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Abstract. Computational and comparative analysis of protein-protein interac-
tion (PPI) networks enable understanding of the modular organization of the cell
through identification of functional modules and protein complexes. These analy-
sis techniques generally rely on topological features such as connectedness, based
on the premise that functionally related proteins are likely to interact densely and
that these interactions follow similar evolutionary trajectories. Significant recent
work in our lab, and in other labs has focused on efficient algorithms for identifi-
cation of modules and their conservation. Application of these methods to a vari-
ety of networks has yielded novel biological insights. In spite of algorithmic ad-
vances, development of a comprehensive infrastructure for interaction databases
is in relative infancy compared to corresponding sequence analysis tools such as
BLAST and CLUSTAL. One critical component of this infrastructure is a mea-
sure of the statistical significance of a match or a dense subcomponent. Cor-
responding sequence-based measures such as E-values are key components of
sequence matching tools. In the absence of an analytical measure, conventional
methods rely on computer simulations based on ad-hoc models for quantifying
significance. This paper presents the first such effort, to the best of our knowledge,
aimed at analytically quantifying statistical significance of dense components and
matches in reference model graphs. We consider two reference graph models –
a G(n, p) model in which each pair of nodes has an identical likelihood, p, of
sharing an edge, and a two-level G(n, p) model, which accounts for high-degree
hub nodes generally occurring in PPI networks. We argue that by choosing con-
servatively the value of p, the G(n, p) model will dominate that of the power-law
graph that is often used to model PPI networks. We also propose a method for
evaluating statistical significance based on the results derived from this analysis,
and demonstrate the use of these measures for assessing significant structures in
PPI networks. Experiments performed on a rich collection of PPI networks show
that the proposed model provides a reliable means of evaluating statistical signif-
icance of dense patterns in these networks.

1 Introduction

Availability of high-throughput methods for identifying protein-protein interactions has
resulted in a new generation of extremely valuable data [2, 37]. Effective analysis of
the interactome holds the key to functional characterization, phenotypic mapping, and
identification of pharmacological targets, among other important tasks. Computational
infrastructure for supporting analysis of the interactome is in relative infancy, compared
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to its sequence counterparts [35]. A large body of work on computational analysis of
these graphs has focused on identification of dense components (proteins that densely
interact with each other) [3, 6, 19, 20, 23, 27]. These methods are based on the premise
that functionally related proteins generally manifest themselves as dense components in
the network [32]. The hypothesis that proteins performing together a particular cellular
function are expected to be conserved across several species along with their interac-
tions is also used to guide the process of identifying conserved networks across species.
Based on this observation, PPI network alignment methods superpose PPI networks
that belong to different species and search for connected, dense, or heavy subgraphs on
these superposed graphs [11, 15–17, 25, 26].

There are two critical aspects of identifying meaningful structures in data – the al-
gorithm for the identification and a method for scoring an identified pattern. In this
context, the score of a pattern corresponds to its significance. A score is generally com-
puted with respect to a reference model – i.e., given a pattern and a reference model,
how likely it is to observe the pattern in the reference model that often is a probabilis-
tic measure for scoring patterns. The less likely such an occurrence is in the reference
model, the more interesting it is, since it represents a significant deviation from the ref-
erence (expected) behavior. One such score, in the context of sequences is the E-value
returned by BLAST matches [36]. This score broadly corresponds to the likelihood that
a match between two sequences is generated by a random process. The lower this value,
the more meaningful the match. It is very common in a variety of applications to use a
threshold on E-values to identify homologies across sequences. It is reasonable to credit
E-value as one of the key ingredients of the success of sequence matching algorithms
and software.

While significant progress has been made towards developing algorithms on graphs
for identifying patterns (motifs, dense components), conservation, alignment, and re-
lated problems, analytical methods for quantifying the significance of such patterns are
limited. In a related effort, Itzkovitz et al. [12] analyze the expected number of occur-
rences of certain topological motifs in a variety of random networks. On the other hand,
existing algorithms for detecting generalized patterns generally adopt simple ad-hoc
measures (such as frequency or relative density) [3, 15], compute z-scores for the ob-
served pattern based on simplifying assumptions [16, 25, 26], or rely on Monte-Carlo
simulations [25] to assess the significance of identified patterns. This paper represents
the first such effort at analytically quantifying the statistical significance of the exis-
tence of a pattern of observed property, with respect to a reference model. Specifically,
it presents a framework for analyzing the occurrence of dense patterns in randomly
generated graph-structured data (based on the underlying model) with a view to assess-
ing the significance of a pattern based on the statistical relationship between subgraph
density and size.

