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Abstract. With the availability of large scale computing platforms and instru-
mentation for data gathering, increased emphasis is being placed on efficient
techniques for analyzing large and extremely high-dimensional datasets. In this
paper, we present a novel algebraic technique based on a variant of semi-discrete
matrix decomposition (SDD), which is capable of compressing large discrete-
valued datasets in an error bounded fashion. We show that this process of com-
pression can be thought of as identifying dominant patterns in underlying data.
We derive efficient algorithms for computing dominant patterns, quantify their
performance analytically as well as experimentally, and identify applications of
these algorithms in problems ranging from clustering to vector quantization. We
demonstrate the superior characteristics of our algorithm in terms of (i) scalabil-
ity to extremely high dimensions; (ii) bounded error; and (iii) hierarchical nature,
which enables multiresolution analysis. Detailed experimental results are pro-
vided to support these claims.

1 Introduction.

The availability of large scale computing platforms and instrumentation for data collec-
tion have resulted in extremely large data repositories that must be effectively analyzed.
While handling such large discrete-valued datasets, emphasis is often laid on extract-
ing relations between data items, summarizing the data in an error-bounded fashion,
clustering of data items, and finding concise representations for clustered data. Several
linear algebraic methods have been proposed for analysis of multi-dimensional datasets.
These methods interpret the problem of analyzing multi-attribute data as a matrix ap-
proximation problem. Latent Semantic Indexing (LSI) uses truncated singular value
decomposition (SVD) to extract important associative relationships between features
and data items [1]. Semi-discrete decomposition (SDD) is a variant of SVD, which re-
stricts singular vector elements to a discrete set, thereby requiring less storage [9]. SDD
is used in several applications ranging from LSI [8] and bump-hunting [11] to image
compression [14], and has been shown to be effective in summarizing data.
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The main objective of this study is to provide an efficient technique for error-
bounded approximation of large discrete valued datasets. A non-orthogonal variant of
SDD is adapted to discrete-valued matrices for this purpose. The proposed approach
relies on successive discrete rank-one approximations to the given matrix. It identifies
and extracts attribute sets well approximated by the discrete singular vectors and applies
this process recursively until all attribute sets are approximated to within user-specified
tolerance. A rank-one approximation of a given matrix is estimated using an iterative
heuristic approach similar to that of Kolda et al. [8]. This approach of error bounded
compression can also be viewed as identifying dominant patterns in the underlying data.

Two important aspects of the proposed technique are (i) the initialization schemes;
and (ii) the stopping criteria. We discuss the efficiency of different initialization schemes
for finding rank-one approximations and stopping criteria for our recursive algorithm.
We support all our results with analytical as well as experimental results. We show that
the proposed method is superior in identifying dominant patterns while being scalable
to extremely high dimensions.

In the next section, we briefly describe the problem and overview related research.
Mathematical formulation and implementation of the algorithm are presented in Sec-
tion 3. Performance of the algorithm in terms of accuracy and run-time scalability is
discussed in Section 4. We conclude with a summary of results and ongoing research in
Section 5.

2 Background and Related Research.

An ����� rectangular matrix
�

can be decomposed into
���	��
���

, where
�

is an
����� orthogonal matrix,

�
is an ����� orthogonal matrix and



is an ����� diagonal

matrix with the first � diagonal entries containing singular values of
�

in descending
order. Here � denotes the rank of matrix

�
. The matrix

�������� ���  is a rank-one
approximation of

�
, where

�
and � denote the first rows of matrices

�
and

�
re-

spectively. If we think of a matrix as a multi-attributed dataset with rows corresponding
to data items and columns corresponding to features, we can say that each 3-tuple con-
sisting of a singular value

���
, ����� row in

�
, and ����� row in

�
represents a pattern in�

, whose strength is characterized by � � � � . The underlying data represented by matrix�
is summarized by truncating the SVD of

�
to a small number of singular values.

This method, used in Latent Semantic Indexing (LSI), finds extensive application in
information retrieval [1].

