
Suffix-Tree Based Error Correction of NGS Reads Using
Multiple Manifestations of an Error

Daniel M. Savel
Electrical Engineering and

Computer Science
Case Western Reserve

University
Cleveland, OH

dan.savel@case.edu

Thomas LaFramboise
(1) Genetics and Genome

Sciences
(2) Center for Proteomics and

Bioinformatics
Case Western Reserve

University
Cleveland, OH

thomas.laframboise@case.edu

Ananth Grama
Dept. of Computer Science

Purdue University
West Lafayette, IN

ayg@cs.purdue.edu

Mehmet Koyutürk
(1) Electrical Engineering and

Computer Science
(2) Center for Proteomics and

Bioinformatics
Case Western Reserve

University
Cleveland, OH

mehmet.koyuturk@case.edu

ABSTRACT
Next Generation Sequencing (NGS) technologies produce
large quantities of short length reads with higher error rates.
Erroneous reads that cannot be aligned, are either ignored
during de-novo sequencing, or must be suitably corrected.
Such reads pose problems for mapping as well, since it is
difficult to distinguish errors from true variants. Methods
for detection and correction of errors typically rely on fre-
quencies of substrings of the reads. Suffix trees are often
utilized for this purpose, since they can be used to index and
count the frequencies of substrings of all lengths. Existing
suffix-tree based methods detect errors by identifying statis-
tically under-represented branches (suffixes) and fix them.
However, they do not refer back to the reads to put the cor-
rection in context. Since an error in a single read manifests
itself at multiple nodes of a suffix tree, a read-driven ap-
proach that relies on its multiple manifestations is expected
to perform better. Based on this observation, we develop
an algorithm, Pluribus, which reconciles corrections sug-
gested by multiple manifestations of an error using a voting
scheme. We compare the accuracy of Pluribus in detect-
ing and correcting errors against existing error correction
techniques using simulated sequencing data. We also as-
sess the impact of error correction on the performance of se-
quence assembly. Our results show that Pluribus corrects

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BCB ’13, September 22 - 25, 2013, Washington, DC, USA
Copyright 2013 ACM 978-1-4503-2434-2/13/09 ...$15.00.

errors with improved precision and enables the assembler
to generate longer contigs, particularly when the genome is
longer, or coverage is lower. Pluribus is freely available at
http://compbio.case.edu/pluribus/.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; J.3 [Life and
Medical Sciences]: Biology and Genetics

General Terms
Algorithms, Experimentation

Keywords
Bioinformatics, next generation sequencing, error correction,
suffix trees, sequence assembly.

1. INTRODUCTION
Next Generation Sequencing (NGS) technologies have re-

placed Sanger sequencing as the de facto standard. This
shift can be attributed to the orders of magnitude increase
in throughput and reduction in per-base sequencing cost of
NGS. These desirable characteristics, however, come at the
cost of shorter reads and increased error rates. In Sanger se-
quencing, error rates could be as low as one miscalled base
in 100,000 bases sequenced. NGS technologies, on the other
hand, are prone to miscalling bases at a rate that is orders
of magnitude greater – as high as 1 in 100. While hardware
advances are reducing this rate and the actual error rates
experienced today may be lower than 1%, with average read
lengths exceeding 100bp the expected number of errors per
NGS read is close to one [9].

ACM-BCB 2013 351

There are two main uses of the reads generated by NGS
technologies: (i) resequencing or mapping, where the reads
are aligned to a reference genome for further analysis, and
(ii) de novo assembly, where an unknown genome is con-
structed entirely from the reads. In both of these cases,
sequencing errors significantly increase the complexity of
operations. When performing an alignment, sequencing er-
rors can be handled by accounting for mismatches and short
gaps [6]. However, it is difficult to ascertain whether these
are due to sequencing errors or true variants in the underly-
ing genome. During de novo assembly, sequencing errors in-
terfere identification of overlaps between reads. In this case,
sequencing errors in reads that bridge two contigs may cause
the contigs to stay disjoint; alernately, they may induce spu-
rious overlaps [11]. For these reasons, it is important to
discard or correct sequencing errors prior to assembly.