The selection of an appropriate reference model for data and the method of scoring
a pattern or match, are important aspects of quantifying statistical significance. Using a
reference model that fits the data very closely makes it more likely that an experimen-
tally observed biologically significant pattern is generated by a random process drawing
data from this model. Conversely, a reference model that is sufficiently distinct from ob-
served data is likely to tag most patterns as being significant. Clearly, neither extreme
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is desirable for good coverage and accuracy. In this paper, we consider two reference
models (i) a G(n, p) model of a graph with n nodes, where each pair of nodes has an
identical probability, p, of sharing an edge, and (ii) a two level G(n, p) model in which
the graph is modeled as two separate G(n, p) graphs with intervening edges. The latter
model captures the heavy nodes corresponding to hub proteins. For these models, we
analytically quantify the behavior of the largest dense subgraph and use this to derive a
measure of significance. We show that a simple G(n, p) model can be used to assess the
significance of dense patterns in graphs with arbitrary degree distribution, with a con-
servative adjustment of parameters so that the model stochastically dominates a graph
generated according to a given distribution. In particular, by choosing p to be maximal
we assure that the largest dense subgraph in our G(n, p) model stochastically domi-
nates that of a power-law graph. Our two-level G(n, p) model is devised to mirror key
properties of the underlying topology of PPI graphs, and consequently yields a more
conservative estimate of significance. Finally, we show how existing graph clustering
algorithms [10] can be modified to incorporate statistical significance in identification
of dense patterns. We also generalize these results and methods to the comparative anal-
ysis of PPI networks and show how the significance of a match between two networks
can be quantified in terms of the significance of the corresponding dense component in
a suitable specified product graph.

Our analytical results are supported by extensive experimental results on a large col-
lection of PPI networks derived from BIND [2] and DIP [37]. These results demonstrate
that the proposed model and subsequent analysis provide reliable means for evaluating
the statistical significance of highly connected and conserved patterns in PPI networks.
The framework proposed here can also be extended to include more general networks
that capture the degree distribution of PPI networks more accurately, namely power-
law [34, 38], geometric [21], or exponential [8] degree distributions.

The rest of this manuscript is organized as follows: In the next section, we first
discuss graph models for PPI networks. We then analyze the behavior of the largest
dense subgraph and derive measures for assessing statistical significance of highly con-
nected as well as highly conserved subgraphs in PPI networks. We present and discuss
experimental results in Section 3. We present proofs of important analytical results in
Section 4 and conclude our discussion in Section 5.

2 Probabilistic Analysis of Dense Subgraphs

Since proteins that are part of a functional module are likely to densely interact with
each other while being somewhat isolated from the rest of the network [32], many
commonly used methods focus on discovering dense regions of the network for iden-
tification of functional modules or protein complexes [3, 6, 19, 23, 27]. Subgraph den-
sity is also central for many algorithms that target identification of conserved modules
and complexes [11, 16, 25]. In order to assess the statistical significance of such dense
patterns, we analyze the distribution of the largest “dense” subgraph generated by an
underlying reference model. Using this distribution, we estimate the probability that
an experimentally observed pattern will occur in the network by chance. The reference
model must mirror the basic characteristics of experimentally observed networks in or-
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der to capture the underlying biological process correctly, while being simple enough
to facilitate feasible theoretical and computational analysis.

2.1 Modeling PPI Networks

With the increasing availability of high-throughput interaction data, there has been sig-
nificant effort on modeling PPI networks. The key observation on these networks is that
a few central proteins interact with many proteins, while most proteins in the network
have few interacting partners [13, 22]. A commonly accepted model that confirms this
observation is based on power-law degree distribution [4, 33, 34, 38]. In this model, the
number of nodes in the network that have d neighbors is proportional to d−γ , where γ
is a network-specific parameter. It has also been shown that there exist networks that do
not possess a power-law degree distribution [9, 31]. In this respect, alternative models
that are based on geometric [21] or exponential [8] degree distribution have been also
proposed.

