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Abstract: Wnt signalling is a critically important signalling pathway regulating 
embryogenesis and differentiation, and is broadly conserved amongst 
multicellular animals. In addition, dysregulation of Wnt signalling contributes 
to the pathogenesis of many human cancers, in particular colorectal cancer. 
Core members of the Wnt signalling pathway are quite well defined, although 
it has become apparent that a much broader network of interacting proteins 
regulates Wnt signalling activity. The goal of this paper is first to identify 
novel members of the Wnt regulatory network; and second, to identify sub-
networks of the larger Wnt signalling network that are active in different 
biological contexts. We address these two questions using complementary 
computational approaches and show how these approaches may identify 
potentially novel Wnt signalling proteins as well as defining Wnt sub-networks 
active in different stages of colorectal cancer. 

Keywords: Wnt signalling network; eigenvector centrality; random walk; sub-
network; simulated annealing. 
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1 Introduction 

The Wnt signalling pathway is conserved throughout metazoans and involved in 
fundamental biological processes such as embryogenesis and in human developmental 
disorders and cancer. Several decades of Wnt research have led to the identification of 
many components of the Wnt signalling pathway, and enabled the definition of canonical 
(Wnt/β-catenin) and non-canonical Wnt pathways (Wnt/Calcium and the Wnt/Jun  
N-terminal Kinase (JNK) pathways) (KEGG Pathway: hsa04310; see http://www. 
genome.jp/dbget-bin/www_bget?pathway+hsa04310). Different biological roles have 
been associated with these different branches of Wnt signalling. For example, canonical 
Wnt signalling determines cell fate, whereas the non-canonical, β-catenin independent 
pathways are involved in the regulation of cell polarity. Nineteen Wnt family ligands 
have been identified in mammals and all are secreted proteins with glycolipid 
modifications. Some of these ligands activate specific Wnt receptors and function in 
specific branches of Wnt signalling, whereas for others it is less clear (Katoh, 2002). In 
addition, canonical and non-canonical Wnt pathways have different transcriptional 
targets. Well-studied canonical targets include MYC, CCND1, FGF20, WISP1, JAG1, 
DKK1 and GCG; while non-canonical signalling activates JNK, ROCK, PKC, MAP3K7, 
NFAT and associated signalling cascades (Katoh and Katoh, 2007). 

It is currently challenging to dissect this important pathway for the following reasons. 
First, many components of Wnt signalling pathways are multi-functional proteins (for 
example β-catenin), that are essential not only for Wnt signalling but also for other 
intercellular signalling networks (Chilov et al., 2010). Second, many pathways, for 
example Hedgehog, FGF, Notch, BMP, ERK and P13K, overlap or crosstalk with the 
Wnt signalling pathway in embryogenesis and carcinogenesis (Moreno, 2010).  
In addition, the canonical and non-canonical branches of the Wnt signalling pathways  
are themselves highly interconnected, and cross-regulate each other. Third, the Wnt 
signalling cascade is dependent on biological state, for example the presence or absence 
of specific Wnt receptors. Dependencies between ligands and receptors determine 
whether specific branches of Wnt signalling will be activated. For example, WNT5A can 
activate Wnt/calcium and the Wnt/JNK in cancer as well as Wnt/β-catenin pathway in the 
presence of FZ4 and LRP-5 receptors (McDonald and Silver, 2009). Fifth, different 
concentrations of Wnt ligands can elicit different intracellular responses. For example, 
low concentrations of WNT3A trigger Wnt/calcium signalling, while high concentrations 
of WNT3A activate Wnt/β-catenin signalling (Nalesso et al., 2011). In addition, since 
Wnt signalling is integral to different biological processes and pathologies, it is important 
to understand how the pathway is modulated under different biological conditions. In 
summary, rather than thinking of Wnt as a fixed linear pathway, it is a network of 
interconnected molecular events that is modulated under different biological conditions. 
Our goal in this paper is to identify novel Wnt pathway regulators and finally develop a 
platform for defining how the Wnt signalling network changes according to biological 
state. 

Several studies have successfully used computer models of biological networks to 
identify key players in these processes (Colland et al., 2004; Niida et al., 2004; Major  
et al., 2007; Major et al., 2008). The paradigm of these types of studies is to use the in 
silico models to predict important in vivo proteins/processes, and then test those 



   

 

   

   
 

   

   

 

   

   188 S. Saha et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

predictions using various functional assays. Xenopus larval axis duplication is known to 
be induced by Wnt signalling, and is now a standard in detecting Wnt functional activity 
(Moon and Kimelman, 1998; Tamai et al., 2004). TOP-flash reporters have also been 
successfully used to confirm the presence of Wnt signalling by activating a constructed 
luciferase reporter gene at TCF (the major Wnt transcription factor) binding sites along 
the genome (DasGupta et al., 2005). 