1.1 Error Correction
In order to identify and correct errors in sequencing data,

it is necessary to differentiate true genomic variants from
sequencing errors. For de novo assembly, there is no ground
truth to compare the data against. Fortunately, however, if
there is sufficient coverage, i.e., if the expected number of
reads that cover any given location on the genome is suf-
ficiently large spectral alignment can be performed to esti-
mate alignment to a reference genome. Spectral alignment
works by approximating the set of substrings that would ex-
ist in the reference genome as the set of substrings in the
read set that appear in at least a certain number of reads,
and the reads are then aligned to this set of substrings to
identify sequencing errors [5]. The problem of error iden-
tification then translates to the computational problem of
identifying substrings with low frequency, since these are in-
dicative of sequencing errors. The error correction problem
determines modifications to erroneous substrings to trans-
form them to high frequency substrings, which correspond
to true genomic sequences.

1.2 Review of Existing Methods
Building on the spectral alignment approach to error cor-

rection, several algorithms and tools have been proposed.
The major difference between the various existing correc-
tion tools is the error profile for which the tool corrects. The
tools can be split into two categories tools that can correct
only substitution type errors and those that can correct both
substitution and indel type errors. The tools Quake [4],
Shrec [8], HiTEC [3], and Reptile [10] were designed ex-
pressly for the correction of data produced by the Illumina
platform, so they only correct substitution type errors. The
work in [8] was extended in [7] with the tool Hybrid-Shrec
which was designed to correct errors in reads that could have
come from a mixture of hardware platforms, so it has the
ability to correct both substitution and indel type errors.

Differences between tools in each category is largely the
underlying data structure used to store and analyze sub-
string frequency. Three data structures that are commonly
used for this proces are: (i) K-mer based hashtables, (ii)
suffix trees, and (iii) suffix arrays. K-mer based hash tables
usually count the frequencies of all substrings of length K
(K-mers) for a fixed K, and identify as errors, sets of over-
lapping K-mers with low frequency [4,10]. Suffix tree based
methods, on the other hand, remove the dependency on a
fixed parameter (K) by organizing all suffixes of all reads

into a tree structure and identify as errors, low-frequency
nodes with high-frequency siblings [7,8]. A third data struc-
ture, suffix array, is used as a compromise between K-mer
based hash tables and suffix trees. In a suffix array, all the
suffixes of the reads are still considered but they are orga-
nized into a flat data structure [3].

1.3 Contribution of Our Work
Since the suffix tree data structure is particularly expen-

sive in terms of its space requirement, extant suffix tree
based algorithms attempt to identify errors using partially
constructed trees. This entails identification of errors in a
tree-driven manner, i.e., each error is identified based on
a single node of the tree. The decision on how to correct
this error is based only on the siblings of that node. Note,
however, that a single erroneous base in a read shows up
in a large number of suffixes of the read. Consequently,
each error has multiple manifestations in the suffix tree.
These correlated manifestations provide important informa-
tion that can be used to to improve error correction. In this
paper, we argue that, at high error rates and diversity of er-
rors (e.g., substitution errors vs. indels), conventional tree-
driven methods can be significantly improved by considering
all erroneous suffixes resulting from a single read error. In-
stead of compromising accuracy for computational efficiency,
we exploit the increased availability of high-capacity compu-
tational resources to implement read-driven strategies that
allow consideration of all manifestations of an error in guid-
ing the correction process.

1.4 Results
We comprehensively compare the performance of our method,

Pluribus against existing methods through systematic com-
putational experiments on the human genome. For this pur-
pose, we use a sequencing simulator, ART, which is designed
to generate realistic reads, taking into account the charac-
teristics of each existing sequencing platform [2]. We com-
pare the performance of Pluribus and other methods in
detecting and correcting sequencing errors as a function of
genome length and coverage. Finally, we assess the impact
of error correction on the performance of sequence assem-
bly by comparing the performance of a state-of-the-art as-
sembler, Velvet in three contexts: (i) using error-free reads,
(ii) using uncorrected reads, and (iii) using reads corrected
by Pluribus and other algorithms. Our results show that
Pluribus delivers increased accuracy over competing tools
and this increase is most evident for data in which there
is higher ambiguity between potential corrections, such as
when the errors are mixtures of substitutions, insertions,
and deletions, and when the coverage of the dataset is low.

2. METHODS
In this section, we first introduce our notation and for-

mally define the error correction problem. We then explain
how a suffix-tree based data structure can be used to detect
and correct sequencing errors, as is done by existing meth-
ods. Subsequently, we discuss the shortcomings of these
methods, particularly in detecting and correcting short in-
sertions and deletions (indels) and propose our method for
suffix tree-based error correction using multiple occurrences,
Pluribus.

