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ABSTRACT

Motivation: The advent of next-generation sequencing (NGS)
techniques presents many novel opportunities for many applications
in life sciences. The vast number of short reads produced by these
techniques, however, pose significant computational challenges.
The first step in many types of genomic analysis is the mapping
of short reads to a reference genome, and several groups have
developed dedicated algorithms and software packages to perform
this function. As the developers of these packages optimize their
algorithms with respect to various considerations, the relative merits
of different software packages remain unclear. However, for scientists
who generate and use NGS data for their specific research projects,
an important consideration is choosing the software that is most
suitable for their application.

Results: With a view to comparing existing short read alignment
software, we develop a simulation and evaluation suite, SEAL, which
simulates NGS runs for different configurations of various factors,
including sequencing error, indels and coverage. We also develop
criteria to compare the performances of software with disparate
output structure (e.g.some packages return a single alignment while
some return multiple possible alignments). Using these criteria,
we comprehensively evaluate the performances of Bowtie, BWA,
mr- and mrsFAST, Novoalign, SHRIMP and SOAPv2, with regard to
accuracy and runtime.

Conclusion: We expect that the results presented here will be useful
to investigators in choosing the alignment software that is most
suitable for their specific research aims. Our results also provide
insights into the factors that should be considered to use alignment
results effectively. SEAL can also be used to evaluate the performance
of algorithms that use deep sequencing data for various purposes
(e.g.identification of genomic variants).

Availability: SEAL is available as open source at http://compbio.case
.edu/seal/.

Contact: matthew.ruffalo@case.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

Next-generation sequencing techniques are demonstrating promise
in transforming research in life sciences (Schuster, 2007).
These techniques support many applications including meta-
genomics (Qin et al., 2010), detection of SNPs (Van Tassell et al.,
2008) and genomic structural variants (Alkan et al., 2009; Medvedev
et al., 2009) in a population, DNA methylation studies (Taylor et al.,
2007), analysis of mRNA expression (Sultan et al., 2008), cancer
genomics (Guffanti et al., 2009) and personalized medicine (Auftray
etal.,2009). Some applications (e.g. metagenomics) require de novo
sequencing of a sample (Miller et al., 2010), while many others (e.g.
variant detection, cancer genomics) require resequencing. For all of
these applications, the vast amount of data produced by sequencing
runs poses many computational challenges (Horner et al., 2010).

In resequencing, a reference genome is already available for
the species (e.g. the human genome) and one is interested in
comparing short reads obtained from the genome of one or more
donors (individual members of the species) to the reference genome.
Therefore, the first step in any kind of analysis is the mapping
of short reads to a reference genome. This task is complicated
by many factors, including genetic variation in the population,
sequencing error, short read length and the huge volume of short
reads to be mapped. So far, many algorithms have been developed
to overcome these challenges and these algorithms have been made
available to the scientific community as software packages (Li and
Homer, 2010). Currently available software packages for short read
alignment include Bowtie (Langmead et al., 2009), SOAP (Li et al.,
2009), BWA (Li and Durbin, 2009, 2010), mrFAST (Alkan et al.,
2009), mrsFAST (Hach et al., 2010), Novoalign (Novocraft, 2010)
and SHRiMP (Rumble et al., 2009).

In this article, we assess the performance of currently available
alignment algorithms, with a view to (i) understanding the effect
of various factors on accuracy and runtime performance and
(ii) comparing existing algorithms in terms of their performance
in various settings. For this purpose, we develop a simulation
and evaluation suite, SEAL, that simulates short read sequencing
runs for a given set of configurations and evaluates the output of
each software using novel performance criteria that are specifically
designed for the current application. Our results show significant
differences in performance and accuracy as quality of the reads
and the characteristics of the genome vary. In the next section,
we briefly describe the alignment algorithms that are evaluated in
this article. Subsequently, in Section 3, we describe the simulation
suite implemented in SEAL and our performance criteria in detail.
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We present detailed experimental results in Section 4. We conclude
with a detailed discussion of our results in Section 5.

