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Abstract. Inrecentyears, many algorithms have been developed tomaawn
the set of candidate disease genes implicated by genomeassieiation stud-
ies (GWAS), using knowledge on protein-protein interatsi@PPls). All of these
algorithms are based on a common principle; functional@ason between pro-
teins is correlated with their connectivity/proximity imet PPI network. However,
recent research also reveals that networks are organizedeiourrent network
schemes that underlie the mechanisms of cooperation amotgjrs with dif-
ferent function, as well as the crosstalk between diffecetiular processes. In
this paper, we hypothesize that proteins that are assdaidth similar diseases
may exhibit patterns of “topological similarity” in PPI medrks. Motivated by
these observations, we introduce the notion of “topoldgicafile”, which rep-
resents the location of a protein in the network with respeaither proteins.
Based on this notion, we develop a novel measure to assetptilegical sim-
ilarity of proteins in a PPI network. We then use this measardevelop algo-
rithms that prioritize candidate disease genes based doplégical similarity
of their products and the products of known disease genesei®gtic experi-
mental studies using an integrated human PPI network ar@ritiee Mendelian
Inheritance (OMIM) database show that the proposed alguarit/aviEN, clearly
outperforms state-of-the-art network based priorit@atilgorithms. WVIEN is
available as a web servicelatt p: / / ww. di seasegenes. or g.

1 Introduction

Characterization of disease-associated variations iralmiganome is an important step
toward enhancing our understanding of the cellular medmasithat drive complex dis-
eases, with profound applications in modeling, diagngsisgnosis, and therapeutic
intervention [1]. Genome-wide linkage and associatioulistsiin healthy and affected
populations provide chromosomal regions containing heslof polymorphisms that
are potentially associated with certain genetic diseéqe3 iese polymorphisms often
implicate up to300 genes, only a few of which may have a role in the manifestation
of the disease. Investigation of that many candidates \qaesgcing is clearly an ex-
pensive task, thus not always a feasible option. Conselyueamputational methods
are primarily used to prioritize and identify the most likelisease-associated genes by
utilizing a variety of data sources such as gene expres8ie} pnd functional anno-
tations [5—7]. Protein-protein interactions provide avainable resource in this regard,
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Fig. 1. Key principles in network-based disease gene prioritiratNodes and edges respectively
represent proteins and interactions. Seed proteins (psdteown to be associated with the dis-
ease of interest) are shown in light blue, proteins that m@icated to be associated with the
same disease by the respective principle are shown in ddybtteer proteins are shown in white.
(a) Network Connectivity3, 10-13] infers association of the red protein with thedspeoteins
because it interacts heavily with them. (bjormation Flow[14—17] infers association of the red
protein with seed proteins because it exhibits crosstathém via indirect interactions through
other proteins. (cYopological Similarity proposed in this paper, infers association of the red
protein with the seed proteins because it (indirectly)rentés with a hub protein in a way topo-
logically similar to them.

since they provide functional information in a network axitand can be obtained at a
large scale via high-throughput screening [8].

Inthe last few years, many algorithms have been developdtilitte protein-protein
interaction (PPI) networks in disease gene prioritizati®n19]. These algorithms take
as input a set afeed proteingcoded by genes known to be associated with the disease
of interest or similar diseasesjandidate proteingcoded by genes in the linkage in-
terval for the disease of interest), and a network of intémas among human proteins.
Subsequently, they use protein-protein interactions ferithe relationship between
seed and candidate proteins and rank the candidate pratzioeding to these inferred
relationships. The key ideas in network-based prioritirabf disease genes are illus-
trated in Figure 1.

Network connectivity is useful in disease gene prioritizabn. Network-based anal-
yses of diverse phenotypes demonstrate that products esghat are implicated in
similar diseases are clustered together into highly caedesubnetworks in PPI net-
works [20, 21]. Here, the similarity between diseases sai@the similarity in clinical
classification of diseases. Motivated by these obsernstioany studies search the PPI
networks for interacting partners of known disease genemtoow down the set of
candidate genes implicated by GWAS [10-13] (Figure 1(ah)esE algorithms are also
extended to take into account the information provided leygbnes implicated in dis-
eases similar to the disease of interest [3].

Information flow based methods take into account indirect irteractions. Methods
that consider direct interactions between seed and caedftateins do not utilize
knowledge of PPlIs to their full potential. In particularethdo not consider interactions
among proteins that are not among the seed or candidatanmotehich might also
indicate indirect functional relationships between cdaté and seed proteins. For this
reason, connectivity-based (“local”) methods are vulbkr#o false negative and posi-
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Fig. 2. Motivating example for using topological similarity to pritize candidate disease genes.
Two PPI subnetworks connecting key cancer driver geA8C-HAPLN1(p < 0.0068) and
APC-P2RX7(p < 0.0212), were found significant when bimodality of coexpressiorthwi
proteomic targets were calculated [23]. Darker nodes sgmteproteins coded by genes that
carry “driver mutations”. Blue nodes represent growthdaceceptors (GFRs). AlthoughPC-
HAPLN1land APC-P2RX7do not directly interact or exhibit significant crosstalkthvgrowth
factors and products of driver genes, their relative lacetiwith respect to these proteins exhibit
similarities.

tive interactions [22]Information flowbased (“global”) methods ground themselves on
the notion that products of genes that have an importanimaedisease are expected
to exhibit significant network crosstalk to each other imtgiof the aggregate strength
of paths that connect the corresponding proteins (Figu¥.1These methods include
random walk with restarts [14,15] and network propagatid)17], which significantly
outperform connectivity based methods [9].