Different computational approaches have been applied to understanding the Wnt 
signalling network. On the one hand, mathematical models have been developed to 
understand the dynamics of the pathway, focusing on the core canonical β-catenin 
destruction complex (Lee et al., 2003; Wawra et al., 2007). On the other hand, broader 
views of Wnt signalling network have been undertaken to identify new regulators of  
Wnt signalling. These approaches have used integrative data analysis of genetic screens, 
Protein–Protein Interactions (PPI) and post-translational modifications of Wnt signalling 
components. Major et al (2008) mapped physical and functional Wnt pathway 
components by merging the small interfering RNA (siRNA) screen with the Wnt/β-
catenin protein interaction network. Kestler and Kühl (2008) reported a graphical 
representation of Wnt network and evolved the concept that Wnt proteins activate a 
signalling network instead of an individual pathway. 

Here, we first construct a network of PPI with context to Wnt signalling pathway,  
and attempt to identify novel members of the Wnt signalling pathway by scoring the 
relevance of proteins with respect to their connectivity to the known Wnt signalling 
members using local and global network approaches. We hypothesise that the highest 
scoring proteins will be qualitatively more relevant to Wnt signalling, and our aim is 
identify novel Wnt signalling proteins whose functional significance can be confirmed 
using the  standard functional assays, such as Xenopus larvae axis duplication or TOP-
flash reporters (Moon and Kimelman, 1998; Tamai et al., 2004; DasGupta et al., 2005). 
Second, to better understand how the Wnt signalling network is activated under different 
biological states, we identify activated Wnt sub-networks under different conditions. By 
analysing an interaction network seeded from the Wnt pathway, we are able to discovery 
signalling circuits without being limited to a specific pathway boundary or set of genes 
with similar expression profiles. This approach allows us to address important questions 
of similarities or conservation of active sub-networks patterns across Wnt perturbed 
healthy versus disease cell lines and tissues. We used a simulated annealing approach in 
overlaying significant changes in gene expression on a Wnt-focused protein interaction 
network. Similar approaches have been applied to studying signalling circuits in yeast 
(Ideker et al., 2002) to classification of breast cancer samples (Chuang et al., 2007) and 
previously by us to discriminate different stages of colon cancer (Nibbe et al., 2009). 

The remainder of this paper is organised as follows. Section 2 focuses on the data 
sets, parameters and methods used in our study. We then used local and global network 
analyses to identify novel interactors to Wnt pathway using the hypergeometric test  
and eigenvector centrality, respectively. Next, we integrate gene-expression data sets 
with a Wnt-focused interaction network and apply a simulated annealing approach to 
identify Wnt sub-networks associated with different biological conditions. We identify 
similarities between the sub-networks using the Jaccard index and explore the underlying 
biology associated with the commonalities between tissues, cells and disease states. In 
Section 4, we summarise our key findings, applications to biomedicine, highlighting the 
pros and cons of our integrated approach. 
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2 Materials and methods 

2.1 Data sets 

Two principal data sets were used in this study. First, we compiled two PPI networks, 
one focused on the known Wnt-signalling pathways (Wnt-specific network) and other 
including a comprehensive set of interactions among human proteins (global network). 
Although sub-network analysis techniques are applicable to large-scale PPI networks, we 
used a Wnt-focused PPI network in addition to the comprehensive PPI network in our 
analyses because we are primarily interested in sub-networks related to Wnt signalling. 

The Wnt-specific network was constructed as follows. A core set of Wnt pathway 
proteins was extracted from the Wnt proteins listed in four pathway databases:  
KEGG (Kanehisa et al., 2012), BioCarta (see http://cgap.nci.nih.gov/Pathways/BioCart
a_Pathways), Protein Lounge (http://www.proteinlounge.com/Default.aspx ) and Cancer 
cell map (see http://cancer.cellmap.org/cellmap/about.do) (Table 1). Proteins which were 
listed as Wnt signalling members in at least three of these databases were included in our 
‘Core’ set, and represent the most well-annotated members of the Wnt pathway. Our 
network was expanded from this core to include all proteins experimentally shown to 
interact with the core. Proteins which interacted with the core and that were in at least 
one of all four databases were labelled as ‘Union’ proteins. All other proteins that were 
experimentally shown to interact with the core, but were not annotated members of the 
pathway were labelled as ‘Others’. The distribution of proteins in the network was as 
follows: 31 core proteins, 74 union proteins and 511 other proteins. The 31 core proteins 
were superimposed on version 9 of the Human Protein Reference Database (HPRD) 
(Keshava Prasad et al., 2009) and a network was extracted by including all proteins no 
more than one hop from the core Wnt proteins, resulting in a network of 363 proteins and 
2072 PPIs. The global PPI network was constructed by including all human PPI from the 
HPRD for the global analysis network (8959 proteins and 33,528 pairwise PPIs among 
these proteins). 