2.1 Notations and Problem Formulation

ACM-BCB 2013 352

ACTAACTGGGTCGAAAACGGGCAGAGTGAGTAGCAATGenome:

Read: ACTGAGT AACGGC GAGTCAGC

Error Type: DeletionSubstitution Insertion

Figure 1: Illustration of the types of errors that can be encountered in sequencing.

The input to the sequencing error correction problem is
a set R of n = |R| short reads from a genome G of length
m (the genome length is not necessarily known). The reads
are not of identical length, however, we can safely assume
that the average read length, `, is known. For such a set
of reads, the coverage c is defined as the average number
of reads that contain a given base, i.e., c = n`/m. The
coverage of a sequencing run depends on multiple factors in-
cluding the sequencing platform, the resources available, and
the length of the genome being sequenced. Coverage levels
in sequencing runs intended for de novo assembly typically
range from 16× to more than 200× [1].

Because of the technological limitations of sequencing plat-
forms, reads in a sequencing run contain errors; i.e., one or
more bases in a read may not be identical to those at their
corresponding position in G. The objective of sequencing er-
ror correction is to identify and correct such errors in reads.
Various types of errors encountered in sequencing are illus-
trated in Figure 1. For the Illumina sequencer, one of the
most commonly used sequencing platforms today, the most
common type of sequencing error is the substitution error.
In this type of error, a nucleotide in a read is substituted
with another nucleotide. Errors can occur in the form of
insertions and deletions as well, where either one or more
nucleotides are inserted within a read, or one or more nu-
cleotides are deleted from within a read. These types of
sequencing errors are commonly referred to as indels.

Since substitutions are the most common form of sequenc-
ing errors, many of the existing error correction algorithms
primarily target substitutions. However, indels also occur
quite often, as is the case of data produced by the Roche
454 platform [9]. The presence of indels may significantly
obscure the entire error correction process. During error de-
tection, anomalies caused by indels may be interpreted as
substitution errors if a substitution only algorithm is used
and new errors may be introduced in an attempt to correct
these misidentified errors.

The objective of the error correction problem is to identify
and correct all errors (substitions, deletions, and insertions)
in all of the reads in R.

2.2 Suffix Tree Based Error Correction
Most error correction algorithms are based on the fre-

quencies of substrings of reads. The key premise here is
that, under sufficient coverage, substrings that come from an
actual genomic sequence will have high frequency, whereas
substrings that contain an error will have relatively low fre-
quency. Therefore, one can identify sequencing errors by
counting the frequencies of all substrings of the reads in R
and identifying substrings that have significantly lower fre-

Root

A, 9 C, 9 T, 6

AC, 3

T, 2

T, 1

C, 5

CTA, 1 T, 2

T, 1

AAC, 2

T, 1

CTA, 1 T, 4

A, 1 T, 2

AC, 1

A, 2 T, 2

C, 1 AC, 1

Genome: CAACTTAC
Reads: AACTT
 ACCTA
 CTTAC
 CAACT
 CAAC

Figure 2: Illustration of the use of suffix trees to iden-

tify and correct sequencing errors. A simple hypothetical

genome and a set of 5 reads from this genome are shown

on the left. The second read contains a substitution er-

ror, where a T is substituted with a C. The suffix tree

that indexes all suffixes of these reads is shown on the

right. Each node in the tree represents the string that

is obtained by reading along the path from the root to

that node. The number at each node corresponds to the

frequency of the respective string as a substring of the

reads in the read set. The nodes highlighted in bold are

those that indicate the error in the second read, since

they have lower frequency compared to their siblings.

quency than expected. Suffix trees provide a useful data
structure for this purpose, since they can be used to track
the frequency of substrings of any length by indexing all
suffixes of all reads in R. Once all suffixes are indexed, the
errors manifest themselves as low-frequency subtrees in the
suffix tree, whose roots have high-frequency siblings. The
key idea behind suffix-tree based error correction is illus-
trated in Figure 2.

As seen in Figure 2, if the cutoff value that separates high
and low frequency is 1, all of the suffixes that are incident
on a sequencing error manifest themselves as low frequency
nodes in the suffix tree. Siblings of those nodes also pro-
vide indicators for what the sequence may have been. One
point of note is that at a certain depth in the tree, all the
nodes have low frequency. Because of this, only low fre-
quency nodes that have high frequency siblings should be
considered for error correction. Analogously for a certain
cutoff value all nodes above a certain depth in the tree will
be high frequency. Noting these two points, there is a band
in the suffix tree that provides the most information for error
correction. The value of the cutoff influences the location of
this informative region, where both high and low frequency
nodes exist.

