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Abstract

Standardized annotations of biomolecules in interaction net-
works (e.g., Gene Ontology) provide comprehensive under-
standing of the function of individual molecules. Extending
such annotations to pathways is a critical component of func-
tional characterization of cellular signaling at the systems
level. We propose a framework for projecting gene regula-
tory networks onto the space of functional attributes using
multigraph models, with the objective of deriving statisti-
cally significant pathway annotations. We first demonstrate
that annotations of pairwise interactions do not generalize to
indirect relationships between processes. Motivated by this
result, we formalize the problem of identifying statistically
over-represented pathways of functional attributes. Then,
we propose a statistical model that emphasizes the modu-
larity of a pathway, evaluating its significance based on the
coupling of its building blocks. We complement the sta-
tistical model by a comprehensive software infrastructure,
Narada, with an intuitive query interface. Comprehensive
results from our methods on the E. coli transcription net-
work demonstrate that our approach is effective in identify-
ing known, as well as novel biological pathway annotations.

1 Introduction

Gene regulatory networks represent powerful for-
malisms for modeling cell signaling through regulation
of cellular processes. These networks are inferred from
gene expression, as well as other sources of data, us-
ing various statistical and computational methods [5].
Recent studies on networks of specific organisms show
that interactions between genes that take part in certain
pairs of biological processes are significantly overrepre-
sented [8, 12]. Lee et al. [8] study the S. cerevisiae tran-
scription regulation network with a view to understand-
ing relationships between functional categories. They
observe that many transcriptional regulators within a
functional category bind to transcriptional regulators
that play key roles in the control of other cellular pro-
cesses. Similarly, Tong et al. [12] identify putative ge-
netic interactions in yeast via synthetic genetic array
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(SGA) analysis and investigate the functional relevance
of their results in the context of Gene Ontology (GO)
annotations. They construct a network of GO terms
by inserting an edge between any pair of terms that are
bridged by a significant number of interacting gene pairs.
Here, two GO terms are said to be bridged by an inter-
action if one of the interacting genes is associated with
one of the terms, and the other gene with the second
term, but neither is associated with both terms. They
show that the resulting network is clustered according
to underlying biological processes, while some biological
processes buffer one another.

Generalizing such observations to pathways of ar-
bitrary length may allow identification of standardized
pathways, enabling creation of reference databases of di-
rect and indirect interactions between various processes.
Knowledge of such pathways is useful, not only in gen-
eral understanding of the relationship between cellular
processes at the systems level, but also in projecting ex-
isting knowledge of cellular organization of model organ-
isms to other species. Increasing availability of species-
specific interaction data, coupled with attempts aimed
at creating standardized dictionaries of functional anno-
tation for biomolecules, provide the knowledge base that
can be effectively used for this purpose. What is lacking
is a comprehensive set of tools that combine these two
sources of data to identify significantly over-represented
patterns of interaction through reliable statistical mod-
eling with a formal computational basis.

In this paper, we introduce the notion of func-
tional network characterization, derived from a gene
regulatory network and associated functional annota-
tions of genes. We use the Gene Ontology (GO) [1]
for annotations, however, our methods themselves gen-
eralize to other networks and annotations. Functional
network characterization is based on the abstract no-
tion of regulatory interactions between pairs of func-
tional attributes (as opposed to genes). In this con-
text, we demonstrate that methods for identifying sig-
nificant pairwise annotations do not generalize to path-
way annotations. We introduce the problem of identify-
ing statistically over-represented pathways of functional
attributes, targeted at the identification of chains of reg-
ulatory interactions between functional attributes. Em-



phasizing the modularity of a pathway to assess its sig-
nificance, we propose a statistical model that focuses on
the coupling of the building blocks of a pathway. We use
this statistical model to derive efficient algorithms for
solving the pathway annotation problem. Our methods
are implemented in a web-based tool, Narada which
provides an intuitive user and data interface. Com-
prehensive evaluation of Narada on an E. coli tran-
scription network from RegulonDB [11] shows that our
method identifies several known, as well as novel path-
ways, at near-interactive query rates.