Table 1 List of Wnt core proteins 

Gene name Gene name Gene name Gene name Gene name 

APC DKK1 FZD4 GSK3B RAC1 

AXIN1 DKK2 FZD5 LEF1 WNT1 

BTRC DVL1 FZD6 LRP5 WNT2 

CCND1 FRAT1 FZD7 LRP6 WNT3 

CTNNB1 FZD1 FZD8 MAP3K7 WNT4 

DAAM1 FZD2 FZD9 NLK WNT5A 

Second, a data set of Wnt-perturbed human gene-expression measurements was 
compiled. Seven human gene-expression data sets were selected from the Gene 
Expression Omnibus (GEO), based upon their experimental annotations (activation of the 
Wnt signalling pathway). The seven studies were selected as representative of the diverse 
range of cells and tissue types with activated Wnt signalling. Although this is a relatively 
small subset of the possible Wnt-related gene-expression studies in GEO, we used this  
 



   

 

   

   
 

   

   

 

   

   190 S. Saha et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

subset to define our analysis process and as a proof-of-principle. Table 2 lists the GEO 
studies with brief annotations. GEO data sets were processed, analysed and annotated 
using custom R code and the GEOquery module (Sean and Meltzer, 2007). In general, 
since the GEO studies represent studies using different microarray platforms, we relied 
on submitter-provided intensity and/or ratio values. Log2 ratios of intensities and 
significance values (Student’s t-test) were computed for all microarray features. A core 
set of genes represented on all microarray platforms represented in the seven GEO  
studies was identified, providing a data-matrix of 8044 genes by seven studies. In 
addition, the smaller network size allows us to use the computationally intensive 
simulated annealing approach to identify Wnt sub-networks. Finally, to further annotate 
the proteins represented in the network, we used the cancer-related gene list from the 
Cancer Gene Census (see http://www.sanger.ac.uk/genetics/CGP/Census/) (457 cancer 
genes and 19 colorectal cancer genes as of September 2011). 

Table 2 GEO series (GSE) datasets used in this study  

GEO 
accession 

Tissue or  
sample type 

Number 
samples 

Study  
abbreviation 

Reference 

GSE10972 Tumour vs. normal  
colon tissue 

48 CTT Jiang et al.  
(2008) 

GSE14107 Wnt3A treated vs. control PC9 (lung 
adenocarcinoma) cells 

16 LCA Nguyen et al. 
(2009) 

GSE1473 CTNNB1 mutant vs. normal 
HEK293T (embryonic kidney) cells 

8 EKC Chamorro et al. 
(2005) 

GSE16186 Wnt3A treated vs. control  
mesenchymal stem cells 

24 MSC Qiu et al.  
(2010) 

GSE17385 CTNNB1 knock-out vs. normal 
multiple myeloma cells 

6 MMC Dutta-Simmons  
et al. (2009) 

GSE6120 CTNNB1 mutant vs. normal Wilms 
tumour tissue 

39 WTT Li et al.  
(2004) 

GSE8671 Colorectal adenoma  
vs. normal tissue 

64 CCA Sabates-Bellver  
et al. (2007) 

2.2 Local network analysis 

The ‘local’ analysis considers the direct interactions with Wnt core members. In order to 
test our hypothesis that proteins that exhibit significant connectivity to the core are likely 
to be involved in Wnt signalling, we assessed the statistical significance of the number  
of interactions between each protein in the network and the proteins in the core set. For 
this analysis, we considered a network constructed from human, mouse, rat and 
Drosophila proteins and their orthologs. We used each protein’s degree (the total number 
of interactions), each protein’s degree with respect to the Wnt core (number of 
interactions with core proteins), the total number of interactions of all core proteins in the  
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network, and the total number of binary interactions in the network. Using these 
statistics, the hypergeometric test was used to assess the significance of the degree of 
each protein with respect to the Wnt core as follows: 

 
n

k i

m N m

k n k
P X i

N

n


  
     

 
 
 

  (1) 

Here ‘X’ is a random variable representing the number of connections from a protein to 
the core, ‘i’ is the observed value of X, ‘n’ is the degree of the same protein, ‘m’ is the 
total number of interactions of the core in the entire network and ‘N’ is the total number 
of interactions in the network. Namely, P(X  i) is the probability that the protein would 
have at least i interactions with the core if all interactions in the network were drawn at 
random while preserving the connectivity of the core to the rest of the network., i.e. the 
smaller the p-value is, the more significant is the protein’s connectivity to Wnt core. This 
test allowed us to rank proteins in the network based on the significance of their 
connectivity to the core Wnt proteins. Note that correction of multiple hypothesis testing 
was not necessary here since the p-values were only used to compare the proteins against 
each other. 