Semi-discrete decomposition (SDD) is a variant of SVD, where the values of the
entries in matrices

�
and

�
are constrained to be in the set ! -1,0,1 " [9]. The main

advantage of SDD is the small amount of storage required since each vector component
takes only 1.5 bits. In our algorithm, since we always deal with 0/1 valued attributes,
vector elements can be further constrained to the set ! 0,1 " , requiring only 1 bit of stor-
age. SDD has been applied to LSI and shown to do as well as truncated SVD using less
than one-tenth the storage [8]. McConnell and Skillicorn show that SDD is extremely
effective in finding outlier clusters in datasets and works well in information retrieval
for datasets containing a large number of small clusters [11].
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Other work on summarizing discrete-attributed datasets is largely focused on clus-
tering very large categorical datasets. A class of approaches is based on well-known
techniques such as vector-quantization [3] and k-means clustering [10]. The k-modes
algorithm [7] extends k-means to the discrete domain by defining new dissimilarity
measures. Another class of algorithms is based on similarity graphs and hypergraphs.
These methods represent the data as a graph or hypergraph to be partitioned and apply
partitioning heuristics on this representation. Graph-based approaches represent simi-
larity between pairs of data items using weights assigned to edges and cost functions
on this similarity graph [2, 4, 5]. Hypergraph-based approaches observe that discrete-
attribute datasets are naturally described by hypergraphs and directly define cost func-
tions on the corresponding hypergraph [6, 13].

Our approach differs from these methods in that it discovers naturally occurring
patterns with no constraint on cluster sizes or number of clusters. Thus, it provides a
generic interface to the problem which may be used for in diverse applications. Further-
more, the superior execution characteristics of our approach make it particularly suited
to extremely high-dimensional attribute sets.

3 Proximus: A Framework for Error-bounded Compression of
Discrete-Attribute Datasets.

Proximus is a collection of algorithms and data structures that rely on modified SDD
to find error-bounded approximations to discrete attributed datasets. The problem of
error-bounded approximation can also be thought of as finding dense patterns in sparse
matrices. Our approach is based on recursively finding rank-one approximations for a
matrix

�
, i.e. finding two vectors � and � that minimize the number of nonzeros in

the matrix � ��� ���  � , where � and � have size � and � respectively. The following
example illustrates the concept:

Example 1

���
����	��
�	��
�	��


�
�
������
��� �	��
�� � ��� 

Here, vector � is the pattern vector, which is the best approximation for the objec-
tive (error) function given. In our case, this vector is [1 1 0]. Vector � is the presence
vector representing the rows of

�
that are well approximated by the pattern described

by � . Since all rows contain the same pattern in this rank-one matrix, � is vector of all
ones. We clarify the discussion with a slightly non-trivial example.

Example 2

���
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In this example, the matrix
�

is not a rank-one matrix as before. The pattern vector
here is [0 0 1 0 1] and the corresponding presence vector is [1 1 0 1]. This presence
vector indicates that the pattern is dominant in the first, second and fourth rows of

�
.

A quick examination of the matrix confirms this. In this way, a rank-one approximation
to a matrix can be thought of as decomposing the matrix into a pattern vector and a
presence vector which signifies the presence of the pattern.

Using a rank-one approximation for the given matrix, we partition the row set of
the matrix into sets

���
and

� � with respect to vector � as follows: the
� ��� row of the

matrix is put into
� � if the

� ��� entry of � is 1, it is put into
� �

otherwise. The intuition
behind this approach is that the rows corresponding to 1’s in the presence vector are
the rows of a maximally connected submatrix of

�
. Therefore, these rows have more

similar non-zero structures among each other compared to the rest of the matrix. This
partitioning can also be interpreted as creating two new matrices

� �
and

� � . Since the
rank-one approximation for

�
gives no information about

� �
, we further find a rank-

one approximation and partition this matrix recursively. On the other hand, we use the
representation of the rows in

� � in the pattern vector � to check if this representation
is sufficient via some stopping criterion. If so, we decide that matrix

� � is adequately
represented by matrix ���  and stop; else, we recursively apply the same procedure for� � as for

���
.

3.1 Mathematical Formulation.

The problem of finding the optimal rank-one approximation for a discrete matrix can
be stated as follows.