2 Multigraph Model for Networks of

Functional Attributes

The basic approach for integrating existing knowledge of
gene networks and functional annotations is to project
the network in the gene space onto the functional at-
tribute space through mapping of genes to attributes
as specified by the annotation. A simple method for
achieving this annotates each gene with its function and
identifies overrepresented interacting annotations. This
simple method yields interesting insights, as illustrated
by [12] in the context of synthetic genetic arrays. This
model, however, does not generalize beyond pairwise in-
teractions since each interaction between a pair of func-
tional attributes is within a specific context (a different
pair of genes) in the network. For this reason, a pathway
of functional attributes composed from pairwise inter-
actions may not itself be significant, or even exist.

We develop a formal framework for projecting a
gene network on a network of functional attributes,
using multigraph models that accurately capture the
context in which an interaction occurs. Through this
framework, we generalize pairwise interactions between
functional attributes to the identification of regulatory
pathways of functional attributes. In our framework, A
gene regulatory network is modeled by a directed graph
G(VG, EG). In this network, nodes gi ∈ VG represent
genes. Directed edge gigj ∈ EG, where gi, gj ∈ VG,
represents a regulatory interaction between genes gi

and gj. A sample gene regulatory network is shown
in Figure 1(a).

Each gene in the network is associated with a set
of functional attributes. These attributes describe a
functional annotation of the gene, i.e., they map an
individual biological entity to known functional classes.
Formally, given a set of genes VG and a set of functional
attributes VF , let 2VG and 2VF denote the power set of
VG and VF , respectively. Then, functional annotation
A(VG, VF ) = {F ,G} defines mapping F : VG → 2VF

and G : VF → 2VG , such that Tj ∈ F(gi) if and only if
gi ∈ G(Tj), for any gi ∈ VG and Tj ∈ VF . The frequency
of Tj , φ(Tj) = |G(Tj)|, is equal to the number of genes

that are mapped to Tj.
In Figure 1, each gene gi is tagged with the func-

tional attributes in F(gi). For each Tj , G(Tj) is com-
posed of the genes tagged by Tj . We use Gene Ontology
(GO) [1] as a reference library for annotating genes. For
each gene, GO specifies the molecular functions associ-
ated with it, biological processes it takes part in, and cel-
lular components it may be part of. Based on this map-
ping between genes and functional attributes, we model
networks of functional attributes using multigraphs. A
multigraph is a generalized graph, where multiple edges
are allowed between a single pair of nodes.

Definition 1. Functional Attribute Network.

Given gene regulatory network G(VG, EG), a set of
functional attributes VF , and functional annotation
A(VG, VF ) = {F ,G}, the corresponding functional at-
tribute network F (VF , EF ) is a multigraph defined as
follows. The set of functional attributes VF is also the
set of nodes in F . Each node Ti ∈ VF contains a set
of ports corresponding to the set of genes associated
with Ti, i.e., G(Ti). Each multiedge TiTj is a set of
ordered port pairs (edges) gkgℓ, such that gk ∈ G(Ti),
gℓ ∈ G(Tj), and gkgℓ ∈ EG.

The functional attribute network corresponding to
the gene regulatory network in Figure 1(a) is shown in
Figure 1(b). This multigraph model captures the con-
text of each interaction accurately through the concept
of ports. This model is more powerful than a simple
graph model, in which paths that do not exist in the
gene network emerge in the functional attribute net-
work. This is not possible in the multigraph model,
since a path must leave a node from the port in which
it enters to the node.