2.3 Global network analysis: eigenvector centrality/random walk 

In addition to the direct connections to the ‘core’ proteins, we expected that proteins that 
are involved in Wnt signalling would also have increased indirect connections to the core 
in a global analysis. To test this hypothesis, we quantified the level of (direct or indirect) 
connectivity to core proteins by generalising the concept of eigenvector centrality.  
Local analysis takes into account only the direct interactions with the core to assess 
connectivity, while eigenvector centrality based scoring considers the indirect interactions 
as well. In a more general setting, eigenvector centrality is a measure of each node’s 
influence in a network. It has been used in a diverse range of applications to assess the 
centrality of each node in a network, including Google’s page rank algorithm for ranking 
the importance of web pages (Brin and Page, 1998) and assessment of the relationship 
between essentiality and network topology in biological networks (Zotenko et al., 2008). 

While eigenvector centrality is a measure of the general influence of a node in the 
network, the objective here is to assess the influence of each protein in the network on 
the Wnt core proteins. For this reason, we use a generalised version of eigenvector 
centrality, by using a ‘random walk with restarts’ model. This model simulates a random 
walk across the PPI network, where the walk makes frequent restarts at the Wnt core 
proteins and the score of each protein is computed as the probability that the random 
walk will be at that protein at infinity. In this model, the frequent restarts introduce a bias 
to the scores of proteins that interact with the core and this bias is subsequently 
propagated across the network by the random walk. Consequently, the resulting score 
represents the connectivity of each protein to the Wnt core for a global network 
perspective. This method has been shown to be successful in predicting novel functions 
for proteins (Nabieva et al., 2005) and prioritising candidate disease genes (Chen et al., 
2009. 
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Let G: = (V, E) denote the global PPI network where V denotes the set of proteins and 
E denotes the set of interactions. Let A denote the corresponding adjacency matrix, i.e.  
A = (ai,j) where  ai,j = 1 if protein i interacts with protein j, and ai,j = 0 otherwise. We first 
normalise this matrix by dividing each column of A to the 1-norm of that column and 
obtain stochastic matrix W, where the entries in each column of W sum up to 1. 
Furthermore, we define restart vector r by setting ri = 1/k if protein i is in the Wnt core,  
ri = 0 otherwise. Here k denotes the number of proteins in the Wnt core, so the 1-norm of 
r is equal to 1 as well. Subsequently, we define the ‘random walk-based score’ vector x 
with the following mutually reinforcing relationship: 

 1 .x cr c Wx    (2) 

Here 0  c  1 denotes the restart probability, i.e. it is a parameter that adjusts the balance 
between connectivity to Wnt core and the overall network topology. In the context of 
disease gene prioritisation, the effect of c was shown to be minimal as long as it is not 
very close to 0 or 1 (Erten et al., 2011). In our experiments, we use c = 0.5 to allow the 
Wnt core and global network topology to equally contribute to the score of each protein. 
In practice, the vector x can be computed iteratively by initialising x to a vector of 1/|V|s 
and executing the operation defined by equation (2) to recompute a new x until x does not 
change any more. 

Recently, it was shown that random walk-based scores are heavily influenced by the 
network connectivity of individual proteins and proteins with a high number of known 
interactions 

1

1
; ; 1, ,

n

i ij j
j

Ax x x a x i n


   


 (3) 

are favoured by the random walk model (Erten et al., 2011). Since our purpose here is to 
identify new components of the Wnt signalling network, which may be relatively less 
studied and hence may have a lower number of known interactions, we correct the 
random walk-based scores using the standard eigenvector centrality scores. To achieve 
this, we define the global Wnt-connectivity score of a protein as the log-ratio of the 
likelihood that the protein will be visited by random walk that makes frequent restarts at 
the Wnt core to the likelihood that the protein will be visited by a random walk that does 
not make restarts. Namely, xi denotes the random walk-based score of protein i that is 
computed by setting c = 0.5 and yi denotes that computed by setting c = 0, the global 
Wnt-connectivity score si of protein i is computed as 

 logi i iS X Y  (4) 

and these si scores are used to rank to proteins according to their global connectivity to 
the Wnt core. Here xi denotes the likelihood that protein i will be visited by a random 
walk that makes frequent restarts (at every other step, on an average) at Wnt core 
proteins, whereas yi denotes the likelihood that protein i will be visited by a random walk 
that does not make restarts. Hence, xi measures proximity to Wnt core proteins, while yi 
measures proximity to all proteins in the network. Consequently, si provides a measure of 
the proximity to Wnt core as compared to all other proteins in the network. Correction 
with the centrality score will increase the rank of a protein if the protein is loosely 
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connected but all its connections are in close proximity of Wnt core proteins. Similarly, if 
a protein is in close proximity of many Wnt core proteins, but if it is also heavily 
connected to many other proteins in the network, then the correction with centrality score 
will decrease the rank of this protein since its proximity to Wnt core is not specific. 

