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ABSTRACT
Test case prioritization for regression testing can be per-
formed using different metrics (e.g., statement coverage,
path coverage) depending on the application context. Em-
ploying different metrics requires different prioritization
schemes (e.g., maximum coverage, dissimilar paths covered).
This results in significant algorithmic and implementation
complexity in the testing process associated with various
metrics and prioritization schemes. In this paper, we present
a novel approach to the test case prioritization problem that
addresses this limitation. We devise a framework, Phalanx,
that identifies two distinct aspects of the problem. The first
relates to metrics that define ordering relations among test
cases; the second defines mechanisms that implement these
metrics on test suites. We abstract the information into a
test-case dissimilarity graph – a weighted graph in which
nodes specify test cases and weighted edges specify user-
defined proximity measures between test cases. We argue
that a declustered linearization of nodes in the graph re-
sults in a desirable prioritization of test cases, since it en-
sures that dissimilar test cases are applied first. We explore
two mechanisms for declustering the test case dissimilarity
graph – Fiedler (spectral) ordering and a greedy approach.
We implement these orderings in Phalanx, a highly flexible
and customizable testbed, and demonstrate excellent perfor-
mance for test-case prioritization. Our experiments on test
suites available from the Subject Infrastructure Repository
(SIR) show that a variety of user-defined metrics can be
easily incorporated in Phalanx.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging
— Testing tools; D.2.5 [Software Engineering]: Testing
and Debugging — Tracing; D.2.9 [Software Engineering]:
Management – Software quality assurance
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1. INTRODUCTION
Regression testing is an important part of the software

development cycle [14, 27, 33]. It ensures that software is
backward compatible, i.e., desired properties in the newer
version of a program are consistent with older versions, or
that a change in a program property with respect to the
older version is intentional. One of the critical concerns
with this process is the time taken to execute all test suites
on a newer version [33]. Consequently, techniques to prior-
itize test cases [8, 32, 33] or eliminate seemingly redundant
tests [13, 19, 34] assume significant importance. While elim-
inating redundant test case can reduce the time taken for
regression testing, there remains the possibility that bugs
in the newer version can go undetected [34]. Consequently,
prioritization remains an attractive, albeit conservative, al-
ternative; its main goal is to detect as many bugs in the
shortest time possible, so that bugs can be patched early,
rather than eliminating test cases that are redundant with
respect to previously encountered tests. The test case pri-
oritization problem is defined as follows by Rothermel et
al. [32]:

Definition 1. Test Case Prioritization. Let T be a
test suite, i.e., a set of test cases. Let Π be the set of permu-
tations of T . Given prioritization function f : Π → R, find
π′ ∈ Π such that for all π ∈ Π, f(π′) ≥ f(π).

Here, f is a measure of the quality of a permutation of
the test cases. A larger value of f(π) corresponds to a more
desirable prioritization, characterized by π. The matter of
choosing a good f is an important design criterion in test
case prioritization. A commonly used class of prioritization
functions relates to the coverage of certain program prop-
erties. Many coverage based test prioritization approaches
have been proposed [8, 13, 32, 33]. In these approaches, a
test case is selected first if it provides maximum coverage
of some program property. For certain program properties
(e.g., path coverage [18, 19, 21]), the notion of maximum
coverage may be ill-defined. For example, program behav-
ior with respect to path coverage is characterized by the se-
quence of actions it performs or the sequence of statements it
executes. If test case prioritization is to be performed based
on such program properties, it is beneficial to consider the



dissimilarity a test case has with other tests in the test suite.
By executing dissimilar test cases upfront, different aspects
of the program are tested earlier.

The underlying theme of our work is that a broad range
of program-centric properties can be quickly tested by exe-
cuting dissimilar tests one after another. Motivated by this
observation, we separate issues related to prioritization into
two groups. The first one is concerned with metrics that
abstract test case functionality based on specific program-
centric properties, and which defines an ordering specifica-
tion based on this abstraction. We conceptualize this spec-
ification as a mapping from test cases to points in a metric
space where the distance between two points is a measure
of their dissimilarity. For example, a possible choice for
this metric is one that abstracts test case behavior with re-
spect to the difference in the statements, paths, functions,
sequence of functions, branches, faults, etc. that are exe-
cuted. According to this abstraction, test cases that gener-
ate mostly the same elements (e.g., statements, paths, etc.)
reside closer in the corresponding metric space, compared
to test cases that have less similarity with respect to the
generated elements. The second layer is concerned with al-
gorithmic issues necessary to efficiently construct a priority
ordering from these points.