Definition 2. Path & Multipath. In functional
attribute network F (VF , EF ), a path π = {(Ti1 , gj1),
(Ti2 , gj2), ..., (Tik

, gjk
)} is an ordered set of node-port

pairs such that (i) Tir
6= Tis

for 1 ≤ r < s ≤ k
(nodes are not repeated), (ii) gjr

∈ G(Tir
) for 1 ≤

r ≤ k, and (iii) gjr
gjr+1

∈ Tir
Tir+1

∈ EF for 1 ≤
r < k (consecutive edges are connected through the
same port). The length of π is |π| − 1 = k − 1. A
multipath Π = {Ti1 , Ti2 , ..., Tik

} is an ordered set of
nodes such that (i) Tir

6= Tis
for 1 ≤ r < s ≤

k, and (ii) there exist gjr
∈ Tir

for 1 ≤ r ≤ k,
such that {(Ti1 , gj1), (Ti2 , gj2), ..., (Tik

, gjk
)} is a path.

The occurrence set O(Π) of Π consists of all distinct
paths that satisfy (ii) and each such path is called an
occurrence of Π. The frequency of Π, φ(Π) = |O(Π)|, is
equal to the number of occurrences of Π.

In Figure 1(b), {(T1, g1), (T2, g3), (T4, g6)} is a path
but {(T1, g1), (T2, g4), (T4, g6)} is not, since multiedge
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Figure 1: (a) A sample gene regulatory network and the functional annotation of the genes in this network. Each
node represents a unique gene and is tagged by the set of functional attributes attached to that gene. Activator
interactions are shown by regular arrows, repressor interactions are shown by dashed arrows. (b) Functional
attribute network derived from the gene regulatory network in (a). In this multigraph, nodes (functional
attributes) are represented by squares and ports (genes) are represented by dark circles.

T1T2 does not contain the edge g1g4. While analyz-
ing regulatory pathways of functional attributes, how-
ever, we are interested in paths that are characterized
by nodes in the functional attribute network. Clearly,
such pathways may correspond to multiple paths in the
functional attribute network. Therefore, we model them
using multipaths. We use the terms pathway and multi-
path interchangeably, to emphasize the biological mean-
ing of a multipath. In Figure 1(b), {T1, T2, T3} (also
denoted T1 → T2 ⊣ T3 throughout this paper) is a mul-
tipath with frequency four. On the other hand, multi-
path T2 ⊣ T4 → T3 does not exist in this network, i.e.,
it has frequency zero, although multiedges T2 ⊣ T4 and
T4 → T3 both exist. A multipath with high frequency is
likely to be biologically interesting, since it corresponds
to a regulatory pathway of functional attributes that
recurs in various contexts in the underlying cellular or-
ganization. In order to quantify this biological signifi-
cance, it is useful to evaluate frequency from a statistical
perspective.

3 Statistical Model for Pathways of Functional

Attributes

We present a novel statistical model for assessing the
significance of the frequency of a multipath in a func-
tional attribute network. In this approach, the “inter-
estingness” of a pathway is associated with its modular-
ity, i.e., the significance of the coupling of its building
blocks. In statistical terms, this is achieved by condi-
tioning the distribution of the frequency (modeled as a
random variable) of a pathway on the frequency of its
subpaths (modeled as fixed parameters).

Significance of a regulatory interaction. To
quantify the significance of a pathway of shortest length
(i.e., a single regulatory interaction), we rely on a ref-
erence model that generates a functional attribute net-

work. This model takes into account (i) the degree dis-
tribution of the underlying gene network, as well as (ii)
the distribution of the number of genes associated with
each functional attribute. This model is defined by a
set of parameters that specifies the expected multide-
gree of each node in the functional attribute network.
Given gene regulatory network G(VG, VE), functional
attribute set VF , and annotation A(VG, VF ), the ex-
pected in-degree β(Ti) and out-degree δ(Ti) of a func-

tional attribute Ti ∈ VF are estimated as β̂i = β̂(Ti) =
∑

Tj∈VF
φ(TiTj) and δ̂i = δ̂(Ti) =

∑

Tj∈VF
φ(TjTi).