2.4 Identifying Wnt signalling sub-networks 

To identify sub-networks in the integrated PPI/gene-expression network, we used the 
jActiveModule (Cytoscape plugin) software (Cline et al., 2007) in simulated annealing 
mode as follows. The p-values in the gene-expression data were converted to z-scores, 
with smaller p-values corresponding to larger z-scores. The aggregate z-score for a sub-
network A with K genes is computed by summing up the zi over all the genes in the sub-
network: 

1
A i

i A

Z z
k 

   (5) 

High-scoring sub-networks in the PPI network were searched using simulated annealing 
(Kirkpatrick et al., 1983; Ideker et al., 2002). In this algorithm, each node is associated 
with an active/inactive state. The parameters for quenching were set with start 
temperature 1.0 and end temperature 0.01. The overlap threshold to identifying sub-
networks was set at 0.5 and with iteration of 106. The highest scoring sub-networks of  
z-score greater than of 3.0 were selected as active network in our study. 

2.5 Additional methods 

To identify similarities in sub-networks identified with each gene-expression data set, we 
used the Jaccard index as follows (Steinbach et al., 2005). 

   
Jaccard Index A, B i

a b i

nA B

A B n n n

      
 (6) 

where na and nb are the number of proteins in two sub-networks A and B, respectively, 
and ni is the number of proteins in common between A and B. Spotfire software (TIBCO) 
was used for computation of gene-expression correlations (Pearson’s correlation) and 
hierarchical clustering. 

3 Results 

3.1 Local analysis of Wnt networks 

For each protein in the network, a single p-value representing the significance of that 
protein’s connections to the core was obtained from the hypergeometric test. It was 
observed that the significance of connectivity to the core was ordered as follows: core > 
union > other. The top ten ranked ‘other’ proteins (p-value < .01) not annotated as Wnt 
signalling in the four databases used for network construction are listed in Table 3. 
Interestingly, although they are not in the Wnt pathway databases, they have all been the 
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focus of separate experimental studies linking them to Wnt signalling in the literature 
(Briggs et al., 2002; Kioussi et al., 2002; Hering and Sheng, 2002; Ren et al., 2002;  
Oishi et al., 2003; Hsieh et al., 2003; Lu et al., 2004; Edlund et al., 2005; Weiske et al., 
2007; Tanegashima et al., 2008). The complete table of proteins in HPRD and their 
connectivity to the Wnt pathway are listed in Supplementary Table S1.1 

Table 3 Top ten proteins based on local analysis not previously annotated as Wnt pathway 
members in the selected public pathway databases 

Gene Symbol Total 
Degree 

Degree-to-core Percent-to-core p-value 

ROR2 4 3 0.75 5.86E-06 

ARHGJ 4 3 0.75 5.86E-06 

MESD2 2 2 1 1.30E-04 

SMAD7 56 5 0.089286 4.50E-04 

RYK 6 2 0.333333 0.001891 

PITX2 7 2 0.285714 0.002627 

MUC1 26 3 0.115385 0.003161 

IQGAP1 35 3 0.085714 0.007375 

FHIT 12 2 0.166667 0.00795 

DLG4 113 5 0.044248 0.009749 

3.2 Global analysis of Wnt networks 

The random walk-based score for each protein was calculated, representing the total 
percentage of time spent at each node for a given restart parameter. To capture both high-
degree and low-degree nodes, we used a restart parameter of .5 (raw score) as well as a 
restart parameter of 0. From there we calculated a ‘corrected score’ as the log (base 2) of 
the raw score divided by the non-restart centrality score. We then ranked the proteins 
both according to their raw random walk scores and corrected random walk scores.  
To ensure the score most benefited a protein, we considered the better rank, whether raw 
or corrected, as the final rank of that protein. Because percentage and log work on 
different scales, the scores were normalised by percentile. Then, each group was 
validated by random set generation, with significance determined by random testing. 
Figure 1 illustrates the ROC curve assessing the success of the global analysis in 
identifying the connectivity of union proteins to the core proteins. The significance of the 
union set in terms of its global connectivity to the Wnt core is quite pronounced, 
suggesting that the proposed ranking scheme indeed ranks the proteins that are 
functionally associated with Wnt signalling higher. The top ten ranking proteins that are 
newly identified using global analysis are listed in Table 4.The complete table of protein 
in global analysis and their connectivity to the Wnt pathway are listed in Supplementary 
Table S2.1 We also compared the results from local analysis and global analysis, and 
identified ROR2 and RYK as proteins occurring within the top ten most ranks of both 
analyses. Both of these proteins, though not present in the pathway databases have been 
shown to function in Wnt signalling (Lu et al., 2004; Li et al., 2008). 
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Figure 1 The performance of global network analysis in scoring the global connectivity of 
‘Union’ proteins (i.e. those occurring in at least one Wnt pathway database) to the 
‘Core’ proteins (i.e. those occurring in at least 3 of the 4 databases Wnt pathway 
databases). All proteins in the network were ranked according to their global Wnt 
connectivity scores. Subsequently, the fraction of Union proteins (sensitivity) that rank 
in the top x% (1-specificity) according to global connectivity score was computed and 
plotted for each value of x. The red curve shows ‘Union’ proteins, while the error bars 
show the distribution of the respective value for random sets of proteins with 
cardinality equal to that of the ‘Union’ set (see online version for colours) 