Definition 1 Given matrix
��� ! 
�� � "�� X ! 
	� � "�
 , find � � ! 
	� � "�� and � � ! 
	� � "�


that minimize the error:

� � ��� ���  � � � � � !������ � � ��� ���  ��������� � � " ��� (1)

In other words, the error for a rank-one approximation is the number of non-zero en-
tries in the residual matrix. For example, the error for the rank-one approximation of
Example 2 is 4. As discussed in Section 3, this problem can also be thought of as finding
maximum connected components in a graph. This problem is known to be NP-complete
and there exist no known approximation algorithms or effective heuristics in literature.

Here, we use a linear algebraic method to solve this problem. The idea is directly
adopted from the algorithm for finding singular values and vectors in the computation of
an SVD. It can be shown that minimizing � � � � ���  � � �

is equivalent to maximizing the
quantity �  � ��� � � � � � �� � � � � � �� [9]. If we assume that � is fixed, then the problem becomes:

Definition 2 Find � � ! 
�� � "�� to maximize � �� � � � � � � �� , where
� ��� ��� � � � � � �� .

This problem can be solved in ��� ��� � � time as shown in the following theorem
and corollary.

Theorem 1 If the solution to problem of Defn. 2 has exactly J non-zeros, then the solu-
tion is

� �"! �$# �%� �'& �)(+*,(.-
���/�02143 ��5 � � 3
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where the elements of
�

, in sorted order, are� ��� � � ��� � � � � � � ��� �

The proof can be found in [12].

Corollary 1 The problem defined in Defn. 2 can be solved in ����� � � � time.

Proof
The entries of

�
can be sorted via counting sort in ����� � time as the entries of � � � � � �� � �� � are bounded from above by � and have integer values. Having them sorted, the

solution described in Theorem 1 can be estimated in ��� � � time since
- ( � , thus the

corollary follows. �
The foregoing discussion also applies to the problem of fixing � and solving for� . The underlying iterative heuristic is based on the above theorem, namely we start

with an initial guess for � , we solve for � and fix the resulting � to solve for � .
We iterate in this way until no significant improvement can be achieved. The proposed
recursive algorithm for summarizing a matrix can now be described formally as follows:
Using a rank-one approximation, matrix

�
is split into two submatrices according to

the following definition:

Definition 3 Given a rank-one approximation,
� � ���  , a split of

�
with respect to

this approximation is defined by two sub-matrices
� � and

���
where

� � � � � # � � � �'& ��� � � � �� � ��/�02143 ��5 � � 3
for

�)( � ( � . Here,
� � � � denotes the

� ��� row of
�

.

Then, both
� � and

� �
are matrices to be approximated and this process continues

recursively. This splitting-and-approximating process goes on until one of the following
conditions holds.

–
1 � � � ���
	 where

1 � � � � denotes the hamming radius of
� � , i.e., the maximum

of the hamming distances of the rows of
� � to the pattern vector � . 	 is a pre-

determined threshold.
– � � � � � ��� � , i.e. all the rows of

�
are present in

� � .

If one of the above conditions holds, the pattern vector of matrix
� � is identified as

a dominant pattern in the matrix. The resulting approximation for
�

is represented as�� � � � 
where

�
and

�
are � � � and � � � matrices containing the presence

and pattern vectors of identified dominant patterns in their rows respectively and � is
the number of identified patterns.
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3.2 Initialization of Iterative Process.

While finding a rank-one approximation, initialization is crucial for not only the rate of
convergence but also the quality of the solutions since a wrong choice can result in poor
local optima. In order to have a feasible solution, the initial pattern vector should have
a magnitude greater than zero, i.e., at least one of the entries in the initial pattern vector
should be equal to one. Possible procedures for finding an initial pattern vector include:

– All Ones: Set all entries of the initial pattern vector to one. This scheme is observed
to be poor since the solution converges to a rough pattern containing most of the
rows and columns in the matrix.

– Threshold: Set all entries corresponding to columns that have nonzero entries more
than a selected threshold to one. The threshold can be set to the average number of
nozeros per column. This scheme can also lead to poor local optima since the most
dense columns in the matrix may belong to different independent patterns.