Topological similarity indicates functional association Despite their differences, all
network-based disease gene prioritization algorithm$ased on a unique principle:
the association between proteins is correlated with trenectivity/proximity in the
PPI network. However, recent research also reveals thatonlet are organized into
recurrent network schemes that underlie the interactidtees among proteins with
different function [24, 25]. A well-known network schemay fexample, is a chain of
membrane-bound receptors, protein kinases, and tratisarfactors, which serves as
a high-level description of the backbone of cellular sigmal Dedicated mining al-
gorithms identify more specific network schemes at a higksolution, indicating that
similar principles are used recurrently in interactionvaks [26,27]. Inspired by these
results, in this paper, we develop a network-based disesasepyioritization algorithm
that uses topological similarity to infer the associatietween seed and candidate pro-
teins (Figure 1(c)). Below, we further motivate this apmioavith an example from the
systems biology of cancer.

Motivating example. While the APC gene has been identified to be one of the most
important genes that plays a role in the development of ectat cancer, there are mul-
tiple proteins that work in parallel with Apc to create thes@cers [28, 29]. Although
the actual mechanisms of selection are not clear, it is knitnat) proteins that are not
directly interacting withAPC, and have similar functions in a cell, such as tumor sup-



pressor geneBTEN[30], TRP53[31] andp21[32] when mutated wittAPC increase
the tumor burden. In a recent study, Bele¢lal.[23] present a pipeline where bimodal-
ity of coexpresssion is used to prioritize proteomics texggentified in a mouse model
of colorectal cancer. Some of the significant proteins ifiedtare shown in Figure 2 in
a PPI network. The identified targé¢d®\PLN1, P2RX7colored purple in the figure) are
linked to growth factor receptors (GFREGFR, TGFR1, FGFRIcolored blue in the
figure), but not connected to each other. As seen in the figimélarities of these two
proteomic targets in their function and role in disease e r@flected in their relative
topology with respect tdlPCand growth factors.

Contributions of this study. We propose a topological similarity based disease gene
prioritization scheme in this paper. For this purpose, weltg a measure of topolog-
ical similarity among pairs of proteins in a PPI network ase the network similarity
between seed and candidate proteins to infer the likelirddatisease association for
the candidates. We present the proposed methods in Secfyst2matic experimental
studies using an integrated human PPI network and the Ollaralelian Inheritance
(OMIM) database are presented in Section 3. These resuits #iat the proposed
algorithm, \AvIEN?, clearly outperforms state-of-the-art network basedrijtization
algorithms. We conclude our discussion in Section 4.

2 Methods

In this section, we first describe the disease gene priatitin problem within a formal
framework. Subsequently, we formulate the concept of togiohl similarity of pairs of

proteins in terms of their proximity to other proteins in tietwork. Finally, we discuss
how topological similarity of proteins is used to priorgtizandidate disease genes.

2.1 Disease Gene Prioritization Problem

Let D denote a disease of interest, which is potentially asseatiaith various genetic
factors €.g, sleep apnea, Alzhemier’s disease, autism). Assume thahange-wide
association study (GWAS) using samples from control anecédd populations is con-
ducted, revealing a linkage interval that is significang8ga@ciated withD. Potentially,
such a linkage interval will contain multiple genes, whick all candidates for being
mechanistically associated wifh (i.e., the mutation in a gene in the linkage interval
might have a role in the manifestation of disease). This sedandidate genes, denoted
C, forms the input to the disease gene prioritization problem

The aim of disease gene prioritization is to rank the gen&sbased on their po-
tential mechanistic association with. For this purpose, a set of genes that are already
known to be associated with or diseases similar t®& is used (where similarity be-
tween diseases is defined phenotypicallg, based on the clinical description of dis-
eases). The idea here is that gene§ that are mechanistically associated withare
likely to exhibit patterns of association with such genea imetwork of PPIs. This set
of genes is referred to as tiseed set and denotefl Each gene € S is assigned a
disease-association scarév, D) € (0, 1], representing the known level of association

! From va-et-vient Er.); an electrical circuit in which multiple switches in féifent locations
perform identical taskse(g, control lighting in a stairwell from either end).



betweenv and D. The association score ferand D is set tol if it is a known as-
sociation listed in OMIM database. Otherwise, it is comdute the maximum clinical
similarity betweernD and any other disease associated wifB3] (a detailed discussion
on computation of similarity scores can be found in [34]).