While assessing the statistical significance of identified patterns, existing methods
that target identification of highly connected or conserved patterns in PPI networks
generally rely on the assumption that the interactions in the network are independent
of each other [14, 16, 25]. Since degree distribution is critical for generation of inter-
esting patterns, these methods estimate the probability of each interaction based on
the degree distribution of the underlying network. These probabilities can be estimated
computationally by generating many random graphs with the same degree distribution
via repeated edge swaps and counting the occurrence of each edge in this large collec-
tion of random graphs [25]. Alternately, they can be estimated analytically, by relying
on a simple random graph model that is based on a given degree distribution [7]. In
this model, each node u ∈ V (G) of graph G = (V, E) is associated with expected
degree du and the probability of existence of an edge between u and v is defined as
P (uv ∈ E(G)) = dudv/

∑

u∈V (G) d(u). In order for this function to be a well-defined
probability measure for simple graphs, we must have d2

max ≤ ∑

u∈V (G) d(u), where
dmax = maxu∈V (G) du. However, available protein interaction data generally does
not confirm this assumption. For example, based on the PPI networks we derive from
BIND [2] and DIP [37] databases, yeast Jsn1 protein has 298 interacting partners, while
the total number of interactions in the S. cerevisiae PPI network is 18193. Such prob-
lems complicate the analysis of the significance of certain structures for models that are
based on arbitrary degree distribution.

While models that assume power-law [34, 38], geometric [21], or exponential [8]
degree distributions may capture the topological characteristics of PPI networks accu-
rately, they require more involved analysis and may also require extensive computation
for assessment of significance. To the best of our knowledge, the distribution of dense
subgraphs, even maximum clique, which forms a special case of this problem, has not
been studied for power-law graphs. In this paper, we first build a framework on the
simple and well-studied G(n, p) model and attempt to generalize our results to more
complicated models that assume heterogeneous degree distribution.
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2.2 Largest dense subgraph

Given graph G, let F (U) ⊆ E(G) be the set of edges in the subgraph induced by node
subset U ⊆ V (G). The density of this subgraph is defined as δ(U) = |F (U)|/|U |2.
Note here that we assume directed edges and allow self-loops for simplicity. PPI net-
works are undirected graphs and they contain self-loops in general, but any undirected
network can be easily modeled by a directed graph and this does not affect the asymp-
totic correctness of the results. We define a ρ-dense subgraph to be one with density
larger than pre-defined threshold ρ, i.e., U induces a ρ-dense subgraph if F (U) ≥
ρ|U |2, where ρ > p. For any ρ, we are interested in the number of nodes in the largest
ρ-dense subgraph. This is because any ρ-dense subgraph in the observed PPI network
with size larger than this value will be “unusual”, i.e., statistically significant. Note that
maximum clique is a special case of this problem with ρ = 1.

We first analyze the behavior of the largest dense subgraph for the G(n, p) model
of random graphs. We subsequently generalize these results to the piecewise degree
distribution model in which there are two different probabilities of generating edges.
In the G(n, p) model, a graph G contains n nodes and each edge occurs independently
with probability p.

Let random variable Rρ be the size of the maximum subset of vertices that induce a
ρ-dense subgraph, i.e.,

Rρ = max
U⊆V (G):δ(U)≥ρ

|U |. (1)

The behavior of R1, which corresponds to maximum clique, is well studied on
G(n, p) model and its typical value is shown to be O(log1/p n) [5]. In the following
theorem, we present a general result for the typical value of Rρ for any ρ.

Theorem 1. If G is a random graph with n vertices, where every edge exists with prob-
ability p, then

lim
n→∞

Rρ

log n
=

1

κ(p, ρ)
(pr.), (2)

where

κ(p, ρ) = −Hp(ρ) = ρ log
ρ

p
+ (1 − ρ) log

1 − ρ

1− p
. (3)

Here, Hp(ρ) denotes weighted entropy. More precisely,

P (Rρ ≥ r0) ≤ O

(

log n

n1/κ(p,ρ)

)

, (4)

where

r0 =
log n − log log n + log κ(p, ρ) − log e + 1

κ(p, ρ)
(5)

for large n.