– Maximum: Set only the entry corresponding to the column with maximum number
of nonzeros to one. This scheme has the risk of selecting a column that is shared by
most of the patterns in the matrix since it typically has a large number of nonzeros.

– Partition: Take the column which has nonzeros closest to half of the number of
rows and select the rows which have a nonzero entry on this column. Then apply
the threshold scheme taking only the selected rows into account. This approach
initializes the pattern vector to the center of a roughly identified cluster of rows.
This scheme has the nice property of starting with an estimated pattern in the ma-
trix, thereby increasing the chance of selecting columns that belong to a particular
pattern.

All of these schemes require ��� � � � � time. Our experiments show that partition per-
forms best among these schemes as intuitively expected. We select this scheme to be
the default for our implementation and the experiments reported in Section 4 are per-
formed with this initialization. More powerful initialization schemes can improve the
performance of the algorithm significantly. However, it is important that the initializa-
tion scheme must not require more than ����� � � � operations since it will dominate
the runtime of the overall algorithm if it does.

3.3 Implementation Details.

As the proposed method targets handling vectors of extremely high dimensions, the
implementation and design of data structures are crucial for scalability, both in terms of
time and space. In our implementation, we take advantage of the discrete nature of the
problem and recursive structure of the proposed algorithm.

Data Structures. The discrete vectors are stored as binary arrays, i.e., each group
of consecutive � (word size) entries are stored in a word. This allows us to reduce
the memory requirement significantly as well as to take advantage of direct binary
operations used in matrix-vector multiplications. The matrices are stored in a row-
compressed format which fits well to the matrix-splitting procedure based on rows.



7

2

3

1

3

4

4

2

A

1

3

2

3

1

3

4

4

2

A

A

0

1

3

1

(a) (b)

Fig. 1. Illustration of underlying data structure: (a) Original matrix (b) Resulting matrices after
split, in row-compressed format.

Figure 1 illustrates the row-compressed representation of a sample matrix
�

and the
result of splitting this matrix into

� �
and

� � , where

� �
������

��	��
��
��	�
	
	
���	��
	

	
���


������ � � � �� � � � �� ���%�� ��� �
�
�
�� 
�����

	
�
���	��
	


�
� � ��� ����������
	 ��� ��
��	�
	
���
 	

In this format, the column id’s of the nonzero entries are stored in an array such
that the non-zero entries of a row are stored in consequent locations. The list of rows
of the matrix is a linked list in which each row has an additional pointer to the start of
its non-zero entries in the non-zero list. Since the columns of the original matrix are
never partitioned in our recursive implementation, the matrices appearing in the course
of the algorithm can be easily created and maintained. While splitting a matrix, it is only
necessary to split the linked list containing the rows of the matrix as seen in Figure 1(b).
This is particularly important as splitting large sparse structures can be a very significant
(and often dominant) overhead as we learnt from our earlier implementations.

Matrix Computations. The heuristic used to estimate rank-one approximations ne-
cessitates the computation of

� � and
�  � alternatingly. Although a row-compressed

format is suitable for the computation of
� � , it is more difficult to perform the compu-

tation of
�  � since each column of

�
is multiplied with � in this operation. However,

it is not necessary compute
� 

to perform this operation. In our implementation, we
compute

� � �  � with the following algorithm based on a row-compressed format:

initialize
� � � � � 
 for

�)( � ( �
for

�� �
to � do

if � � � � � � then
for

� * � � / ��� 3 � / � � � � � �2� do� � * � � � � * � � �
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This algorithm simply multiplies each row of
�

with the corresponding entry of � and
adds the resulting vector to

�
and requires ��� ��� � � �2� time in the worst-case.

This combination of restructured matrix transpose-vector product and suitable core
data structures makes our implementation extremely fast and scalable.

Stopping Criteria. As discussed in Section 3.1, one of the stopping criteria for the re-
cursive algorithm is if each row in the matrix is well approximated by the pattern (i.e.,
the column singular vector is a vector of all ones). However, this can result in an unde-
sirable local optimum. Therefore, in this case we check if

1 � � � � 	 , i.e., the hamming
radius around the pattern vector for all the row vectors is within a prescribed bound. If
not, we further partition the matrix into two based on hamming distance according to
the following rule.