 

Table 4 Top ten proteins based on global analysis not previously annotated as Wnt pathway 
members in the selected public pathway databases 

Gene Symbol Total Degree Degree-to-core Centrality score Likelihood score 

DKK2 1 1 4.20E-005 8.92 

SFRP1 4 4 8.40E-005 7.13 

ROR2 4 3 8.40E-005 6.82 

KREMEN1 1 1 4.20E-005 6.81 

MESDC2 1 1 4.20E-005 6.86 

CCND1 43 2 2.80E-004 5.92 

RYK 5 2 9.40E-005 5.62 

CXXC4 1 1 4.20E-005 5.57 

CCDC88C 1 1 4.20E-005 5.57 

SFRP2 5 2 9.40E-005 5.56 

We next analysed functional and pathway groups for significantly connected proteins that 
were not already included in the core or union sets. We first ranked the list of proteins 
from the global analysis by likelihood, and then analysed enriched functional groups 
(Ingenuity Pathways Tool). We first partitioned the set of connected proteins into those 
with log likelihood score > 3 (set 1) (excluding all core and union proteins) and those 
with log likelihood <3 but >1 (set 2). The top ten most enriched pathways and functional 
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groups are shown in Figures 2–5. For the proteins in set 1, there is very significant 
occurrence of proteins annotated as functioning in Wnt signalling, Cancer and pluripotency. 
The occurrence of Wnt signalling as the top most significant process/pathway for this set 
indicates that our computational approach is working, but also points to the discrepancies 
between pathway databases, and Gene Ontology annotations, in terms of which proteins 
are considered as functioning in the Wnt signalling pathway. In set 2, Wnt signalling is 
not as significant, but there are many other significant processes that relate to Wnt 
signalling such as cellular growth and proliferation and tissue development and pathways 
such as Rac and Rho signalling. 

Figure 2 Top ten canonical signalling pathway of set of proteins with log likelihood score greater 
than 3 and outside of core and union sets (see online version for colours) 

 

Figure 3 Top ten functional category of set of proteins with log likelihood score greater than 3 
and outside of core and union sets (see online version for colours) 
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Figure 4 Top ten canonical signalling pathway of set of proteins with log likelihood score less 
than 3 but greater than 1 and outside of core and union sets (see online version for 
colours) 

 

Figure 5 Top functional category of set of proteins with log likelihood score less than 3 but 
greater than 1 and outside of core and union sets (see online version for colours) 

 

3.3 Tissue specific Wnt sub-networks 

Next, rather than focusing on identifying network nodes that are significantly connected 
to the Wnt pathway, we aim to identify sub-networks that are activated under selected 
Wnt perturbations. The Wnt perturbations are represented by the set of gene-expression 
studies, selected from GEO. For each gene-expression study representing activation of 
the Wnt signalling pathway (Table 2), we searched for active sub-networks in the Wnt-
focused protein interaction network (2072 protein interactions, 363 proteins). Simulated 
annealing was used to identify sub-networks with the following parameters: (number of 
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iteration (N) = 106; Tstart = 1; Tend = 0.01; Number of modules = 5; dmin = 100). Top 
scoring sub-networks (size of sub-network, z-score and number of annotated cancer 
genes from the Cancer Gene Census) for each gene-expression study are shown in  
Table 5. We identified ten top scoring sub-networks using a threshold of z-score > 3. 
Where multiple significant (z-score > 3) sub-networks were identified for a gene-
expression study, the sub-network with greatest representation of Wnt core components 
was selected for further analysis (sub-network 2 in GSE1473 (EKC Sn 2), sub-network 1 
in GSE16186 (MSC Sn 1) and sub-network 2 in GSE17385 (MMC Sn 2). Each high-
scoring sub-network consists of 31.25–46.87% of core Wnt components and ~3% cancer 
annotated genes. For each pair of gene-expression studies, we computed the pairwise 
similarity between high-scoring sub-networks as in Figure 6. Several pairs of similar  
sub-networks were observed. Notably, high-scoring sub-networks in lung cancer 
adenocarcinoma LCA Sn 1 (GSE14107) and colorectal cancer adenoma CCA Sn 1 
(GSE8671) were the highest scoring pair (Figure 6). SIF format files of all sub-networks 
are provided in the supplementary data.1 

Figure 6 Heat map of sub-network similarities based on Jaccard index. Grey scale colours 
indicate high (black) to low (white) similarity 

 

Table 5 Summary of active sub-networks perturbed in Wnt signalling network 

GEO Accession Sub-network Number nodes Z-score Wnt Core targets* Cancer genes** 

GSE10972 CTT Sn 1 52 7.6 10 (31.25%) 14 (3.06%) 