Given these parameters, we generate a functional at-
tribute network as follows: there is a pool of potential
edges that contains βiδj potential edges between each
pair of functional attributes Ti and Tj . The size of
the pool is given by m =

∑

Ti,Tj∈VF
βiδj . A total of

n edges are drawn from this pool, independently and
without replacement, where n is equal to the number
of edges in the observed functional attribute network,
i.e., n =

∑

i βi =
∑

j δj . In this model, the expected
values of multidegrees in the generated network mirror
the specifications.

Let Φ(Π) denote the random variable representing
the frequency of pathway Π in the generated functional
attribute network. Clearly, Φij = Φ(TiTj) is a hyperge-
ometric random variable with parameters m (number of
items), βiδj (number of good items), n (number of se-
lected items), and φij (number of selected good items).
Hence, the p-value of a regulatory interaction TiTj in
the observed network, i.e., the probability of observing
at least φij interactions between genes associated with
Ti and genes associated with Tj , is given by
(3.1)

pij = P (Φij ≥ φij |B) =

min{βiδj ,n}
∑

ℓ=φij

(

βiδj

ℓ

)(

m−βiδj

n−ℓ

)

(

m
n

) .



Significance of a pathway. We now present a
statistical model to assess the statistical significance of
a pathway of functional attributes, which assumes a
background distribution based on the occurrence of the
building blocks of a pathway. Let Πi,k denote the path
{Ti1 , Ti2 , ..., Tik

}. For 1 < j < k, we want to evaluate
the significance of the coupling between pathways Π1,j

and Πj,k. In other words, we want to understand how
strong a conclusion of the sort “If a gene gℓ ∈ G(Tij

)
is regulated through a chain of regulatory interactions
characterized by Π1,j , then this gene is likely to regulate
a Tik

gene through pathway Πj,k” (or vice versa) can be.
To achieve this, we assume a reference model,

in which the frequency of pathways Π1,j and Πj,k is
established a-priori. Let Φi−k and φi−k denote Φ(Πi,k)
and φ(Πi,k), respectively. Then, the p-value of the
coupling between Π1,j and Πj,k is defined as follows:

(3.2) p1,j,k = P (Φ1,k ≥ φ1,k|Φ1,j = φ1,j , Φj,k = φj,k).

Assume that a pool contains all possible occurrences
of multipaths {Ti1 , Ti2 ..., Tij

} and {Tij
, Ti2 ..., Tik

}.

Clearly, there are m1,j =
∏j

ℓ=1
φiℓ

and mj,k =
∏k

ℓ=j φiℓ

potential occurrences of each multipath. Now consider
a pair of paths, one corresponding to a potential occur-
rence of Π1,j , the other to Π1,k. Such a pair corresponds
to a path, i.e., an occurrence of Π1,k, only if the second
path originates in the port in which the first one ter-
minates. Since there are φ1,j and φj,k occurrences of
Π1,j and Πj,k, respectively, the problem is formulated
as follows: we draw φ1,j paths from m1,j potential oc-
currences of Π1,j and φj,k paths from mj,k potential
occurrences of Πj,k, forming φ1,jφj,k pairs. What is the
probability that in at least φ1,k of these pairs, the port
on Tj will be common?

We approximate this probability using our result
on the behavior of dense subgraphs [7] and Chvátal’s
bound on hypergeometric tail [3]. In order to apply
these results, we resolve dependencies assuming that the
selected path pairs are independent from each other.
Then, letting qj = 1/φj be the probability that a
given path pair will go through the same gene and
t1,j,k = φ1,k/φ1,jφj,k be the fraction of observed paths
among all existing pairs, we obtain the following bound:

(3.3) p1,j,k ≤ exp(φ1,jφj,kHqj
(t1,j,k)),

where Hq(t) = t log q
t
+(1− t) log 1−q

1−t
denotes weighted

entropy. This estimate is Bonferroni-corrected for
multiple testing, i.e., it is adjusted by a factor of
∏k

j=1
|
⋃

gℓ∈Tij
F(gℓ)|.