� � � � � # � � � �'& 1 � � � � � � �	� � �� � ��/�02143 ��5 � � 3
for

� ( � ( � . Here
1 � � � � � � � � denotes the hamming distance of row

�
to the pattern

vector � and � is the prescribed radius of the virtual cluster defined by
� � . The selec-

tion of � is critical for obtaining the best cluster in
� � . In our implementation, we use

an adaptive algorithm that uses a sliding window in � -dimensional space and detects
the center of the most sparse window as the boundary of the virtual cluster.

4 Experimental Results.

In order to illustrate the effectiveness and computational efficiency of the proposed
method, we conducted several experiments on synthetic data specifically generated to
test the methods on problems where other techniques typically fail (such as overlapping
patterns, low signal-to-noise ratios). In this section we present the results of execution
on a number of test samples to show the approximation capability of Proximus, analyze
the structure of the patterns discovered by Proximus and demonstrate the scalability of
Proximus in terms of various problem parameters.

4.1 Data Generation.

Test matrices are generated by constructing a number of patterns, each consisting of
several distributions (mixture models). Uniform test matrices consist of uniform pat-
terns characterized by a set of columns that may have overlapping patterns. For exam-
ple, the test matrix of Figure 2(a) contains four patterns with column sets of cardinality
16 each. A pattern overlaps with at most two other patterns at four columns, and the
intersection sets are disjoint. This simple example proves to be extremely challenging
for conventional SVD based techniques as well as k-means clustering algorithms. The
SVD-based techniques tend to identify aggregates of overlapping groups as dominant
singular vectors. K-means clustering is particularly susceptible for such examples to
specific initializations.
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Gaussian matrices are generated as follows: a distribution maps the columns of the
matrix to a Gaussian probability function of distribution � ��� � � � , where

�,( � ( �
and

�
are determined randomly for each distribution. Probability function ��� � � deter-

mines the probability of having a non-zero on the
� ��� entry of the pattern vector. A

pattern is generated by superposing a number of distributions and scaling the probabil-
ity function so that � 
��� � ��� � � ��� 

	 where

� 

	 is the average number of non-zeros
in a row, which is determined by

� 

	 ��� � .
�

is a pre-defined density parameter. The
rows and columns of generated matrices are randomly ordered to hide the patterns in
the matrix (please see first row of plots in Figure 2 for sample inputs).

4.2 Results.

Effectiveness of Analysis. As the error metric defined in the previous section depends
on the nature of the pattern matrix, it does not provide useful information for evaluating
the performance of the proposed method. Thus, we qualitatively examine the results
obtained on sample test matrices. Figure 2(a) shows the performance of Proximus on a
small uniform test matrix. The first matrix in the figure is the original generated and re-
ordered matrix with 4 uniform patterns. The second matrix is the reordered approxima-
tion matrix which is estimated as ��  where  and � are 28x5 and 48x5 presence
and pattern matrices containing the information of 5 patterns detected by Proximus.
The � ��� pattern is characterized by the intersection of a pair of patterns in the original
matrix. The matrix is reordered in order to demonstrate the presence (and extent) of
detected patterns in input data.

The performance of Proximus on a simple Gaussian matrix is shown on Figure 2(b).
In this example, the original matrix contains 10 patterns containing one distribution
each and Proximus was able to detect all these patterns as seen in the figure.

Figure 2(c) shows a harder instance of the problem. In this case, the 10 patterns in
the matrix contain at most 2 of 7 Gaussian distributions. The patterns and the distribu-
tions they contain are listed in Table 4.2(a). The matrix is of dimension � 
 