Contributions
The contributions of this paper are three-fold:

1. We present a two-tiered architecture, Phalanx , that
separates the issue of a specific user-defined prioritiza-
tion metric from the algorithmic aspects of identifying
dissimilar test cases based on the ordering induced by
the metric.

2. An examination of many user-defined metrics for test
case prioritization. For notions of dissimilarity be-
tween paths, we employ techniques that compute
longest common subsequences [16] (LCS) to obtain an
edit distance between paths; this edit distance is then
used to define edge weights between test cases.

3. A case study of our approach on a number of real-world
benchmarks and test-suites obtained from Subject In-
frastructure Repository [7]. Our results indicate that
Phalanx is effective for regression testing over a range
of different user-defined metrics.

2. MOTIVATING EXAMPLE
Consider the code fragment shown below, which takes two

arguments and characterizes the first argument as odd(s2)
or even(s3) and positive(s5) or negative(s6) and simply
prints(s4) the second argument after storing(s1) it in a local
variable str:

void main(int argc, char *argv[]) {
/* assume argv[0] = "prog" */
int x;
char *str = NULL;
if(argc > 2) {

str = (char *)malloc(strlen(argv[2])+1);
strcpy(str, argv[2]); /* s1 */

}
x = atoi(argv[1]);
if(x%2 != 0)

write(1, "odd input",9); /* s2 */
else

arg1 arg2
t1 7 abc
t2 8 abc
t3 -7 abc
t4 -8 abc
t5 8 -

Table 1: Arguments for
test cases.

s1 s2 s3 s4 s5 s6
t1 x x x x
t2 x x x x
t3 x x x x
t4 x x x x
t5 x x x

Table 2: Statement
coverage by test cases.

write(1, "even input",10); /* s3 */
/* assume in older version
write(1,argv[0],strlen(argv[0])) */
write(1, str, strlen(str)); /* s4 */
if(x > 0)

write(1, "positive",8); /* s5 */
else

write(1, "negative",8); /* s6 */
}

Assume that an older version of the above fragment exe-
cutes the statement s4 with argv[0] instead of str. In the
newer version, the above fragment is obviously erroneous (at
statement s4), if there is exactly one argument provided.
Consider five test inputs on the older version as shown in
Table 1.

The coverage table using statement coverage as the test-
ing metric is given in Table 2. The method presented in
Rothermel et al. [32] on uncovered statement coverage can
be used in the above context. The obtained ordering of test
cases is t1, t4, t2, t3 and t5. This is because test case
t1 covers statements s2 and s4, while test case t4 covers
statements s3 and s6 apart from commonly covering s1 and
s4. Similar reasoning applies for test cases t2 and t3. An-
other potential ordering is t2, t3, t1, t4 and t5. While
other equally valuable orderings are possible, in a majority
of such orderings, test case t5 is placed at the end. Notice
that s4 appears in all the tests and therefore it becomes
harder to differentiate between test cases. Such application
contexts motivate the exploration of different prioritization
techniques.

In the above case, the correctness of s4 is dependent on
whether s1 is executed or not. Therefore, a user-defined
metric that uses path information can effectively identify the
error. By applying Phalanx with path coverage as the user
defined metric, we obtained the ordering as t2, t3, t5,

t1 and t4. For some other application, prioritization based
on branch-coverage may outperform prioritization based on
paths. In fact, the effectiveness of a prioritization scheme
is significantly dependent on the property of the program
under consideration, the test suite [8], the required level of
efficiency in regression testing, and the time available for
constructing an ordering. The focus of this paper is to alle-
viate the test designer from issues peripheral to the testing
process (e.g., algorithm design for prioritization) by design-
ing a framework, which will enumerate a list of prioritized
test cases given the quantified dissimilarities among every
pair of test cases.