4 Experimental Results

Based on the above statistical model, we develop algo-
rithms and a comprehensive software tool, Narada, for

Table 1: Total number of significant pathways found
by Narada on E. coli transcription network for various
path lengths.

Pathway length 2 3 4 5
All significant
pathways 427 580 1401 942
Strongly significant
pathways 427 208 183 142
Short-circuiting
common terms 184 119 3 1

projecting gene regulatory networks on the functional
attribute domain. Narada is implemented in Java and
can be run as a web applet or an application. It is pub-
licly available at http://www.cs.purdue.edu/homes/

jpandey/narada/. A query in Narada specifies a GO
term and asks for all significantly overrepresented path-
ways of GO terms that originate from (or terminate
at) that term. Narada delivers near interactive query
response using a novel, biologically motivated pruning
technique. We call a pathway strongly significant if all
of its subpaths are significant. In biological terms, a
strongly significant pathway is likely to correspond to
a significantly modular process, in which not only the
building blocks of the pathway, but also the building
blocks of the building blocks are tightly coupled. In the
context of queries implemented in Narada, these sub-
paths are limited to those that originate from (terminate
at) the query term.

We test Narada comprehensively on the E. coli
transcriptional network obtained from RegulonDB [11].
The release 5.6. of this dataset contains 1364 genes
with 3159 regulatory interactions. 193 of these in-
teractions specify dual regulation. We separate these
dual regulatory interactions as up and down regula-
tory interactions. We use Gene Ontology [1] as a li-
brary of functional attributes. The annotation of E.
coli genes is obtained from UniProt GOA Proteome [2].
Using the mapping provided by GO, the gene network
is mapped to functional attribute networks of the three
name spaces in GO. Mapping to the biological process
space provides maximum coverage in number of genes
annotated, 881 genes mapped to one or more of 318
process terms. We collect all significant paths, using an
α-value of 0.01 and varying path lengths from 2 to 5.
The number of pathways obtained using combinations
are shown in Table 1. On a Pentium M (1.6GHz) lap-
top with 1.21GB RAM the brute-force approach took on
average 0.5 seconds per query for path length 2, to 12
seconds per query for paths of length 5. For strongly sig-
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Figure 2: Pathways in gene network corresponding to (a) transcription −| flagellum biogenesis → cell motility (b)
DNA recombination → transcription → phosphorylation (c) molybdate ion transport → nitrate assimilation −|
cytochrome complex assembly. The pathways in functional attribute space are shown on the upper panel, their
occurrences in the gene network are shown on the lower panel.

nificant paths, it took less than 2 seconds per query for
paths of length 5, while for shortcutting terms it was 8
seconds per query for paths of length 4. Strongly signif-
icant pathways, i.e., those obtained by extending only
significant pathways, compose a significant portion of
the highly significant pathways. This observation sug-
gests that significantly modular pathways are also likely
to be composed of significantly modular building blocks.

In Figure 2(a), significant pathways that regulate
cell motility are shown. The flhD operon that encodes
flhC and flhD has been shown to act as positive reg-
ulator of flagellar regulons(fli, flg) [10]. The flagellar
master operon flhDC, in turn, is tightly regulated at the
transcriptional level [6, 9, 4]. The output of Narada

captures this indirect regulation of flagellar expression
perfectly. Parts of the significant pathways that regu-
late phosphorylation via genes involved in transcription
and DNA recombination are shown in Figure 2(b). In
Figure 2(c), indirect regulation of cytochrome complex
assembly by molybdate ion transport is shown.

5 Conclusion

In this paper, we introduce the notion of statistically
significant regulatory pathways of functional attributes.
We provide a formal framework for projecting regula-

tory networks from gene space to functional attribute
space. We propose a statistical model for functional
attribute networks that emphasizes the modularity of
pathways by conditioning on its building blocks. We
present a comprehensive software tool, Narada, which
is based on the proposed models and methods. Finally,
we present results obtained by testing Narada on the
E. coli transcription network.
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