The Shrec [8] tool implements the process described above,
but with the express purpose of correcting sequence data
generated by Illumina hardware. Therefore, Shrec focuses

ACM-BCB 2013 353

on correcting substitution errors only. However, since an in-
sertion or deletion may be confused with multiple substition
errors, a correction tool that ignores indels may introduce
many new errors at the presence of indels. Based on this
observation, Hybrid-Shrec [7] extends Shrec to correct
indels in addition to substitution errors. This tool is tar-
get towards reads produced by multiple hardware platforms
with diverse error profiles.

2.3 Utilizing Multiple Suffixes
The general approach to using a suffix tree for error cor-

rection, as implemented by Shrec and Hybrid-Shrec, is
to detect errors on the tree, and use references back to R
to correct the detected error. In this approach, the correc-
tion process only has a single substring in its scope at any
given time. Therefore, while working from the tree, error
correction decisions are made using the information from a
single substring, and other manifestations of an error are not
taken into account. One of the advantages of this method is
that since correction is being performed based on the infor-
mation from a single substring, only a fraction of the suffix
tree needs to be in memory at any given time. We refer
to this method of working from the tree as a “tree-driven”
method. However, since the order in which the data struc-
ture is traversed is arbitrary, it is possible for this type of
correction algorithm to modify the same read in multiple
ways, depending on which manifestation of the error is de-
tected first.

This can be particularly problematic when the error pro-
file contains indels as well as substitution type errors, since
the number of possible corrections that could be applied
to a substring is more than doubled. This larger number
of possibilities increases the liklihood of finding a possible
modification to a read that exists by random chance rather
than a sequencing error. Furthermore, with more possible
correction types, substrings that are difficult to correct or
those that have ambiguous correction paths will have their
errors exacerbated.

We propose Pluribus, a correction algorithm that per-
forms corrections by working from the reads. Pluribus
considers each read one by one, and refers to the tree to
find all low frequency substrings incident on the read. Sub-
sequently, it uses a voting process to determine the correc-
tion that should be applied to the read. In this manner,
Pluribus guarantees that the modification performed on a
read is consistent for any arbitrary traversal of the underly-
ing data structure, and for any arbitrary order of the reads
in R.

Algorithm 1 describes Pluribus in detail. There are as-
pects of the algorithm that should be noted. Variable C,
which is instantiated on line 9 of Algorithm 1 allows dupli-
cate entries. The possible corrections referenced in line 13
are pairs consisting of an index and a correction type. Here,
index is the index of the first character of the low-frequency
node in the read that the substring is from. This value can
be obtained by using the index of the working suffix in the
working read and the index of the first character of the low-
frequency node in the working suffix. The correction type
is one of nine possible values: delete, insert for each of the
four bases, and substitute for each of the four bases. As
modifications are made to the reads the counts of suffixes
inside the suffix tree will change, so subsequent errors can
be detected due to the change of frequencies in the tree. It is

computationally prohibitive to have a fully dynamic suffix
tree, one that is modified everytime a read is modified to
properly represent the corrected read set. We approach this
problem in the same manner as [8] and by extension [7]; the
whole process is performed in rounds where up to a single
correction is applied to each read before the tree is rebuilt
using the modified reads.

Algorithm 1 Pluribus

Input: . R : Set of reads to be corrected
Output: . R′ : Set of corrected reads

1: T ← New empty suffix tree
2: R′ ← ∅
3: for each read r ∈ R do
4: for each suffix s ∈ r do
5: Insert s into T
6: end for
7: end for
8: for each read r ∈ R do
9: C ← ∅

10: for each suffix s ∈ r do
11: Query T for s
12: if s is incident on a low-frequency node then
13: for each possible correction do
14: if correction allows s to match all high-

frequency nodes then
15: Add correction to C
16: end if
17: end for
18: end if
19: end for
20: MostFrequentCorrection ← most frequent item in C
21: Apply MostFrequentCorrection to r
22: R′ ←R′ ∪ r
23: end for

2.4 Complexity
The time to run Pluribus can be separated into two

parts: the time to construct the suffix tree and the time
to perform correction on the read set. The time to insert an
arbitrary suffix into a suffix tree is bounded by the length
of the suffix, for the case where each character of the suffix
is incident on a unique node in the tree. This process is re-
peated for each suffix of each read of R, and each read has `
suffixes. The time to construct the tree becomes O(|R|∗`2).