2 BACKGROUND

The problem of short read alignment is formulated as follows. Given
a reference genome (for which the entire nucleotide sequence is
available) and a donor genome (for which the nucleotide sequence
is not known), a sequencing run produces many short reads from
the donor genome. These short reads are generated by taking
relatively long (200-8000 bp) fragments from the donor genome
and sequencing a number of bases (35-150 bp for Illumina, 400 bp
on average for 454) from either only one end (single-end read)
or both ends (paired-end read) of the fragment. Given this set of
short reads from the donor genome, the objective of alignment is
to correctly determine each read’s corresponding location in the
reference genome.

Here, we briefly describe the alignment algorithms and the major
differences between their approaches. Many of these algorithms
have undergone major revisions in recent years, with their authors
producing either ‘version 2’ of their tools [e.g. SOAP (Li et al.,
2009)] or using a different name for the new version [e.g. Mapping
and Assembly with Qualities (MAQ) (Li et al., 2008a) versus
Burrows-Wheeler Alignment (BWA) (Li and Durbin, 2009)]. We
only consider the most recent version of each tool for brevity;
the developers of these tools perform their own evaluation to
demonstrate the superiority of their newer approaches.

2.1 Bowtie

Bowtie (Langmead et al., 2009) uses an index built with the
Burrows-Wheeler transformation (Burrows et al., 1994; Ferragina
and Manzini, 2000) and claims a small memory footprint—
about 1.3 GB for the entire human genome. Bowtie makes some
compromises to provide its speed and memory usage; notably that
it does not guarantee the highest quality read mapping if no exact
match exists. Additionally, it may fail to align some reads with valid
mappings when configured for maximum speed. If a user desires
higher accuracy, Bowtie provides options to adjust this trade-off.

22 BWA

BWA (Li and Durbin, 2009, 2010) can be considered as ‘MAQ (Li
et al., 2008a) version 2’. Whereas MAQ uses a hash-based index
to search the genome, BWA uses an index built with the Burrows-
Wheeler transformation that allows for much faster searching than its
predecessor. Like its predecessor, BWA reports a meaningful quality
score for the mapping that can be used to discard mappings that are
not well supported due to e.g. a high number of mismatches.

2.3 mrFAST and mrsFAST

The mr- and mrsFAST tools (Alkan et al., 2009; Hach et al.,
2010) are notable in that they report all mappings of a read to a
genome rather than a single ‘best” mapping. The ability to report
all possible reference genome locations is useful in the detection of
copy number variants (Bailey ez al., 2002). Indeed, these algorithms
are developed primarily for applications that involve detection of
structural variants (Alkan et al., 2009). mr- and mrsFAST use a seed-
and-extend method for alignment, and create hash table indices for
the reference genome. Each read is split into first, middle and last

k-mers (the default k=12), and each of these k-mers are searched
in the hash index to place initial alignment seeds.

2.4 Novoalign

Novoalign is a proprietary product of Novocraft (Novocraft, 2010)
that uses a hashing strategy similar to that of MAQ (Li et al., 2008a).
It has become quite popular in recent publications due to its accuracy
claims, and it allows up to eight mismatches per read for single end
mapping.

2.5 SHRiMP

SHRiMP (Rumble et al., 2009) specializes in mapping SOLiD
color-space reads, but is also usable for the reads simulated in
our evaluation. It takes advantage of recent advances in sequence
alignment: g-gram filters (Rasmussen et al., 2005), which allow
multiple matching seeds to start the alignment process; spaced
seeds (Califano and Rigoutsos, 1993), which allow predetermined
sections of mismatches in seed sequences; and specialized hardware
implementations/instructions to speed up the standard Smith—
Waterman (Smith and Waterman, 1981) alignment algorithm.

2.6 SOAPv2

SOAP is an alignment algorithm specifically designed for detecting
and genotyping single nucleotide polymorphisms. Like BWA and
its predecessor MAQ, SOAP version 2 (Li et al., 2009) improves on
SOAPv1 (Li et al., 2008b) by using an index based on the Burrows-
Wheeler transformation (BWT). This improved index significantly
improves alignment speed and memory usage. SOAPv2 determines
matches by building a hash table to accelerate the searching of the
BWT reference index.