The proof of this theorem is presented in Section 4. Observe that, if n is large enough,
the probability that a dense subgraph of size r0 exists in the subgraph is very small.
Consequently, r0 may provide a threshold for deciding whether an observed dense pat-
tern is statistically significant or not.
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For a graph of arbitrary distribution, let dmax denote the maximum expected degree
as defined in Section 2.1. Let pmax = dmax/n. It can be easily shown that the largest
dense subgraph in the G(n, p) graph with p = pmax stochastically dominates that in
the random graph generated according to the given degree distribution (e.g., power-law
graphs). Hence, by estimating the edge probability conservatively, we can use the above
result to determine whether a dense subgraph identified in a PPI network of arbitrary
degree distribution is statistically significant. Moreover, the above result also provides
a means for quantifying the significance of an observed dense subgraph. For a subgraph
with size r̂ > r0 and density ρ̂, let ε = r̂−log n/κ(ρ̂,p)

log n/κ(ρ̂,p) . Then, as we show (cf. (12)) in the
proof of Theorem 1 in Section 4, the probability of observing this subgraph in a graph
generated according to the reference model is bounded by

P (Rρ̂ ≥ (1 + ε) log n/κ(ρ̂, p)) ≤
√

1 − ρ

2π
√

ρ

(1 + ε) log n

nε(1+ε) log n/κ(ρ̂,p)
. (6)

While these results on G(n, p) model provide a simple yet effective way of assess-
ing statistical significance of dense subgraphs, we extend our analysis to a more com-
plicated model, which takes into account the degree distribution to capture the topology
of the PPI networks more accurately.

2.3 Piecewise degree distribution model

In the piecewise degree distribution model, nodes of the graph are divided into two
classes, namely high-degree and low-degree nodes. More precisely, we define random
graph G with node set V (G) that is composed of two disjoint subsets Vh ⊂ V (G) and
Vl = V (G) \ Vh, where nh = |Vh| � |Vl| = nl and nh + nl = n = |V (G)|. In the
reference graph, the probability of an edge is defined based on the classes of its incident
nodes as:

P (uv ∈ E(G)) =







ph if u, v ∈ Vh

pl if u, v ∈ Vl

pb if u ∈ Vh, v ∈ Vl or u ∈ Vl, v ∈ Vh

(7)

Here, pl < pb < ph. This model captures the key lethality and centrality properties
of PPI networks in the sense that a few nodes are highly connected while most nodes
in the network have low degree [13, 22]. Observe that, under this model, G can be
viewed as a superposition of three random graphs Gl, Gh, and Gb. Here, Gh and Gl

are G(n, p) graphs with parameters (nh, ph) and (nl, pl), respectively. Gb, on the other
hand, is a random bipartite graph with node sets Vl, Vh, where each edge occurs with
probability pb. Hence, we have E(G) = E(Gl)∪E(Gh)∪E(Gb). This facilitates direct
employment of the results in the previous section for analyzing graphs with piecewise
degree distribution.

Note that the random graph model described above can be generalized to an arbi-
trary number of node classes to capture the underlying degree distribution more accu-
rately. Indeed, with appropriate adjustment of some parameters, this model will approx-
imate power-law or exponential degree distribution at the limit with increasing number
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of node classes. In order to get a better fit, we need to introduce three or four classes in
our piecewise model.

We now show that the high-degree nodes in the piecewise degree distribution model
contribute a constant factor to the typical size of the largest dense subgraph as long as
nh is bounded by a constant.

Theorem 2. Let G be a random graph with piecewise degree distribution, as defined
by (7). If nh = O(1), then

P (Rρ ≥ r1) ≤ O

(

log n

n1/κ(pl,ρ)

)

, (8)

where

r1 =
log n − log log n + 2nh log B + log κ(pl, ρ) − log e + 1

κ(pl, ρ)
(9)

and B = pbql

pl
+ qb, where qb = 1 − pb and ql = 1 − pl.

Note that the above result is based on asymptotic behavior of r1, hence the log n
term dominates as n → ∞. However, if n is not large enough, the 2nh log B term may
cause over-estimation of the critical value of the largest dense subgraph. Therefore, the
application of this theorem is limited for smaller n and the choice of nh is critical.

A heuristic approach for estimating nh is as follows. Assume that the underlying
graph is generated by a power-law degree distribution, where the number of nodes with
degree d is given by nd−γ/ζ(γ) [1]. Here, ζ(.) denotes the Riemann zeta-function. If
we divide the nodes of this graph into two classes where high-degree nodes are those
with degree d ≥ (n/ζ(γ))1/γ so that the expected number of nodes with degree d is at
most one, then nh =

∑∞
d=(n/ζ(γ))1/γ nd−γ/ζ(γ) is bounded, provided the above series

converges.