To perform correction on a single read, each suffix of the
read is queried against the suffix tree. Querying the tree
for a suffix takes the same amount of time as insertion of
a suffix into the tree. If a query of a suffix discovers a low
frequency node, each correction type is tested. However,
there is a constant number of correction types, so the time
to correct a read is asymptotically the same as inserting a
read into the tree. So the time to perform correction is also
O(|R| ∗ `2).

When using a read-driven correction method, reads are
analyzed individually and independently, so only a single
read needs to be in memory at a time. Thus the dominant
space requirement comes from the suffix tree stored in mem-
ory. The space requirement of the suffix tree is determined
by the number of nodes in the tree, the size of each node,
and the number of edges in the tree. The number of edges
in the tree is bounded above by 4 × number of nodes in the
tree, as the size of the alphabet is 4, the characters A, C, G,
and T. Both the size of a node and the size of the alphabet
are constant, so the size of the suffix tree is O(n), where n

ACM-BCB 2013 354

Root

A, 10 C, 7 T, 7

A, 3

C, 2

T, 1

C, 4

T, 2

TA, 1

AAC, 2

T, 1

T, 3

TA, 2

C, 1

A, 3 TA, 3

C, 1 C, 1 TTA, 1

TTA, 1

Genome: CAACTTAC
Reads: AA–TTA
 ACTTA
 CTTAC
 CAACT
 CAAC

a) In a tree-driven method the two highlighted nodes are
accessed in an arbitrary order. If the tree traversal is
performed in lexicographical order the lower highlighted
will be hit first, and it has two possible corrections insert a
C before the TTA or replace the first T of TTA with a C,
both appear to be valid modifications so the tree-driven
method has a 50% chance of performing the right
correction.

b) A read driven method identifies all low frequency nodes
incident on a read, so both highlighted nodes will be
identified. The lower highlighted node has same two
modifications that the tree-driven method found, but the
upper highlighted node has a different set of possible
corrections: insert an A before the TTA or insert a C
before the TTA. The possible correction that appears
most frequently is to insert a C before TTA, so the read
driven approach will apply that correction and will
deterministically correct the deletion error properly.

Figure 3: Example illustrating that (a) a tree-driven approach may fail to correctly identify the source of a
sequencing error since it makes use of a single instance to detect and correct the error, (b) a read-driven
approach can accurately identify and correct the actual error on the same instance.

is the number of nodes in the tree. There are a few factors
that influence n, which represents the number of unique sub-
strings present in R. The size of the input, which is equal
to |R| ∗ `, is the most influential factor. The second most
influential factor is the error rate in the data. As the error
rate in input increases, data begins to resemble randomly
generated sequences and the number of unique substrings
grows.

3. RESULTS
In this section, we compare Pluribus against existing er-

ror correction methods using simulated sequencing data. We
first assess the performance of these methods in terms of
their accuracy in detecting and correcting errors that are
implanted in simulated data. Subsequently, we assess the
effect of error correction on the performance of an estab-
lished sequence assembly algorithm.

3.1 Error Correction Tools
We compare the performance of Pluribus against two

state-of-the-art error correction tools: Hybrid-Shrec [7]
and Quake [4]. We use Hybrid-Shrec in our compu-
tational experiments to represent suffix-tree based error-
correction, since it is a modified version of a well-tuned tool
for correcting substitution errors (Shrec) that also takes
into account insertions and deletions. We also perform ex-
periements with Quake, which is an optimized K-mer hash
based tool that takes into account many factors, including
quality factors associated with called bases.

3.2 Simulation Setup
In order to assess the accuracy of error correction, we

use simulated data as the “ground truth”, against which to
compare our corrected reads. For this purpose, we use an es-
tablished read simulator, ART [2], to generate test datasets,

with properties matching realistic NGS data. ART has sev-
eral hardware profiles that it can use to generate data. In the
computational experiments reported in this section, we use
the data characteristics of Roche 454, since reads generated
by the 454 platform contains a mix of insertion, deletion,
and substitution sequencing errors. Haploid subsequences
ranging in length from 50K to 5M bases of human chromo-
some 22 reference with “N” characters removed are used as
the source genomes from which ART simulated reads. Each
experiment is repeated 10 times and the averages across all
runs are reported here.