3. PHALANX: THE FRAMEWORK

3.1 Test Case Dissimilarity and Minimum
Similarity Ordering



For a given test suite, a program, and a user-defined mea-
sure of dissimilarity, we compute a dissimilarity function
δP : T × T → R as follows. For an existing version of a
program, each test case is executed. The program is instru-
mented to obtain the memory operation sequence trace for
each test case. A trace is a sequence of <Operation, Value>
tuples, where Operation is either a read or write to memory
and Value is the value read from or written into memory.
The trace is analogous to a string and the tuple is analo-
gous to a letter in an alphabet. Comparing two test cases is
equivalent to comparing the corresponding trace sequences.
Based on a user-defined cost function, the Levenstein [16]
distance between any pair of trace sequences is calculated
using dynamic programming [4]. (The Levenstein distance
between two strings is defined as the shortest sequence of
edit operations that lead from one string to the other.) If
the Levenstein distance between the two test cases is zero,
then we regard the two test cases as being identical.

Once a dissimilarity function is specified, we define an
optimization problem with an objective function that asso-
ciates the dissimilarity between test cases with their tem-
poral proximity in the resulting ordering. This approach is
based on the idea that dissimilar test cases should be exe-
cuted close to each other.

Definition 2. Minimum Similarity Ordering
Problem (MSO). Given test suite T , program P , and a
test case dissimilarity function δP , let π = {i1, i2, ..., i|T |}
define a permutation of the test cases in T . Among all
permutations of T , find a permutation π that minimizes the
weighted aggregate distance induced by π, which is defined
as

∆(π) =

|T |−1
X

j=1

|T |
X

k=j+1

δP (ti, tj)|ij − ik|. (1)

Observe that ∆(π) is a prioritization function specified by
Definition 1. Therefore, the framework that is characterized
by the notion of dissimilarity function and the minimum sim-
ilarity ordering problem defines a class of test case prioriti-
zation problems. The Minimum similarity ordering problem
is NP-hard, since the optimal linear arrangement problem, a
special case of MSO where δP is a binary function, is known
to be NP-hard [17]. However, these and other related in-
tractable graph problems have been well-studied, and many
effective heuristics exist in the literature. To take advantage
of this, we propose a graph model for test case prioritization
to study the problem in a graph-theoretic framework.

3.2 Test Case Dissimilarity Graph
From the instrumented data, we construct a test case dis-

similarity graph defined as follows:

Definition 3. Test Case Dissimilarity Graph.
Given test suite T and program P , and a test case dissimi-
larity function δP , the corresponding test case dissimilarity
graph G(V, E, w) is a weighted undirected graph with vertex
set V , edge set E, and weight function w : E → R, con-
structed as follows. For all ti ∈ T , there exists vi ∈ V . For
all pair of test cases, ti, tj ∈ T , there exists vivj ∈ E, such
that w(vivj) = δP (ti, tj).

This model transforms the minimum similarity ordering
problem into a graph optimization problem. The goal is

to find an optimal ordering of vertices and the distance be-
tween any pair of vertices in the ordering is penalized by a
factor that is equal to the weight of the edge between these
two vertices.

We illustrate the process of generating a test case dis-
similarity graph for the example given in Section 2. By
instrumenting the older version of the program (recall that
statement s4 is executed with argv[0] instead of str) and
executing the test cases t1, t2, t3, t4, and t5, we obtain the
following sequences:

t1: <W, abc> <W, odd input> <W, prog> <W, positive>

t2: <W, abc> <W, even input> <W, prog> <W, positive>

t3: <W, abc> <W, odd input> <W, prog> <W, negative>

t4: <W, abc> <W, even input> <W, prog> <W, negative>

t5: <W, even input> <W, prog> <W, positive>

As suggested earlier, the dissimilarity between any two
test cases is the edit distance corresponding to the trace
sequences. For example, the edit distance between test cases
t3 and t5 is computed as follows:

t3: <W,abc> <W, odd input> - <W,prog> <W,negative> -

t5: - - <W, even input> <W,prog> - <W,positive>

Counting the number of gaps(-), we find that the edit
distance is five. Computing the edit distance between all
possible pairs of sequences, we obtain the following adja-
cency matrix AG of the test case dissimilarity graph G:

AG =

2

6

6

6

4

0 2 2 4 3
2 0 4 2 1
2 4 0 2 5
4 2 2 0 3
3 1 5 3 0

3

7

7

7

5

(2)

This metric, which we refer to as Memory Value Sequence
(MVSQ), is one of four metrics that we use in this paper.
The other metrics used in the paper are enumerated below:

1. Function Sequence (FSQ): Test case differentiation is
based on function call sequences.

2. Branch Sequence (BSQ): Test case differentiation is
based on branch operation sequences.

3. Memory Statement Sequence (MSSQ): Differentiation
is based on sequence of memory statements without
taking the values read or written into consideration.

3.3 Algorithms for Prioritizing Test Cases
The test case dissimilarity graph G is used to generate a

minimum similarity ordering of the nodes. In this paper,
we present two approaches to solve this problem; the first
uses a simple greedy algorithm, and the second uses Fiedler
ordering.

3.3.1 Greedy Algorithm
The greedy algorithm orders the nodes of G(V, E, w) by

growing an ordered list ` of nodes and locally minimizing the
optimization function at each step by appending the node
that is most heavily connected (dissimilar) to the nodes in
the list. The output to the algorithm is the ordered list `.

1. Select edge uv ∈ E such that has the w(uv) is max-
imum among all edges. Let ` = [u, v]. The test-case
that corresponds to u is the head b of list ` and v is
the tail e.



2. While not all v ∈ V are present in `, do the following:

• Among all edges ev ∈ E, where v /∈ ` pick the
edge with maximum weight w(ev).

• Add v to ` as the new tail e.

3. List ` gives the ordered list of test cases.

In the example illustrated above, an execution of the
greedy approach orders the test cases as t3, t5, t1, t2 and t4.
Upon careful observation, it is evident that this ordering is
not necessarily unique when equal edge weights are present
in the test case graph. Furthermore, the ordering obtained
using such a mechanism is not always globally optimal. In
some cases, after choosing the edge with maximum weight
in the graph, subsequent edges chosen may have smaller
weight than the remaining edges in the graph (discussed in
Section 3.3.2). Therefore, we apply a better approximation
for optimal linear ordering problems [25] and evaluate the
use of Fiedler vectors for ordering test cases.

3.3.2 Spectral ordering Algorithm
Due to space limitations, we are unable to present a brief

overview of spectral graph theory and refer the reader to [17,
10, 15, 25]. Once we generate the test case similarity graph
G, we use Fiedler(spectral) ordering to find a desirable test
case prioritization through the following procedure:

1. Compute Laplacian LG of G.

2. Compute the second smallest eigenvalue of LG,
λ2(LG).

3. Extract the eigenvector x2 that corresponds to λ2(LG).

4. Sort the entries of x2 and reorder the indices (that
represent the vertices in G) accordingly.

5. The order of vertices that correspond to the reordered
list of indices forms the desired ordering of test cases.

Recall the motivating example in Section 2. We compute
the Fiedler vector for the graph G given in Equation 2 as
follows. The eigenvalues of the Laplacian of these graph
are 0, 0.4801, 0.5440, 0.6774, and 0.7761. The eigenvector
corresponding to the second smallest eigenvalue λ2 = 0.4801
is

x2 = [0.3805, −0.7486,−0.2801, 0.3805, 0.2676]T , (3)

whose entries are ordered as x2(2) < x2(3) < x2(5) <
x2(1) < x2(4). Reordering the test cases accordingly, we
obtain the following Fiedler ordering for test case prioriti-
zation: {t2, t3, t5, t1, t4}. Note that although t5 is scheduled
earlier by the greedy algorithm, this need not always be
the case. A greedy approach optimizes locally whereas the
Fiedler ordering provides an approximation to the global op-
timum. Also observe that, using the prioritization given by
the Fiedler ordering, all possible paths in the program are
explored within the first three tests.