3 METHODS

3.1 Simulation

We develop SEAL (SEquence ALignment evaluation suite), a comprehensive
sequencing simulation and alignment tool evaluation suite. This software
(implemented in Java) provides several utilities that can be used to evaluate
alignment algorithms, including:

* Reading a pre-existing reference genome from one or more FASTA
files.

¢ Alternatively, generating an artificial reference genome based on input
parameters (length, repeat count, repeat length, repeat variability rate).

¢ Simulating reads from random locations in the genome based on input
parameters of read length, coverage, sequencing error rate and indel
rate.

¢ Applying alignment tools to the genome and the reads through a
standardized interface.

« Parsing the output of the alignment tool and calculating the number of
reads that were correctly or incorrectly mapped.

¢ Computing runtimes and measures of accuracy.

The ability to generate random reference genomes enables systematic
studies of the effect of various factors on performance. In particular,
besides specifying the length of the reference genome, the user can also
adjust different repeat parameters—repeat count, repeat length and repeat
variability rate (the probability of altering a base at each genome location
during a repeat). This repeat variability rate is intended to introduce
variability in the potential mappings of a read. Repeats are quite common in
real genomes (Cheung et al., 2003).
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Our evaluation simulates reads from a reference genome, choosing
uniformly distributed locations at random and making reads from fragments
of normally distributed sizes. In the paired-end case, the underlying fragment
is of normally distributed size and the read length at each end is fixed. The
user can evaluate the effect of various factors by adjusting the following
parameters:

* Read length: this is the average number of bases in each read. In current
platforms, read length ranges from 30 to hundreds of base pairs.

e Sequencing error rate: this is the fraction of miscalled bases in a
sequencing run. It also implicitly accounts for single nucleotide variants
in the population. The error rate reported by current platforms is around
1% (Illumina, 2010).

e Indel rate: in addition to base read errors, we also consider short
insertions and deletions, which may be caused by sequencing errors
or variations in the population. This parameter specifies the fraction of
short insertions and deletions in simulated reads.

* Indel length: this parameter controls the length of short insertions and
deletions in the reference genome and is used to assess the robustness
of an alignment tool. The length of indels is selected from a normal
distribution and the indel length parameter determines the mean of this
distribution.

e Coverage: since the reads come from random locations on the genome,
it is important to have sufficient number of reads to adequately cover
the entire genome. If the length of the reference genome is n, read
length is m, and the number of mapped reads is k, then coverage is
defined as mk/n, i.e. the expected number of aligned read bases that
cover a given reference base position. Note that coverage does not have
a direct effect on the accuracy of an alignment algorithm since each
read is aligned independently. However, it is important for an alignment
algorithm to scale to realistic levels of coverage in terms of runtime
performance.

3.2 Evaluation

Most tools report a quality score for the mapping of a read to the reference
genome. These scores mirror Phred scores (Ewing and Green, 1998); they
represent the log-scaled probability that the mapping is incorrect. Meaningful
scores typically range from 0 to 60, where O corresponds to very low-quality
mapping and scores of >30 are considered to be very good. A score of 30
denotes a 103 chance that the mapping is incorrect; as the score increases
to 40, the chance of an incorrect mapping theoretically drops to 1074,

Our evaluation incorporates a threshold on this mapping quality; we only
consider reads whose quality is reported to be greater than or equal to a
certain value. This threshold value is used as a parameter in calculating the
accuracy of a set of read mappings. We define the performance figures from
the perspective of reads, i.e. the true location of a read is considered the truth
and an alignment is considered a prediction.

Note that the use of one evaluation method for all tools is not appropriate,
since some tools (mrFAST and mrsFAST in particular) report all matching
genome positions while others report only the ‘best’” mapping. Standard
definitions of an ‘incorrect mapping’ would unfairly penalize tools that report
multiple mappings since a read may map equally well to multiple locations
due to paralogous sequences in the reference genome. Motivated by this

observation, we use two alternate definitions of an incorrect mapping, namely
a strict incorrect mapping and a relaxed incorrect mapping. For a fixed
threshold on mapping quality, we classify the accuracy of the mapping(s) of
aread as follows.

e Correctly mapped read (CM): the read is mapped to the correct location
in the genome and its quality score is greater than or equal to the
threshold.

e Incorrectly mapped read—strict (IM-S): the read is mapped to an
incorrect location in the genome and its quality score is greater than or
equal to the threshold.

e Incorrectly mapped read—relaxed (IM-R): the read is mapped to an
incorrect location in the genome, its quality score is greater than or
equal to the threshold and there is no correct alignment for that read
with quality score higher than the threshold.

e Unmapped read (UM): the read is not mapped at all by the alignment
tool or the quality score is less than the threshold.

