbe reference model,
it is assumed that the interaction networks that belongédwo species are indepen-
dent from each other as well as the protein sequences. Toaelyucapture the power-
law nature of PPI networks, we assume that the interactiomgenerated randomly
from a distribution characterized by a given degree sequehte probabilityg,,,. of
observing an interaction between two proteins’ € U for the degree sequence de-
rived from G can be estimated by a Monte Carlo algorithm that repeatedyps the
incident nodes of randomly chosen edges [15]. On the othed,h@e assume that the
sequences are generated by a memoryless source, suehahétandv € V are or-
thologous with probability. Similarly, u,u’ € U andv,v’ € V are paralogous with
probabilityp;; andpy-, respectively. Since the similarity function of (7) progila mea-
sure of the probability of true homology between a given paproteins, we estimate

p by W Hence,E[S(u,v)] = p foru € U,v € V. The probabilities of
paralogy are estimated similarly.

In the reference model, the expected value of the score dignmzent induced by

VCVis i
EWV)]= Y Elwv),
v,v/EV

where

E[’LU(VV/)] = ,ELR2Quu’QUv’ - f/p2 (QMu’(l - QUU’) + (1 - Quu’)QUU’) (11)
=0(pu(1 —pu) + pv(1—pv))

is the expected weight of an edge in the alignment graph. M@ with the sim-
plifying assumption of independence between interactiores haveV ar[W (V)] =

> v.vev Var[w(vv')], enabling us to compute thescore to evaluate the statistical
significance of each discovered high-scoring alignmerdeuthe normal approxima-

tion that we assume to hold.

4.6 Extensions to the Model

Accounting for Experimental Error. PPl networks obtained from high-throughput
screening are prone to errors in terms of both false negatind positives [4]. While
the proposed framework can be used to detect experimerdad éinrough cross-species
comparison to a certain extent, experimental noise cardaigmade the performance of
the alignment algorithm. In other words, mismatches shbalgenalized for lost inter-
actions during evolution, not for experimental false negat To account for such errors
while analyzing interaction networks, several methodtmeen developed to quantify
the likelihood of an interaction or complex co-membersteépaeen proteins [29-31].
Given the prior probability distribution for protein intations and set of observed in-
teractions, these methods compute the posterior prohabflinteractions based on
Bayesian models. Hence, PPI networks can be modeled by tedighaphs to account
for experimental error more accurately.
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While the network alignment framework introduced in Settdhl assumes that
interactions are represented by unweighted edges, it camabdity generalized to a
weighted graph model as follows. Assuming that weight, represents the posterior
probability of interaction between andv, we can define match score and mismatch
penalty in terms of their expected values derived from thmssterior probabilities.
Therefore, for any, v’ € U andv, v’ € V, we have

plun’, ') = S (ua', v0")@uw @our (12)
v(uu',vv") = S (un’, v ) (@ (1 — @owr) + (1 — @y )T ). (13)

Note that match and mismatch sets are not necessarilyrdisjere in contrast to the
unweighted graph model, which is indeed a special case ®htbdel.

Tuning Model Components and Parameters. Sequence similarityA more flexible
approach for assessing similarity between proteins ictl@mployment of sequence
alignment scores. In PathBLAST [32], the similarity betwéwo proteins is defined as
the log-likelihood ratio for homology,e., S(u,v) = log(p(u,v)/p), wherep(u,v) is
the probability of true homology betweenandv given the BLASTE value of their
alignment ang is the expected value gfover all proteins in the PPI networks being
aligned. To avoid consideration of similarities that do redult from orthology, it is
necessary to set cut-off values on the significance of algmnm[32, 20].

Shortest-path mismatch modé&iince proteins that are linked by a short alterna-
tive path are more likely to tolerate losing their interantimismatch penalty can be
improved using a shortest-path mismatch model, defined as:

v(uu',vv") = pS(un, vv') (max{A(u,u), A(v,v")} — 1), (14)

whereA(u, ) is the length of the shortest path between proteiasdu’. While this
model is likely to improve the alignment algorithm, it is cpuotationally expensive
since it requires solution of the all pairs shortest pattbfenm on both PPI networks.

Linear duplication modelhe alignment graph model enforces each duplicate pair
in an alignment to be penalized. For example, if an alignneentainsn paralogous
proteins in one specieg) duplications are penalized to account for each duplicate
pair. However, in the evolutionary process, each paralsguwatein is the result of a
single duplicationj.e., n paralogous proteins are created in only- 1 duplications.
Therefore, we refer to the current model@sadratic duplication modedince the num-
ber of penalties is a quadratic function of number of dupidse. While this might be
desirable as being more restrictive on duplications, to besngonsistent with the un-
derlying biological processes, it can be replaced near duplication modein this
model, each duplicate protein is penalized only once, baseits similarity with the
paralog that is most similar to itself.

5 Experimental Results

In this section, we present local alignment results to tithte the effectiveness of the
proposed framework and the underlying algorithm on intiiwaciata retrieved from the
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Homo Sapiens

o 0 o0 000

TIF2 CBP ESR1 GRIP1 ZAC1 ANDR THB1 HMG1 PRGR GCR HMG2 PO31 OCT1 OBFl1 PO22
Mus Musculus

TIF2 CBP ESR1 GRIP1 ZAC1 ANDR THB1 HMG1 PRGR GCR HMG2 PO31 OCT1 OBF1 PO22

Fig. 5. A conserved subnet that is part of DNA-dependent transgeripegulation in human and
mouse PPI networks. Ortholog proteins are vertically a@yrExisting interactions are shown
by solid edges, missing interactions that have an existitigptbgous counterpart in the other
species are shown by dotted edges.