4. EXPERIMENTAL RESULTS

4.1 Implementation
The implementation consists of three components for per-

forming the following tasks: (i) instrumentation, (ii) gener-
ating a test case dissimilarity graph, and (iii) computing
the priority of test cases. We use PIN [23], a dynamic bi-
nary instrumentation tool, for instrumentation purposes. A
test case dissimilarity graph is a connected graph(see Def-
inition 3). The only information that is needed for gen-
erating a test case graph corresponds to the edge weights.
These edge weights are calculated based on the prioritiza-
tion metric. Since the prioritization metrics explored in this
paper are based on paths, edge weights are given by the
edit distance between the corresponding paths. Dynamic
programming takes quadratic time in the total length of the
sequence and is not scalable to long sequences. To alleviate
this scalability problem, we discuss an approach using Rabin
fingerprinting [28] on generated sequences. We use existing
implementations [29] to compute Rabin fingerprint and the
hashes. For computing the priority of test cases, we use
MATLAB [24] which provides basic library functions to cal-
culate eigenvalues and eigenvectors. Efficient techniques are
available for calculating the second eigenvalue and the corre-
sponding eigenvector based on the sparsity of the matrix. In
general, for the application of test case prioritization, the to-
tal time taken to construct a prioritization is O(n2), where n
is the number of test cases under consideration. The greedy
heuristic has identical complexity.

We explore four different types of hitherto unexplored
path-sensitive prioritization mechanisms that are based on
program paths to show the efficacy of Phalanx. We specif-
ically consider four such prioritization metrics – differentia-
tion based on (a) function sequences (FSQ), (b) branch oper-
ation sequences (BSQ), (c) sequence of memory statements
without values of reads/writes (MSSQ) and (d) sequence of
memory statements with values of reads/writes (MVSQ).

4.2 Subject Infrastructure Repository (SIR)
We perform our experiments on a Linux 2.6.11.10 (Gentoo

release 3.3.4-r1) system running on a Intel(R) Pentium(R)
4 CPU 3.00GHz with 1GB memory. The version of the
PIN [23] tool used was a special release 1819 (2005-04-15)
for Gentoo Linux. The sources were compiled using GCC
version 3.3.4.

For our experiments, we use the benchmarks (subjects)
from the Subject Infrastructure Repository (SIR) [7]. The
repository provides C programs for use in experimentation
with testing and analysis techniques. The C programs vary
across a range of parameters: the number of lines of code,
the number of versions, the number of faults and the size of
the test pool used for testing. Table 3 presents the subjects
used. The number of lines of code varies from 100 to 11K.
The test pool size varies from 217 to 5542.

4.3 Experimental Results
We execute the base version of each program with all the

test cases present in the test-suite and collect traces. Subse-
quently, we apply the techniques specified in earlier sections
of the paper to obtain a test case graph. From the test
case graph, we obtain two possible orderings of test cases
for each of the metrics used. The first ordering is based on
the greedy approach and the second ordering is based on
Fiedler ordering. Based on the fault matrix available with
each subject, we obtain the list of faults and the list of test
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Figure 1: Normalized effectiveness of prioritization under Fiedler ordering compared to a greedy heuristic.

cases that are used in detecting each fault.
We evaluate the orderings using two different methods:

(i) the APFD metric, which measures the weighted average
of the percentage of faults detected over the life of the test
suite, used in [8], and (ii) the realized difference between
the number of faults detected by Phalanx and greedy ap-
proaches after executing a specific number of test cases.

More specifically, let T be a test suite containing n test
cases, F be a set of m faults, TFi be the first test case in
ordering T′ of T that reveals fault i. The APFD is calculated
as follows:

APFD = 1 −
TF1 + ... + TFm

nm
+

1

2n

For a more elaborate description of this metric, we refer
the reader to [8]. A larger value of APFD denotes a better
ordering of test cases because the first few test cases reveal a
significant number of faults. Table 3 presents the APFD val-
ues for the subject programs for the four metrics described
in Section 3. A majority of the values are greater than 80%,
signifying the detection of faults early in the regression test-
ing process.