For a given set of reads, we compute strict accuracy as and

[CM|
[CM[+]IM-S]
relaxed accuracy as %, where CM denotes the set of correctly
mapped reads, IM-S denotes the set of incorrectly mapped reads in the strict
sense and IM-R denotes the set of incorrectly mapped reads in the relaxed
sense. For example, if a read is mapped to four locations in the reference
genome and one of those mappings is correct, the other three alignments
are not counted as incorrect mappings in the relaxed sense. Note that strict
and relaxed accuracy provide two extreme (respectively pessimistic and
optimistic) measures of accuracy; therefore, they provide an interval for the
accuracy of an algorithm. These two measures are equal if the tool reports a
single genome location for each read. Furthermore, to assess the ability of a
tool in finding a mapping for all reads, we define the used read ratio for an

: __[CM|+IM-S] __
alignment tool as [CM]+1IM-S|+[UM] -

4 RESULTS
4.1 Accuracy

We simulate reads from two genomes: an artificially generated
genome and the human genome [release 19 (International Human
Genome Sequencing Consortium, 2001; Rhead et al., 2010)]. The
generated genome is of length 500 Mb, with 100 repeats of length
500bp each. Results from the simulated genome are available in
the Supplementary Material. Due to computational considerations,
SHRiMP’s accuracy results are only available for the simulated
genome.
Table 1 shows the details of each experiment.

4.1.1 Varying error rate The accuracy of all algorithms on the
human genome for varying error rate is compared in Figure 1. The
results for quality threshold O (accepting all reads) are shown in
Figure la, whereas Figure 1b shows the mapping accuracy when
considering reads of quality >10. We can see that Bowtie, BWA
and Novoalign are the most sensitive to mapping quality threshold
at high error rates; their accuracy significantly increases as reads of

Table 1. Experimental setup for each simulation type: genome size(s), read length and read count

Evaluation type Genome size (s) (Gb, Mb) Read length (bp) Read count Error rate Indel size Indel freq.
Accuracy: varying error rate 3,500 50 500000 [0, 0.1] 0 0

Accuracy: varying indel size 3,500 50 500000 0.01 [2, 16] 0.02
Accuracy: varying indel frequency 3,500 50 500000 0.01 2 [1073,1072]
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scores are included). (a) Shows a comparison of the theoretical accuracy for each mapping quality score versus each tool’s accuracy at that quality threshold.
(b) Shows the proportion of reads with a mapping quality greater than or equal to each threshold value.

mapping quality O are discarded. SOAP’s mapping accuracy is quite
high even at quality threshold 0, which is consistent with its intended
usage for genotyping SNPs. Figure lc shows the proportion of
mapping results that are used to create Figure 1b, i.e. the proportion
of reads that have mapping quality of at least 10.

Figure 2 shows a direct comparison of the theoretical accuracy at
each quality score against each tool’s actual accuracy. The mapping
quality Q is defined as the log-scaled probability P that the mapping
is incorrect: Q=—10log P, giving a theoretical accuracy A for
each quality score: A=1—-P=1— 10-9/10, Figure 2a shows that
most tools underestimate their mapping quality; most incorrect
mappings can be discarded simply by considering mapping qualities
of at least 1.