3.3 Precision and Recall
A direct method for comparing error correction tools against

each other relies on the accuracy of correction. Using the
data simulated by ART, all deviations of the reads from
their respective true sequences in the source genome can be
identified. Comparing the reads that have been corrected
by each tool against the set of uncorrected reads allows for
the identification of all the reads that have been modified
and whether those modifications eliminated errors. In this
context, precision is defined as the fraction of the of reads
that are error-free after correction among all reads that are
modified by the correction algorithm. On the other hand,
recall is defined as the fraction of the reads that are error-
free after correction among all reads that contain sequencing
errors before correction.

To examine the robustness of each method, we consider
two different properties of input read sets and, for each prop-
erty, we perform experiments on a range of values that are
representative of practical instances. Two important prop-
erties of the data sets that influence the error correction
process are the length of the source genome and the level of
coverage the reads have over that genome. Figures 4 and 5
show how the accuracy of each tool varies as a function of

ACM-BCB 2013 355

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50000 500000 5000000

Pr
ec

is
io

n

Genome Length

Pluribus
HybridShrec
Quake

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50000 500000 5000000

R
ec

al
l

Genome Length

Pluribus
HybridShrec
Quake

Figure 4: Precision and recall of error correction for Quake, Hybrid-Shrec, and the proposed algorithm Pluribus, as a

function of genome length (ranging from 50K to 5M bases), when coverage is fixed at 15×.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 15 20 25 30

Pr
ec

is
io

n

Coverage

Pluribus
HybridShrec
Quake

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 15 20 25 30

R
ec

al
l

Coverage

Pluribus
HybridShrec
Quake

Figure 5: Precision and recall of error correction for Quake, Hybrid-Shrec, and the proposed algorithm Pluribus, as a

function of coverage (ranging from 10× to 30×), when genome length is fixed at 5Mbp.

genome length and coverage.
As seen in Figure 4, the precision of error correction using

suffix tree based methods, Pluribus and Hybrid-Shrec,
is consistently high for genomes of different sizes. How-
ever, there is a slight trend showing decreased precision with
increasing genome length. This is because the likelihood
of generating multiple erroneous reads that coincide with
each other goes up as the genome length increases. This
causes ambiguities for the error correction algorithm while
modifying an erroneous read. Since Pluribus takes into
account multiple manifestations of an error, such ambigui-
ties are better resolved. This expectation is supported by
the higher precision of Pluribus as compared to Hybrid-
Shrec for longer genomes. Based on this result, we extrap-
olate that the difference in the precision of Pluribus and
Hybrid-Shrec will be larger for longer genomes. The re-
call of the two suffix tree methods is divergent at the 50K
bp (short) genome, but it converges for longer genomes and
stays consistent at around 80%. In all of the experiments,
both the precision and recall of Quake are unsatisfactory
for all genome lengths, when the coverage of the read set is
15×. From this, we conclude that Quake is more suitable
for high coverage sequencing runs, but does not perform as
well on low coverage data.

Our experiments show that, for a range of coverage lev-

els, suffix tree based methods are able to reach high lev-
els of accuracy, as observed in Figure 5. At coverages of
15× and 30×, Pluribus and Hybrid-Shrec have simi-
lar performance. However, at the lowest level of coverage
tested (10×), Pluribus achieves higher precision at the
cost of slightly reduced recall. Again, this is expected since
Pluribus uses information from multiple manifestations of
an error, which becomes particularly useful when the dif-
ference between frequencies of error-free and erroneous sub-
strings is small. The figure also shows that Quake performs
quite unfavorably for low levels of coverage, namely 10× and
15×, but is able to achieve significantly better accuracy for
the higher coverage datasets. At 30× coverage, Quake is
able to achieve greater than 80% precision but only slightly
greater than 50% recall. This level of recall is expected, since
the simulated data contains roughly one to one ratio of in-
dels to substitution type errors and Quake only corrects
substitution errors.