On average, the performances of Fiedler and greedy order-
ing approach are comparable. However, when worst case be-

havior is compared, Fiedler ordering performs significantly
better. For example, the APFD values for gzip under dif-
ferent metrics is significantly better with Fiedler ordering
as compared to the greedy approach. The improved worst-
case behavior can be attributed to the optimization function
used in Fiedler ordering . For the greedy approach, the dis-
advantage of using local maximum as a criteria for ordering
becomes obvious in benchmarks such as gzip and schedule.
We also observe that MVSQ seems to be a very useful met-
ric as it not only specifies the values written into, or read
from memory, but also defines the paths taken by a pro-
gram, does not incur significantly greater cost and displays
better performance compared to the other three metrics.

While APFD is a useful metric for measuring the efficacy
of an ordering, we observe from our experiments that in
some scenarios, a few faults are detected early and the num-
ber of faults detected subsequently drops. Interestingly, this
may result in a comparable APFD value of another ordering
in which cumulatively more faults are detected, albeit after
executing a few more test cases than the former. In Fig-
ure 1, we present the behavior of various subjects and the
corresponding test suites by calculating the difference in the
number of faults detected by Fiedler and greedy ordering
approaches. Each graph represents the normalized number



Fiedler Ordering Greedy ordering
FSQ BSQ MSSQ MVSQ FSQ BSQ MSSQ MVSQ

tcas 81.65 56.26 88.22 81.33 84.97 82.49 77.95 85.24
schedule 76.78 96.30 98.17 98.57 66.96 66.86 66.43 66.26
tot info 84.38 72.21 78.37 82.05 92.84 99.08 95.33 94.83
print tokens2 84.49 79.09 98.72 98.65 99.95 99.92 99.94 99.93
print tokens 98.74 73.62 95.51 97.81 99.52 99.70 99.65 99.71
replace 96.04 82.17 96.02 90.56 96.52 94.31 95.59 95.02
gzip 77.77 71.57 91.87 81.03 43.09 42.90 38.36 39.40
grep 68.19 71.41 73.36 72.46 95.85 96.06 88.58 91.18
flex 92.30 93.58 93.53 94.54 94.01 92.35 89.75 90.44

Table 3: Comparison of APFD (given in percent) obtained with Fiedler and Greedy ordering approaches

of faults found using Fiedler ordering with respect to the
greedy approach for the four prioritization metrics. For ex-
ample, whenever the value along the y-axis is greater than
zero, it indicates more faults detected by Fiedler ordering
. For most of the subjects, a majority of the faults are de-
tected after executing the first 20% of the test cases present
in the test pool, irrespective of the ordering scheme used.
Furthermore, we also find it intuitive that for a majority of
the subjects (except grep), the difference either decreases or
increases quite rapidly. This behavior is easily observable in
Fig 1(a), where within execution of a small number of test
cases from some point in the ordering, a large number of
faults are detected as shown by the spikes. We hypothesize
that this behavior is an artifact of placing dissimilar test
cases in close proximity.

Figures 1(g) and 1(h) present a contrasting study of
Fiedler and greedy ordering schemes. In Figure 1(g), a large
number of faults are detected quite early in the regression
testing process. For this subject, greedy ordering finds a
local maxima and some of the faults are not detected until
many more test cases are executed. In contrast, Figure 1(h)
shows the improved performance of greedy ordering. It be-
comes clear from the figure that a few faults (detected by
exactly one test case in the pool) are detected early using
the greedy ordering. The list of faults that are detected later
reflect the small APFD values using Fiedler ordering.

5. RELATED WORK
Rothermel et al. [32] present a number of techniques that

use test execution information to prioritize test cases for
regression testing. These techniques are classified broadly
into three categories: (i) order test cases based on total
coverage of code components, (ii) order test cases based on
coverage of code components previously uncovered, and (iii)
order test cases based on estimated ability to reveal faults.
The elaborate experiments that accompany this work show
that each of the prioritization techniques improved the rate
of fault detection.