2.4 Identifying significant dense subgraphs

We use the above results to modify an existing state-of-the-art graph clustering algo-
rithm, HCS [10], in order to incorporate statistical significance in identification of inter-
esting dense subgraphs. HCS is a recursive algorithm that is based on decomposing the
graph into dense subgraphs by repeated application of min-cut partitioning. The density
of any subgraph found in this recursive decomposition is compared with a pre-defined
density threshold. If the subgraph is dense enough, it is reported as a highly-connected
cluster of nodes, else it is partitioned again. While this algorithm provides a strong
heuristic that is well suited to the identification of densely interacting proteins in PPI
networks [20], the selection of density threshold poses an important problem. In other
words, it is hard to provide a biologically justifiable answer to the question “How dense
must a subnetwork of a PPI network be to be considered biologically interesting?”. Our
framework provides an answer to this question from a statistical point of view by estab-
lishing the relationship between subgraph size and density as a stopping criterion for
the algorithm.

For any subgraph encountered during the course of the algorithm, we estimate the
critical size of the subgraph to be considered interesting by plugging in its density in
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(5) or (9). If the size of the subgraph is larger than this probabilistic upper-bound, then
we report the subgraph as being statistically significant. Otherwise, we continue parti-
tioning the graph. Note that this algorithm only identifies disjoint subgraphs, but can be
easily extended to obtain overlapping dense subgraphs by greedily growing the result-
ing graphs until significance is lost.

2.5 Conservation of dense subgraphs

Comparative methods that target identification of conserved subnets in PPI networks
induce a cross-product or superposition of several networks in which each node cor-
responds to a group of orthologous proteins [14, 16, 17, 25, 26]. Here, we rely on or-
tholog groups available in the COG database [30] to relate proteins in different PPI net-
works [17]. Labeling each node in the PPI network with the COG family of the protein
it represents, we obtain an intersection of two PPI networks by putting an edge between
two COG families only if proteins that belong to these families interact in both graphs.
In the case of the G(n, p) model, the above framework directly applies to the identifica-
tion of dense subgraphs in this intersection graph, where the probability of observing a
conserved interaction is estimated as pI = p1p2. Here p1 and p2 denote the probability
of observing an edge in the first and second networks, respectively. For the piecewise
degree distribution model, on the other hand, we have to assume that the orthologs of
high-degree nodes in one graph are high-degree nodes in the other graph as well. If this
assumption is removed, it can still be shown that the low-degree nodes dominate the
typical behavior of the largest conserved subgraph. Note that the reference model here
assumes that the orthology relationship between proteins in the two networks is already
established and estimates the conditional probability that the interactions between these
given ortholog proteins are densely conserved.

3 Results and Discussion

In this section, we experimentally analyze connectivity and conservation in PPI net-
works of 11 species gathered from BIND [2] and DIP [37] databases. These networks
vary significantly in size and comprehensiveness and cover a broad range of organisms.
Relatively large amounts of interaction data is available for S.cerevisiae (18192 interac-
tions between 5157 proteins), D. melanogaster (28829 among 8577), H. sapiens (7393
among 4541), C. elegans (5988 among 3345), E. coli (1329 among 1079), while the
networks for other organisms are restricted to a small portion of their proteins.

In Figure 1, we inspect the behavior of largest subgraph with respect to number of
nodes in the PPI network for two different values of density threshold (ρ). In the figure,
each organism corresponds to a sample point, which is marked with the initials of its
name. Since the sparsity and degree distribution of these networks vary significantly
across different organisms, the estimated values of edge probabilities vary accordingly.
Hence, the curves for r0 (G(n, p) model) and r1 (piecewise degree distribution model)
do not show a linear behavior. As seen in the figure, piecewise degree distribution model
provides a more conservative assessment of significance. This is mainly because of the
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Fig. 1. The behavior of the size of largest dense subgraph with respect to number of proteins in
the network where a subgraph is considered dense if ρ = 0.5 and ρ = 1.0 (clique), respectively.
Each sample point corresponds to the PPI network of a particular species, as marked by the initials
of its name. The typical values of largest dense subgraph size based on G(n, p) and piecewise
degree distribution models are also shown.

constant factor in the critical value of r1. The observed size of the largest dense sub-
graph in smaller networks is not statistically significant, while larger and more compre-
hensive networks contain subgraphs that are twice as large as the theoretical estimate,
with the exception of D. melanogaster PPI network. The lack of dense subnets in the
D. melanogaster network may be due to differences in experimental techniques (e.g.,
two hybrid vs AP/MS) and/or the incorporation of identified interactions in the interac-
tion network model (e.g., spoke vs matrix) [24]. In order to avoid problems associated
with such variability, it may be necessary to revise the definition of subgraph density
or preprocess the PPI networks to standardize the topological representation of protein
complexes in the network model.