 � � 
 
 
 ,
and each group of 40 rows contain a pattern. As seen in the figure, Proximus was able
to detect most of the patterns existing in the matrix. Actually, 13 significant patterns
were identified by Proximus, most dominant 8 of which are displayed in Table 4.2(b).
Each row of Table 4.2(b) shows a pattern detected by Proximus. The first column con-
tains the number of rows conforming to that pattern. In the next 10 columns, these rows
are classified into original patterns in the matrix. Similarly, the last 7 columns show
the classification of these rows due to distributions in the original data. For example,
31 rows contain the same detected pattern shown in the second row of the table, 29 of
which contain pattern P7 and other two contain pattern P8 originally. Thus, distributions
D4 and D7, both having 29 rows containing them, dominated this pattern. Similarly, we
can conclude that the third row is dominated by pattern P1, (distribution D2) and fourth
and seventh rows are characterized by distribution D5. The interaction between the most
dominant distribution D5 and the distributions D1, D3, D4 and D6 shows itself in the
first row. Although this row is dominated by D5, several other distributions are classi-
fied in this pattern since these distributions share some pattern with D5 in the original
matrix. These results clearly demonstrate the power of Proximus in identifying patterns
even for very complicated datasets.
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Fig. 2. Performance of Proximus on a (a) ��������� uniform matrix with 4 patterns intersecting
pairwise, (b) ���	�
����	��� Gaussian matrix with 10 patterns each consist ing of one distribution;
(c) ���	���������	� Gaussian matrix with 10 patterns each consisting of at most 2 distributions.

4.3 Runtime Scalability.
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Fig. 3. Runtime of Proximus (secs.) with respect to (a) number of columns (b) number of rows
(c) number of non-zeros in the matrix.

Theoretically, each iteration of the algorithm for finding a rank-one approximation
requires ��������������� time since a constant number of matrix-vector multiplications dom-
inates the runtime of an iteration. As the matrices created during the recursive process
are more sparse than the original matrix, the total time required to estimate the rank-one
approximation for all matrices at a level in the recursion tree is asymptotically less than
the time required to estimate the rank-one approximation for the initial matrix. Thus, the
total runtime of the algorithm is expected to be ����������� �!� with a constant depending
on the number of dominant patterns in the matrix which determines the height of the re-
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Pattern Distributions
P1 D2
P2 D3, D6
P3 D1, D5
P4 D2, D7
P5 D5, D6
P6 D3, D5
P7 D4, D7
P8 D5
P9 D5
P10 D4, D5

Number Patterns Distributions
of rows P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 D1 D2 D3 D4 D5 D6 D7

105 14 26 20 4 12 7 22 14 20 26 101 26 4
31 29 2 29 2 29
24 24 24
24 8 16 24
23 13 10 23 10
23 2 21 2 21 21
22 15 7 22
20 13 2 1 13 2 5 19 2

(a) (b)

Table 1. (a) Description of patterns in the original data, (b) Classification of patterns detected by
Proximus by original patterns and distributions.

cursion tree. The results displayed in Figure 3 illustrate the scalability of the algorithm
in terms of number of columns, rows and non-zeros in the matrix. These experiments
are performed by:

1. varying the number of columns, where number of rows and the average number of
non-zeros per column are set to constant values 1000 and 50 respectively.

2. varying the number of rows, where number of columns and the average number of
non-zeros per row are set to constant values 1000 and 50 respectively.

3. varying the number non-zeros, where the average non-zero density in rows is set to
constant value 50 and the number of rows and columns are kept equal.

All experiments are repeated with different randomly generated matrices 50 times
for all values of the varying parameter. The reported values are the average run-times
over these 50 experiments. In cases 1. and 2. above, the number of non-zeros grows
linearly with the number of rows and columns, therefore, we expect to see an asymp-
totically linear runtime. As seen in Figure 3, the runtime of Proximus is asymptotically
linear in number of columns. The runtime shows an asymptotically sublinear behavior
with growing number of rows. This is because each row appears in at most one matrix
at a level of the recursion tree. The behavior of runtime is similar when increasing the
number of non-zeros.

5 Conclusions and Ongoing Work.

In this paper, we have presented a powerful new technique for analysis of large high-
dimensional discrete valued attribute sets. Using a range of algebraic techniques and
data structures, this technique achieves excellent performance and scalability. The pro-
posed analysis tool can be used in applications such as dominant and deviant pattern
detection, clustering, bounded error compression, and classification. Efforts are cur-
rently under way to demonstrate its performance on real applications in information
retrieval and in bioinformatics on gene expression data.
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