4.1.2 Varying indel sizes Figure 3 shows the accuracy of the
alignment tools with fixed indel rate (0.05/bp) as the average indel
size varies. This level of indel rate can be considered ‘frequent’
(as seen in Fig. 4). These figures again emphasize that SOAP is better
suited for SNP analysis than indel calling—as the average indel
size approaches 10, SOAP fails to align any reads and its accuracy
drops to 0. Bowtie, BWA and Novoalign show very unfavorable

accuracy when all reads are considered (i.e. when the mapping
quality threshold is low); however, it can be seen that they report
many of the incorrect mappings with low-quality scores, since their
accuracy with quality threshold 10 is significantly improved. It can
also be seen in these figures that mr(s)FAST and Novoalign are
most robust to longer indels and Novoalign’s mapping quality scores
become particularly useful as indels get longer.

4.1.3 Varying indel frequencies The accuracy provided by each
tool for fixed indel length (2) and varying indel rate on the human
genome is shown in Figure 4. As seen in this figure, the accuracy of
all algorithms depend strictly on indel rate; the accuracy provided
by all algorithms is almost always >95% for indel rate <0.001. It
should be also noted that mr- and mrsFAST show a tremendous
difference in the relaxed and strict precision measures with varying
indel frequency; they not only report the correct genome location,
but also report many incorrect locations.

4.2 Runtime

Figure 5 compares the runtime of the different tools that we analyze,
both in indexing time and alignment time. Figure 5a shows the
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indexing time for various genome sizes—most tools show a linear
relationship between the length of the genome and the time required
to build an index. Figure 5b shows the alignment runtime versus
read count on a 500 Mb genome.

We can see that most tools are designed with a trade-off between
indexing runtime and alignment runtime; Bowtie, BWA and SOAP
align quickly but require significant amounts of time to build an
index of a genome. Novoalign, conversely, requires little indexing
time but shows more of a dependence on the number of reads.
Interestingly, SHRiMP, seems to show no dependence on read count.

5 DISCUSSION

As expected, these alignment tools are designed with different
approaches to trading off speed and accuracy to optimize detection
of different types of variations in donor genomes. This trade-off
is evident in the performance of BWA and SOAP on the human
genome (Fig. 1): without a threshold value to eliminate unreliable
reads, BWA is not as accurate even at low error rates (~0.9 at a
base pair substitution rate of 1073 and falling sharply to ~0.37
at an error rate of 10~!). SOAP has a consistently high accuracy
(~0.95) even with no threshold and high error rates. Based on these

observations, we can conclude that BWA is specifically designed
not to miss any potential mappings, at the cost of reporting many
incorrect mappings.

The evaluation of mrFAST, mrsFAST and SHRiMP shows some
expected trends; since each fragment is potentially mapped to many
locations in the genome, we expect their strict accuracy value to be
much lower than that of other tools. As the error rate increases from
0.001 to 0.1, however, we see the strict accuracy measure increase
for all three of these tools. Intuitively, this seemingly surprising
trend makes sense since we expect the number of potential genome
mappings to decrease as the reads become less reliable, thus reducing
the number of incorrect mappings in relation to the single potential
correct mapping. These tools’ relaxed accuracy values (as defined
in Section 3.2) also show some expected trends; since mrFAST and
mrsFAST can report many genome locations for each fragment, we
expect their relaxed accuracy to be quite high for low error rates and
to decline as the error rate increases.

‘We must emphasize the large difference between our relaxed and
strict accuracy measures in our evaluation of mrFAST, mrsFAST and
SHRiMP. The relative usefulness of these two measures depends
on the user’s specific research aims; one may be more interested
in tools with good relaxed accuracy if studying structural variants,
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while strict accuracy may be of more use in genotyping SNPs. We
must also note that our analysis may not be fair to SHRiMP—this
tool is designed for mapping color-space reads and our simulation
does not generate this type of data.

As expected, the tools show an overall linear relationship between
coverage (number of reads) and the total runtime. For most
alignment tools, we can further separate the total runtime into
separate measurements for indexing and alignment; if the index
can be reused across multiple alignment runs, a high indexing time
can be affordable. We believe that our results will be useful to a
wide variety of genomic researchers, though we must recognize
that we cannot precisely simulate all experimental scenarios or
sequencing hardware characteristics. As the state of the art advances,
data from new sequencing hardware may challenge the assumptions
that today’s high-performing algorithms depend on. Similarly,
algorithms with unfavorable accuracy or speed on today’s data sets
may find renewed use in the future.
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