The behavior of largest dense subgraph size with respect to density threshold is
shown in Figure 2 for S. Cerevisiae and H. Sapiens PPI networks and their intersection.
It is evident from the figure that the observed size of the largest dense subgraph follows
a similar trajectory with the theoretical values estimated by both models. Moreover, in
both networks, the largest dense subgraph turns out to be significant for a wide range of
density thresholds. For lower values of ρ, the observed subgraphs are either not signifi-
cant or they are marginally significant. This is a desirable characteristic of significance-
based analysis since identification of very large sparse subgraphs should be avoided
while searching for dense patterns in PPI networks. Observing that the G(n, p) model
becomes more conservative than the piecewise degree distribution model for lower val-
ues of ρ, we conclude that this model may facilitate fine-grain analysis of modularity in
PPI networks.

We implement the modified HCS heuristic described in Section 2.4 using a sim-
ple min-cut algorithm [28]. A selection of most significant dense subgraphs discovered
on S. cerevisiae PPI network are shown in Table 1. In the table, as well as the size,
density and significance of identified subgraphs, we list the GO annotations that are
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Fig. 2. Behavior of the size of the largest dense subgraph and largest conserved dense subgraph
with respect to density threshold (ρ) for S. cerevisiae and H. sapiens PPI networks. Typical values
of largest dense subgraph size based on G(n, p) and piecewise degree distribution models are also
shown.

significantly shared by most of the proteins in the dense subgraph. The GO annotations
may refer to function [F], process [P], or component [C]. The p-value for the annota-
tions is estimated as the probability of observing at least the same number of proteins
with the corresponding annotation if the proteins were selected uniformly at random.
This probability is upper-bounded using Chernoff’s bound for the binomial tail; namely
P (Sr,p̂ ≥ k) ≤ exp{rHp̂(k/r)}, where r denotes the number of proteins in the sub-
graph, k denotes the number of proteins among these with the particular annotation,
and p̂ is the estimated probability that a random protein will carry this annotation [5].

For most of the significant dense subgraphs, most of the proteins that induce the
subgraph are involved in the same cellular process. As an extreme case, the algorithm
also identifies proteins that share a common function or that are part of a particular
complex. For example, the dense subgraph of 7 proteins in the last row corresponds to
the mitochondrial outer membrane translocase (TOM) complex, which mediates recog-
nition, unfolding, and translocation of preproteins [18]. On the other hand, some dense
subgraphs correspond to proteins that are involved in a range of processes but localize in
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Table 1. Seven most significant dense subgraphs identified in S. cerevisiae PPI network by the
modified HCS algorithm and the corresponding functions, processes, and compartments with
significant enrichment according to the GO annotation of the proteins in the subnet.

# Prot # Int p < GO Annotation

24 165 10−175 [C] nucleolus (54%, p < 10−7)
20 138 10−187 [P] ubiquitin-dependent protein catabolism (80%, p < 10−21)

[F] endopeptidase activity (50%, p < 10−11)
[C] proteasome regulatory particle, lid subcomplex (40%, p < 10−12)

16 104 10−174 [P] histone acetylation (62%, p < 10−15)
[C] SAGA complex (56%, p < 10−15)
[P] chromatin modification (56%, p < 10−14)

15 90 10−145 [F] RNA binding (80%, p < 10−12)
[C] mRNA cleavage & polyadenylation spec fac comp (80%, p < 10−24)
[P] mRNA polyadenylylation (80%, p < 10−21)

14 79 10−128 [P] mRNA catabolism (71%, p < 10−16)
[F] RNA binding (64%, p < 10−6)
[P] nuclear mRNA splicing, via spliceosome (57%, p < 10−7)

10 45 10−200 [P] ER to Golgi transport (90%, p < 10−14)
[C] TRAPP complex (90%, p < 10−23)

7 20 10−30 [C] mitochondrial outer memb transloc comp (100%, p < 10−20)
[F] protein transporter activity (100%, p < 10−14)
[P] mitochondrial matrix protein import (100%, p < 10−16)

the same cellular component, such as the largest dense subgraph identified by modified
HCS, which contains 24 proteins.