DIP protein interaction database [33]. We align the PPI pet& of two mammalians
that are available in the databastgmo sapiengHsapi) andMus musculugMmusc).
As of October 2004, the Hsapi PPI network contains 1369écteans among 1065 pro-
teins while Mmusc PPI network contains 286 interactionsmagr829 proteins. Running
INPARANOID on this set of 1351 proteins, we discover 237 oltlg clusters. Based on
the similarity function induced by these clusters, we carggtan alignment graph that
consists of 273 nodes and 1233 edges. The alignment grapdin®805 matched inter-
actions, 205 mismatched interactions in Hsapi, 149 misheatinteractions in Mmusc,
536 duplications in Hsapi, and 384 duplications in Mmusc. fen compute local
alignments using the algorithm of Section 4.3 on this gr&ytirying alternate settings
for the relative weights of match score and mismatch, dapibo penalties, we identify
54 non-redundant alignments, 15 of which contain at leasb8ms on each network.
Note that construction of alignment graph and discoveryoofl alignments on this
graph takes only a few milliseconds.

A conserved subnet of DNA-dependent transcription reguiahat is found to be
statistically significant4-score=18.1) is shown in Figure 5. The subnet is composed
of three major common functional groups, namely transicnipfactors and coactiva-
tors PO22, PO31, OCT1, TIF2, OBF1, steroid hormone rece@@R, ANDR, ESR1,
PRGR, GRIP1, THB1, and high mobility proteins HMG1 and HMG&deed, it is
known that HMG1 and HMG2 are co-regulatory proteins thatéase the DNA bind-
ing and transcriptional activity of the steroid hormonesslaf receptors in mammalian
cells [34]. All proteins in this subnet are localized in reus, with mobility proteins
particularly localizing in condensed chromosome. Thisnadtzontains 17 matching
interactions between 15 proteins. Two interactions of T(f2nscriptional intermedi-
ary factor 2) that exist in human are missing in mouse. If veedase the relative weight
of mismatch penalties in the alignment score, the alignrdeas not contain TIF2 any
more, providing a perfect match of 16 interactions.

The subnet that is part of transforming growth factor betapptor signaling path-
way, which is significantly conserved-score=19.9) in human and mouse PPI networks
is shown in Figure 6. This subnet contains 8 matching intemas among 10 proteins.

It is composed of two separate subnets that are connectedgtthe interaction of
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Homo Sapiens

Q ﬁ ; o§r 58

BMP4 BMRA BMP6 AVR1 AVRB ALK3 BMP7 BMRB GDF5 AVR2
Mus Musculus

BMP4 BMRA BMP6 AVR1 AVRB ALK3 BMP7 BMRB GDF5 AVR2

Fig.6. A conserved subnet that is part of transforming growth fabieta receptor signaling
pathway in human and mouse PPI networks.

Homo Sapiens Mus Musculus
B2MG B2MG
1A02 1B14 1B54 1B51 1B21 HLAE HLAB HA1B HA12 HA11

Fig. 7. A conserved subnet that is part of antigen presentation atiges processing in human
and mouse PPI networks. Homologous proteins are horizgmtiggned. Paralogous proteins in
a species are shown from left to right in the order of confideimcbeing orthologous to the
respective proteins in the other species.

their hubs, namely BMP6 (bone morphogenetic protein 6 peecyand BMRB (ac-
tivin receptor-like kinase 6 precursor). All proteins insttsubnet have the common
function of transforming growth factor beta receptor dtgiand are localized in the
membrane. Note that self-interactions of three proteirthimsubnet that exist in hu-
man PPI network are missing in mouse and one self-interattiat exists in mouse is
missing in human.

As an example for duplications, a subnet that is part of antfresentation and anti-
gen processing, which is significantly conserveg¢ore=456.5) in human and mouse
PPI networks is shown in Figure 7. This subnet is a star né&wbiseveral paralo-
gous class | histocompatibility antigens interacting vB2MG (beta-2 microglobulin
precursor) in both species. In the figure, paralogous pretaie displayed in order of
confidence in being orthologous to the corresponding prstieithe other species from
top to bottom. This star network is associated with MHC clasgeptor activity. Since
all proteins that are involved in these interactions are tlogous, we can speculate
that all these interactions have evolved from a single comimteraction. Note that
such patterns are found only with the help of the duplicationcept in the alignment
model. Neither a pathway alignment algorithm, nor an atparithat tries to match
each protein with exactly one ortholog in the other specidishe able to detect such
conserved patterns. Indeed, this subnet can only be disbwehen the duplication
coefficient is smalld < 0.12f1).
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6 Concluding Remarks and Ongoing Work

This paper presents a framework for local alignment of pnoitgteraction networks
that is guided by theoretical models of evolution of thesmneks. The model is based
on discovering sets of proteins that induce conserved ssiith the expectation that
these proteins will constitute a part of protein complexefiactional models, which
are expected to be conserved together. A preliminary impfeation of the proposed
algorithm reveals that this framework is quite successfulricovering conserved sub-
structures in protein interaction data.

We are currently working on a comprehensive implementatibthe proposed
framework that allows adaptation of several models for s88ag protein similarities
and scoring/penalizing matches, mismatches and dupicatiFurthermore, we are
working on a rigorous analysis of distribution of the aligemh score, which will en-
able more reliable assessment of statistical significaDoee these enhancements are
completed, the proposed framework will be established aslddr pairwise alignment
of PPI networks, that will be publicly available through abnieterface. The frame-
work will also be generalized to the search of input quenethe form of subnets in
a database of PPI networks. Using this tool researcherdwilible to find conserved
counterparts of newly discovered complexes or modulesvieraéspecies.
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