GSE14107 LCA Sn 1 90 7.7 14 (43.75%) 19 (4.15%) 

GSE1473 EKC Sn 1 46 6.2 6 (18.75%) 11 (2.4%) 

GSE1473 EKC Sn 2 64 4.7 11 (34.37%) 10 (2.18%) 

GSE16186 MSC Sn 1 55 6.9 15 (46.87%) 12 (2.62%) 

GSE16186 MSC Sn 2 72 4.2 3 (9.37%) 13 (2.84%) 

GSE17385 MMC Sn 1 42 6.7 2 (6.25%) 8 (1.7%) 

GSE17385 MMC Sn 2 60 3.8 10 (31.25%) 6 (1.31%) 

GSE6120 WTT Sn 1 66 7.4 14 (43.75%) 15 (3.28%) 

GSE8671 CCA Sn 1 89 8.4 13 (40.62%) 15 (3.28%) 

Notes:  * Wnt core targets (total 32 proteins); ** Annotated cancer genes (from a total 
of 457 genes). 
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3.4 Classifying samples by analysis of gene-expression profiles and  
sub-networks 

We hypothesised that comparisons of sub-networks obtained from our analysis might 
reveal commonalities between studies not revealed by more conventional means  
of classifying gene-expression data sets, such as classification by clustering of gene-
expression profiles (Sorlie et al., 2003). We first clustered the complete gene-expression 
data set (8044 genes  7 studies) or the set of 363 genes represented in the PPI  
(363 genes  7 studies) using hierarchical clustering. Figure 6A shows hierarchical 
clustering of the set of 363 genes (clustering of the complete data set is provided in 
Figure 2). The patterns of similarities between studies were similar regardless of whether 
the full set of 8044 gene-expression profiles or the set of 363 gene-expression profiles 
was used or clustering. Notably, and as expected, the tissue of origin is a principal driver 
of the groupings observed in the hierarchical clustering of the gene-expression data 
alone. For example, the Colon Tumour Tissue (CTT) study is most similar to the 
colorectal adenoma (CAA) study. 

We next used the Jaccard Index matrix of similarities (Figure 6) to hierarchically 
cluster and reorder the studies according to the similarity of their highest scoring  
sub-networks (Figure 7B). The sub-network-based clustering generated quite different 
patterns of similarity between studies, grouping the Colon Cancer Adenoma (CCA) study 
with the lung cancer adenocarcinoma (LCA) study. Thus, we observed that grouping 
studies according to similarity of their activated Wnt sub-networks rather than according 
to similarity of global gene-expression profiles gave different results. We hypothesised 
that similarity according to Wnt-focused sub-networks might reveal similarities between 
studies that are not identified by gene-expression clustering, and may represent Wnt sub-
networks with important functional characteristics. 

Figure 7 Comparison of clustering using (A) gene expression data alone (log2 fold-change) or 
(B) sub-networks from integrated gene-expression and protein interaction networks 
(Jaccard index) (see online version for colours) 
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3.5 Comparison of adenoma sub-networks 

To explore in more depth similar sub-networks observed between studies, we analysed 
the sub-networks identified in the lung cancer adenocarcinoma (LCA) and CCA studies. 
The pair of high-scoring sub-networks from these two studies was found to have the 
greatest similarity according to the Jaccard index (Figure 6). Sixty-three genes were in 
common between the lung adenocarcinoma and colorectal adenoma sub-networks, with 
an additional ~30 genes unique to each sub-network (a statistically significant overlap,  
p-value = 3.66e–28 using Fisher’s exact test). Gene-expression profiles corresponding to 
this core set of 63 genes are provided in Supplementary Table S1.1 In both the Wnt 
signalling perturbed sub-networks, we observed ~41% of Wnt core components and ~3% 
annotated cancer genes. Interestingly, both of these networks encapsulate proteins 
involved at different levels of the Wnt signalling pathway (from Wnt ligands such as 
WNT2, WNT3, WNT3A and WNT5A), to receptors such as FZD1 and FZD7 to 
transcription factors such as MYC, CCND1 and CREB1 (Figure 8). We observed both 
known Wnt canonical components (MYC, DKK1, CCND1, WNT2 and WNT3A) and 
non-canonical components (CREB1 and WNT5A) in these active sub-networks, further 
supporting the notion of the Wnt signalling network, without separation of canonical and 
non-canonical pathways. There are also several genes not usually linked directly to the 
Wnt signalling pathway such as DLG1, DLG2, DLG3, RUNX1 and EP300). We 
observed in both the sub-networks several cancer genes such as AKT2, CCND1, RUNX1 
and MALT1 that were induced while others such as APC and BCL10 were repressed. In 
addition, there are specific-cancer genes represented in each sub-network such as MYC 
in the colorectal adenoma and CDX2 in the lung adenocarcinoma that might represent 
tissue- or organ-specific components. 