The significant dense subgraphs that are conserved in S. cerevisiae and H. sapi-
ens PPI networks are shown in Table 2. Most of these dense components are involved
in fundamental processes and the proteins that are part of these components share a
particular function. Among these, the 7-protein conserved subnet that consists of 6 Ex-
osomal 3’-5’ exoribonuclease complex subunits and Succinate dehydrogenase is inter-
esting. As in the case of dense subgraphs in a single network, the conserved dense
subgraphs provide an insight on the crosstalk between proteins that perform different
functions. For example, the largest conserved subnet of 11 proteins contains Mismatch
repair proteins, Replication factor C subunits, and RNA polymerase II transcription ini-
tiation/nucleotide excision repair factor TFIIH subunits, which are all involved in DNA
repair. The conserved subnets identified by the modified HCS algorithm are small and
appear to be partial, since we employ a strict understanding of conserved interaction
here. In particular, limiting the ortholog assignments to proteins that have a COG as-
signment and considering only matching direct interactions as conserved interactions
limits the ability of the algorithm to identify a comprehensive set of conserved dense
graphs. Algorithms that rely on sequence alignment scores and consider indirect or
probable interactions [17, 25, 26] coupled with adaptation of the statistical framework
in this paper have the potential of increasing the coverage of identified patterns, while
correctly evaluating the interestingness of observed patterns.
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Table 2. Seven most significant conserved dense subgraphs identified in S. cerevisiae and H.
sapiens PPI networks by the modified HCS algorithm and their functional enrichment according
to COG functional annotations.

# # Cons
Prot Int p < COG Annotation

10 17 10−68 RNA polymerase (100%)
11 11 10−26 Mismatch repair (33%)

RNA polymerase II TI/nucleotide excision repair factor TFIIH (33%)
Replication factor C (22%),

7 7 10−25 Exosomal 3’-5’ exoribonuclease complex (86%)
4 4 10−24 Single-stranded DNA-binding replication protein A (50%)

DNA repair protein (50%)
5 4 10−12 Small nuclear ribonucleoprotein(80%)

snRNP component (20%)
5 4 10−12 Histone (40%)

Histone transcription regulator (20%)
Histone chaperone (20%)

3 3 10−9 Vacuolar sorting protein (33%)
RNA polymerase II transcription factor complex subunit (33%)
Uncharacterized conserved protein (33%)

4 Proof of Theorems

In this section we prove Theorems 1 and 2.

Proof. 1 We first prove the upper-bound. Let Xr,ρ denote the number of subgraphs of
size r with density at least ρ, i.e., Xr,ρ = |{U ⊆ V (G) : |U | = r ∧ |F (U)| ≥ ρr2}|.
From first moment method, we obtain P (Rρ ≥ r) ≤ P (Xr,ρ ≥ 1) ≤ E[Xr,ρ].

Let Yr denote the number of edges induced by r vertices. Then, E[Xr] =
(

n
r

)

P (Yr ≥
ρr2). Moreover, since Yr is a Binomial r.v. B(r2, p) and ρ > p, we have

P (Yr ≥ ρr2) ≤ (r2−ρr2)P (Yr = ρr2) ≤
(

r2

ρr2

)

(r2−ρr2)pρr2

(1−p)r2−ρr2

. (10)

Hence, we get P (Rρ ≥ r) ≤
(

n
r

)(

r2

ρr2

)

(r2 − ρr2)pρr2

(1 − p)r2−ρr2

.

Using Stirling’s formula, we find the following asymptotics for
(

n
r

)

:

(

n

r

)

∼
{

1√
2πr

nr

rr e−r if r = o(
√

n)
1√

2πα(1−α)n
2nH(α) if r = αn (11)

where H(α) = −α log α − (1 − α) log(1 − α) denotes the binary entropy.
Let Q = 1/pρ(1 − p)1−ρ. Plugging the above asymptotics into (4), we obtain

P (Rρ ≥ r) ≤ r
√

1 − ρ

2π
√

ρ
exp2(−r2 log Q+r log n−r log r+r2H(ρ)−r log e}) (12)
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Defining κ(p, ρ) = log Q − H(ρ), we find P (Rρ ≥ r0) ≤ r0
√

1−ρ
2π

√
ρ exp2(f(r0)),

where f(r0) = −r0(r0κ(p, ρ) − log n + log r + log e). Plugging in (5) and working

out the algebra, we obtain f(r0) = −r0

(

1 − O
(

log log n
log n

))

. Hence, P (Rρ ≥ r0) ≤

O (2−r0) = O
(

log n
n1/κ(p,ρ)

)

. This completes the proof for the upper-bound.