3.4 Application to Assembly
Since the end goal of reference-free error correction is to

improve the performance of de novo assembly, we use the
output of the Velvet assembler [11] to study the impact of
error correction tools on the overall assembly process. For
this purpose, we generate error-free and erroneous sequenc-

ACM-BCB 2013 356

0

50000

100000

150000

200000

250000

300000

350000

10 15 20 25 30

N
od

es

Coverage

Error
NonError
Pluribus
HybridShrec
Quake

0

500

1000

1500

2000

2500

10 15 20 25 30

n5
0

Coverage

Error
NonError
Pluribus
HybridShrec
Quake

Figure 6: The assembly performance of an established assembly tool, Velvet, as a function of coverage (ranging from

10× to 30×) on a 5Mbp genome. Velvet is run on read sets that are error-free, uncorrected, and corrected by the three

error correction algorithms considered here.

ing data using the ART simulator, run each correction al-
gorithm on the erroneous data to “correct errors”, and run
Velvet on each of the five read sets (error-free, uncorrected,
and corrected by each of the three algorithms). Since sim-
ulated data is being used, it is possible to produce datasets
that contain no sequencing errors. These datasets can be
used to ascertain the bounds on the improvement that error
correction can have on assembly.

To compare the methods in terms of their impact on the
assembly process, we use two statistics of the output pro-
duced by Velvet on each dataset: (i) the number of nodes in
the final de Bruijn graph of the Velvet assembler, and (ii)
the n50 statistic of the generated contigs. The node count
indicates how much fragmentation is present in the read set.
A large number of nodes in the graph is indicative of high
fragmentation and is characteristic of read sets with a large
number of uncorrected sequencing errors. Low node count
is indicative of higher quality data, so minimizing this value
is desirable. The n50 statistic is the weighted median of
the length of the generated contigs. The ability of the as-
sembly algorithm to generate longer contigs indicates that
the set of reads available to the assembly algorithm provide
information to resolve conflicts and generate larger contigs.
Therefore, a larger value of the n50 statistic indicates better
performance for the error correction algorithm.

The node count and n50 statistics for the performance of
Velvet on the five read sets are shown in Figure 6. As can be
seen in the figure, assembly performance results mimic the
results from the accuracy experiments reported above. At
low levels of coverage, datasets corrected by Quake have
assembly performance similar to that of the datasets that
were uncorrected. For a higher level of coverage, Quake
shows significant improvement over the uncorrected data in
both the number of nodes in the graph and in the n50 of the
generated contigs.

Both assembly metrics show similar trends for the two
suffix tree based methods, Pluribus and Hybrid-Shrec.
Node counts of the two methods are close in value across
the different levels of coverage, showing a linear trend with
respect to coverage. A larger difference between the two
methods can be seen in the n50 statistic. For all levels of
coverage tested reads corrected by Pluribus produce con-
tigs with the longest lengths and, as such, closest to the

lengths of the contigs generated using error free data. This
difference is more pronounced for the dataset with lowest
(10×) coverage. This trend is identical to the trend in pre-
cision for different levels of coverage, where the difference in
precision was greatest at 10× coverage.

Our results clearly suggest that, with increasing genome
length and lower coverage, erroneous reads are more likely
to have frequencies closer to error-free reads and error cor-
rection tools may be misled by higher frequency errors to
generate more errors in an attempt to fix errors. However,
if the error correction tool makes use of the information pro-
vided by multiple manifestations of the error, it is more likely
to choose and make accurate corrections. As noted in the
difference in the n50 statistics provided by Pluribus and
Hybrid-Shrec, the use of multiple manifestations is par-
ticularly useful in resolving conflicts and generating longer
contigs for longer genomes, particularly at shallow coverage.

3.5 Scalability and Practicality
The tool Hybrid-Shrec is the closest in design to Pluribus

as they both use suffix trees for the identification and cor-
rection of sequencing errors and they target indels as well
as substitution errors. Both tools perform correction in a
series or rounds where up to a single error in each read is
corrected in each round. To investigate the overhead of find-
ing all manifestations of an error, we compare the timing of a
single round of correction for these two tools. The computa-
tional platform we use for these computational experiments
is a Dell PowerEdge R820 with 512 GB RAM and 4×8-Core
Intel Xeon processors. When Hybrid-Shrec is run on the
datasets where the source genome is 5Mbp, the time to per-
form a single round of correction takes on average 2 minutes
for 10× coverage and 5.5 minutes for 30× coverage. In order
to perform correction on these datasets, Pluribus requires
4.5 minutes for 10× coverage and 12.5 minutes for 30× cov-
erage on average.

The results reported in this section are obtained by run-
ning the correction tools on data sets where the number
of errors in any single read is relatively low, typically not
exceeding two or three errors in a read. This low number
of errors in each read allows tools such as Pluribus and
Hybrid-Shrec to fully correct most reads after only two or
three rounds of correction. However, if the reads are excep-

ACM-BCB 2013 357

tionally long, the error rate significantly higher, or possibly
both, the number of errors in a single read can become an
order of magnitude or two higher. This would require these
tools to be run for higher and higher number of rounds, and
the round based approach would become less and less effi-
cient. Therefore, much like most of the other existing tools,
Pluribus is specifically designed to work best on read sets
that only have up to a few errors in each read and may not
scale to sequencers with longer reads and higher error rates.