In subsequent work, Elbaum et al. [8] address three impor-
tant questions: (i) are prioritization techniques more effec-
tive when made specific to modified versions?; (ii) does gran-
ularity (e.g., statement vs function level) of coverage mat-
ter?; and (iii) do inclusion of measures of likelihood of faults
provide any improvements? New techniques are presented
and detailed experiments suggest that version-specific pri-
oritization improves test case ordering for the specified ver-
sion; granularity and likelihood of faults do not significantly
improve prioritization ordering.

Srivastava and Thiagarajan [33] present Echelon, a test-
prioritization system that runs under a Windows environ-
ment. Test cases are prioritized based on the changes made
to a program. Echelon uses a binary matching system that
can accurately compute the differences at the basic block
level between two versions of the program in binary form.
Test cases are ordered to maximize coverage of affected re-
gions using a fast, simple and intuitive heuristic. Echelon
has been found to be quite effective on large binaries.

The framework presented in this paper is complementary
to these techniques. Prioritization based on the above met-
rics can be easily coded into our framework. Furthermore,
novel metrics based on program paths have been presented
to show the effectiveness of our framework.

Harrold et al. [13] present a technique for selecting a rep-
resentative set of test cases from a test-suite, which pro-
vides similar coverage. In other words, the technique is
used to eliminate redundant and obsolete test cases. In [9],
Rothermel et al. show through experiments that a poten-
tial drawback of redundant test elimination techniques is
that in minimizing a test suite, the ability of that test suite
to reveal faults in the software may be reduced. Jeffrey and
Gupta [19] present another technique to minimize this draw-
back. Apart from the commonly shared goal of improving
the process of regression testing, the problem addressed in
this paper is orthogonal to the redundant test-case elimina-
tion problem.

In [6], Dickinson et al. find failures by cluster analysis
of execution profiles. For observation-based testing, the hy-
pothesis is that executions that exhibit unusual behaviors
are good candidates for testing. Cluster analysis, a multi-
variate analysis method for finding groups in a population
of objects, is performed; subsequently these clusters are fil-
tered by selecting one or more executions from each cluster.
This approach is shown to perform better than simple ran-
dom sampling techniques. The techniques used in [6] and
our work are based on the hypothesis that testing a pro-
gram with dissimilar test inputs is useful. Specifically, we
use Fiedler ordering, a declustering technique useful for flow-
sensitive metrics to place dissimilar test-cases closeby (in a
global sense) to quickly detect failures.

Bryce and Colbourn [2] present a case for test case pri-
oritization for interaction testing, a mechanism for testing
systems deployed on a variety of hardware and software con-
figurations. They adapt a greedy method to generate a set
of tests to identify all pairwise interactions when the ordered
set of test cases is run to completion; otherwise the more im-
portant test cases are run if the testing is terminated without



completion. Bryce et al. perform a detailed study of greedy
algorithms for the construction of software interaction test
suites in [3]. We consider regression testing in our paper
and present a greedy method to order test cases for flow
sensitive metrics. The methods presented in [2] can be po-
tentially used for regression testing. We plan to explore the
application of pairwise interactions among program objects
(instead of software configurations) to prioritize test cases
for regression testing.

There has been substantial work in the area of impact
analysis [1, 20, 26, 31, 30]. In many of these approaches,
functions that follow a modified function in some execution
path are added to the impact set. One of the reasons for
using dynamic impact analysis is to reduce the parts of pro-
gram that need to be retested while performing regression
testing. For example, in [31], Ren et al. detect a set of
changes responsible for a modified test’s behavior and the
set of tests that are affected by a modification are identi-
fied. The information obtained through impact analysis can
help in designing new methods for prioritization. As long
as these new methods can be specified in terms of a relation
between test cases, a test case dissimilarity graph can be
built and subsequently our approach for ordering test cases
can be applied.

Many interesting techniques have been devised for bug
detection in software systems [11, 5, 12, 22]. For example, in
[12], Godefroid et al. present a technique to automatically
generate test cases so that the coverage of the program is
increased. Insofar as these efforts aim to generate useful test
cases, they serve an important, albeit complementary role
to our work.
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