Figure 8 Comparison of adenoma sub-networks: (A) An active sub-network of colorectal cancer 
adenomas (CCA); (B) An active sub-network of lung cancer adenocarcinoma (LCA). 
Wnt core genes are shown as rectangles, and circles represent other signalling circuit 
genes; cancer genes are shown in large shape nodes. Induced and repressed genes are 
shown as red and green colour nodes respectively (log2 fold-change). Nodes in common 
between ‘CCA’ and ‘LCA’ sub-networks are shown with blue borders (see online 
version for colours) 
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4 Discussion 

In this study, we present two approaches to (a) extend the Wnt signalling network and (b) 
identify context-specific Wnt sub-networks that can be compared, and potentially used to 
classify Wnt perturbations. 

Our motivation for attempting to extend the Wnt signalling pathway is that the 
underlying cellular network that governs Wnt signalling is most probably considerably 
more extensive than current representations of core Wnt pathway components suggest. 
This is evidenced, for example, by the multiple RNAi screens that have been performed, 
that typically identify significant numbers of genes whose expression is able to alter  
Wnt activity in genetic screens (e.g. Major et al., 2008). Although false positives may 
contribute to the numbers of genes identified in these screens, it still seems likely that a 
broad cellular network governs overall activity of the pathway. Our approach, using 
either local or global connectivity of proteins to core Wnt pathway members provides a 
computational screen in which novel proteins may be identified, and future work 
integrating this computational approach with the results from genetic/RNAi screens may 
also be fruitful. Our analysis also takes into consideration differences between pathway 
databases as to the composition of the Wnt signalling pathway. Although there exists a 
core set of proteins that are present in all four databases, many more proteins ‘union’ set 
feature in one or two pathway databases. These discrepancies are due to the subjectivity 
in defining the Wnt pathway (or any other biological pathway). Network-based 
approaches, as described here, will be required in future definitions of what the core or 
extended composition of signalling pathways are. 

The sub-networks are scored by integrating a Wnt-focused PPI network and multiple 
gene-expression studies. We identify multiple sub-networks that incorporate known and 
unknown components of the Wnt signalling pathway as well as linking genes whose 
expression may be induced or repressed. Using a focused Wnt PPI network instead of  
a large-scale PPI network enables us to use the computationally intensive simulated 
annealing approach rather than a greedy approach and to identify smaller sub-networks 
specific to Wnt signalling. 

Identification of similarities between gene-expression studies based upon shared sub-
networks may reveal commonalities between studies that are not revealed by analysis of 
gene-expression data alone. Thus, classification of studies using sub-networks grouped 
two adenoma (‘CCA’ and ‘LCA’) studies together, while the gene-expression clustering 
grouped studies based upon tissue type. A possible explanation for the common sub-
network found for the colorectal adenoma (‘CCA’) and lung adenocarcinoma (‘LCA’) 
studies is that they both represent early stages of tumorigenesis and may have common 
mediators of chemotactic invasion and colony outgrowth-dependent Wnt signalling 
(Sabates-Bellver et al., 2007; Nguyen et al., 2009). Wnt ligands such as WNT5a and 
WNT2 were observed in both sub-networks and it has been reported that WNT5A high 
expression increased motility and invasion in cancer progression (Da Forno et al., 2008). 
In both the adenoma sub-networks, cancer genes such as AKT2, CCND1, RUNX1 and 
MALT1 were induced. The role of RUNX1 in disease prognosis is not yet well reported. 
However, RUNX3 has been shown as an initiator of colonic carcinogenesis by linking 
the Wnt oncogenic and TGF-beta tumour suppressive pathways (Subramaniam et al., 
2009). Identifying sub-networks important during tumorigenesis is becoming increasingly 
important, since networks themselves, rather than individual proteins are now seen as  
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potential drug targets (Brehme et al., 2009). Future analysis of cancer-associated or 
signalling pathway associated sub-networks may identify sub-networks that can be 
targeted therapeutically. 

Although, our study and the work of many others using similar approaches shows 
promise, we recognise several current drawbacks. For example, to understand the 
dynamics of PPI networks, we require accurate measures of protein abundance and post-
translational state. Although gene-expression measurements are convenient, and widely 
available, in many instances they may not reflect the expression of corresponding 
proteins. Second, tissue-type or cell-type specific PPI data are not available on a large 
scale, hence the use of a reference database in our study. There may be many interactions 
occurring in cell- or tissue-specific manner that are not represented, and conversely many 
interactions in the reference database may not occur in the tissue or biological state of 
interest. In addition, PPI data from large-scale studies are of variable quality, and a future 
direction would be to weight the interactions in the network accordingly. In addition, we 
recognise that this study utilises only a small number of diverse gene-expression studies. 
Using a larger set of gene-expression studies may well help better define the important 
sub-networks. 
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