4. CONCLUSION
In this paper, we propose a suffix tree based method,

Pluribus (available at http://compbio.case.edu/pluribus),
for correcting sequencing errors in Next Generation Sequenc-
ing (NGS) data. The key innovation of the proposed method
is in the utilization of multiple manifestations of a single read
for error correction. This is achieved by detecting and pro-
cessing errors in a read-driven manner (as opposed to the
tree-driven approach implemented by existing algorithms).
Our results show that suffix trees can achieve high accu-
racy at low coverage levels. Furthermore, when corrections
are ambiguous, i.e., in the presence of insertions or dele-
tions, lower coverage, or longer genome length, using mul-
tiple manifestations of an error improves accuracy or error
correction. This increased accuracy is also reflected in im-
proved performance of the assembler. In future work opti-
mizations in constructing the tree and recalling substrings
can be explored to reduce the introduced overhead such as
implementing the use of a suffix link algorithm. Also, our
method can be tested on a rich collection of genomes, also
considering longer genomes and real sequencing runs. This
will enhance the generalizibility of the results reported here
and establish Pluribus as the benchmark tool for error cor-
rection in practical applications.

Acknowledgments
We would like to thank Matthew Ruffalo (CWRU), Gökhan
Yavaş (CWRU), and Wojciech Szpankowski (Purdue) for
many useful discussions, and anonymous reviewers for their
useful comments and suggestions. This work was supported
in part by National Science Foundation (NSF) awards IIS-
0916102, DBI-0835677, IOS-1124962, American Cancer So-
ciety Grant 123436-RSG-12-159-01-DMC, and by a Gradu-
ate Assistance in Areas of National Need (GAANN) fellow-
ship to Daniel Savel from the US Department of Education.

5. REFERENCES
[1] Keith R Bradnam, Joseph N Fass, Anton Alexandrov,

Paul Baranay, Michael Bechner, İnanç Birol, Sébastien
Boisvert10, Jarrod A Chapman, Guillaume Chapuis,
Rayan Chikhi, et al. Assemblathon 2: evaluating de
novo methods of genome assembly in three vertebrate
species. arXiv preprint arXiv:1301.5406, 2013.

[2] Weichun Huang, Leping Li, Jason R. Myers, and
Gabor T. Marth. Art: a next-generation sequencing
read simulator. Bioinformatics, 28(4):593–594, 2012.

[3] Lucian Ilie, Farideh Fazayeli, and Silvana Ilie. Hitec:
accurate error correction in high-throughput
sequencing data. Bioinformatics, 27(3):295–302, 2011.

[4] David Kelley, Michael Schatz, and Steven Salzberg.
Quake: quality-aware detection and correction of
sequencing errors. Genome Biology, 11(11):R116, 2010.

[5] Pavel A. Pevzner, Haixu Tang, and Michael S.
Waterman. An eulerian path approach to dna
fragment assembly. Proceedings of the National
Academy of Sciences, 98(17):9748–9753, 2001.

[6] Matthew Ruffalo, Thomas LaFramboise, and Mehmet
Koyutürk. Comparative analysis of algorithms for
next-generation sequencing read alignment.
Bioinformatics, 27(20):2790–2796, October 2011.

[7] Leena Salmela. Correction of sequencing errors in a
mixed set of reads. Bioinformatics, 26(10):1284–1290,
2010.

[8] Jan Schröder, Heiko Schröder, Simon J. Puglisi,
Ranjan Sinha, and Bertil Schmidt. Shrec: a short-read
error correction method. Bioinformatics,
25(17):2157–2163, 2009.

[9] Jay Shendure and Hanlee Ji. Next-generation dna
sequencing. Nature biotechnology, 26(10):1135–1145,
2008.

[10] Xiao Yang, Karin S. Dorman, and Srinivas Aluru.
Reptile: representative tiling for short read error
correction. Bioinformatics, 26(20):2526–2533, October
2010.

[11] Daniel R Zerbino and Ewan Birney. Velvet:
algorithms for de novo short read assembly using de
bruijn graphs. Genome research, 18(5):821–829, 2008.

ACM-BCB 2013 358