The lower-bound is not of a particular interest in terms of statistical significance, but
we provide a sketch of the proof for completeness. By the second moment method [29],
we have

P (Rρ < r) ≤ P (Xr,ρ = 0) ≤ Var[Xr,ρ]

E[Xr,ρ]2
=

1

E[Xr,ρ]
+

∑

Ur 6=Vr
Cov[XUr

ρ , XVr
ρ ]

E[Xr,ρ]2
,

where XUr
ρ is the indicator r.v. for the subgraph induced by the vertex set Ur being

ρ-dense. Letting r = (1 − ε) log n/κ(ρ), we observe that 1
E[Xr,ρ] → 0 as n → ∞. We

split the sum
∑

Ur ,Vr
Cov[XUr

ρ , XVr
ρ ] = g(r)+h(r), where g(r) spans the set of node

subsets Ur, Vr with intersection of cardinality at most O(ρr2). Observe that when Ur

overlaps with Vr on l vertices, then for m = ρr2

Cov[XUr
ρ , XVr

ρ ] =

min{l2,m}
∑

k=max{0,l2−r2+m}

(

l2

k

)

pkql2−k

[(

r2 − l2

m − k

)

pm−kqr2−l2−(m−k)

]2

.

Routine and crude calculations show that g(r) ≤ E[Xr,ρ], while h(r) ≤ α(r)E[Xr,ρ]2

where α((1 − ε) logn/κ(ρ)) → 0 as n → ∞, which completes the proof.

Proof. 2 Let Xh
r,ρ, X l

r,ρ be the number of ρ-dense subgraphs induced by only nodes in
Gh or Gl, respectively. Let Xb

r,ρ be the number of those induced by nodes from both
sets. Clearly, Xr,ρ = Xh

r,ρ + X l
r,ρ + Xb

r,ρ. The analysis for G(n, p) directly applies
for E[Xh

r,ρ] and E[X l
r,ρ], hence we emphasize on E[Xb

r,ρ]. Since nh = O(1), we have

E[Xb
r,ρ] ≤ (1−ρ)r2

∑nh

k=0

(

nh

k

)(

nl

r−k

)
∑2k(r−k)

l=0

(

2k(r−k)
l

)((r−k)2

ρr2−l

)

pl
bq

2k(r−k)−l
b pρr2−l

l

q
(r−k)2−ρr2+l
l ,where qb = 1 − pb and ql = 1− pl. Then,

E[Xb
r,ρ] ≤ c(1 − ρ)r2nh

(

nl

r

) 2nhr
∑

l=0

(

2nhr

l

)(

r2

ρr2 − l

)

pl
bq

2nhr−l
b pρr2−l

l qr2−ρr2+l
l ,

where c is a constant. Since l = o(ρr2), we have
(

r2

ρr2−l

)

≤
(

r2

ρr2

)

for 0 ≤ l ≤ 2nhr.
Therefore,

E[Xb
r,ρ] ≤ (1 − ρ)r2

(

n

r

)(

r2

ρr2

)

pρr2

l qr2−ρr2

l

2nhr
∑

l=0

(

2nhr

l

) (

pbql

pl

)l

q2nhr−l
b .

Using B = pbql

pl
+ qb as defined in Theorem 2, we find P (Rρ > r) ≤ O(2f1(r)),

where f1(r) = −r(rκ(ρ) − log n + log r − log e + 2nh log B).Hence, P (Rρ > r1) ≤
O(2f1(r1)) ≤ O

(

log n

n1/κ(pl,ρ)

)

for large n.
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5 Conclusion

In this paper, we attempt on analytically assessing statistical significance of connectiv-
ity and conservation in PPI networks. Specifically, we emphasize on the notion of dense
subgraphs, which is one of the most well-studied pattern structures in extracting biolog-
ically novel information from PPI networks. While the analysis based on the G(n, p)
model and its extension provides a reasonable means of assessing significance, models
that mirror the topological characteristics of PPI networks should also be analyzed. This
paper provides a stepping stone for the analysis of such complicated models.
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