In order to capture the association of the gena$with those inS, network-based
prioritization algorithms utilize a network of known ingations among human pro-
teins. The human protein-protein interaction (PPI) nekwibe= (V, £, w) consists of a
set of proteing’ and a set of undirected interactiofidetween these proteins, where
uv € & represents an interaction betweenc V andv € V. Since PPI networks
are noisy and incomplete [35], each interactiane £ is also assigned a confidence
score representing the reliability of the interaction begwy andwv [25, 36, 37]. For-
mally, there exists a functiom : £ — (0, 1], wherew(uv) indicates the reliability of
interactionuv € €.

In this paper, the reliability score is derived through aidtig regression model
where a positive interaction dataset (MIPS Golden PPl aatéwns [38]) and a nega-
tive interaction dataset (Negatome [39]) are used to tramoedel with three variables:
(7) co-expression measurements for the corresponding genieed from multiple sets
of tissue microarray experiments (normal human tissuesuned in the Human Body
Index Transcriptional Profiling (GEO Accession: GSE730M)]], (i7) the proteins’
small world clustering coefficient, andi{) the protein subcellular localization data of
interacting partners [41]. Co-expression values are usext £o-regulated genes are
more likely to interact with each other than others [25, &5).the other hand, the net-
work feature that we are extracting, the small world clustgcoefficient, is a measure
of connectedness. This coefficient shows how likely the m=ags (interacting peers)
of a protein are neighbors of each other [42]. We also inaateathe protein subcel-
lular localization data into the logistic model, since thisuld eliminate interactions
among proteins that are not biologically significant [25}eTogistic regression model
is trained on randomly selectd®00 positive and negative training data sets fof
times and regression constants are determined to scoré®ach

GivenS andg, network-based disease gene prioritization aims to coenpstore
a(v, D) for eachv € C, representing the potential association afith diseaseD. For
this purpose, we develop a novel metho&yeN, to rank candidate genes based on
their topological similarity to the seed genegijin

2.2 Topological Similarity of Proteins in a PPI Network

Recent research shows that molecular networks are orgkintefunctional interaction
patterns that are used recurrently in different cellulacpsses [24, 26]. In other words,
proteins with similar function often interact with protsithat are also functionally
similar to each other [27]. Motivated by this observatiomyMN aims to assess the
functional similarity between seed and candidate protbased on theitopological
similarity, that is the similarity of their relative location with resgt to other proteins
in the network. For this purpose, we first define the topolalgicofile of a protein in a
PPI network.

Topological profile of a protein. For a given protein € V and a PPl network;, the
topological profile3, of v is defined as &/|-dimensional vector such that for eaghe



V, B, (u) represents the proximity of proteinto proteinu in G. Clearly, the proximity
between two proteins can be computed in various ways. A kvallwvn measure of
proximity is the shortest path (here, the most reliable pb#tween the two proteins,
however, this method is vulnerable to missing data and npi§¥| networks [22]. A
reliable measure of network proximity is effective conduntte, which is based on a
model that represents the network as an electrical-cirbuthis model, each edge is
represented as a capacitor with capacitance proportioitalreliability score. Effective
conductance can be computed using the inverse of the Laplagatrix of the network,
however, this computation is quite costly since it requi@s putation of the inverse of
a sparse matrix [43]. Fortunately, however, computatiogftéctive conductance and
random walks in a network are known to be related [44] andipmitx scores based on
random walks can be computed efficiently using iterativehoes.

VAVIEN computes the proximity between pairs of proteins usingeamdalk with
restarts [45, 46]. This method is used in a wide range of agtins, including identi-
fication of functional modules [47] and modeling the evalatdf social networks [48].
It is also the first information flow based method to be appitedisease gene prioriti-
zation [14, 15] and is shown to clearly outperform connéigtivased methods.

Random walk with restarts computes the proximity betweemagem v and all
other proteins in the network as follows: A random walk statt. At each step, if the
random walk is at protein, it either moves to an interacting partrtef v (i.e., ut € &)
or it restarts the walk at. The probabilityP(u, t) of moving to a specific interacting
partnert of u is proportional to the reliability of the interaction betevey andt, i.e.,
P(u,t) = w(ut)/W(u) whereW (u) = >°,,.,.,ce w(ut') is the weighted degree of
in the network. The probability of restarting at a given tistep is a fixed parameter
denoted-. After a sufficiently long time, the probability of being ataew at a random
time step provides a measure of the proximity betweandw, which can be computed
iteratively as follows:

e = (1 —r) Pzl 4 e, 1)

Herexg,k) denotes a probability vector such théf) (u) equals the probability of being

at proteinu at thekth iteration of the random walkz;ff)) = e,, ande, is the restart
vector such that,(u) = 1if v = v and0 otherwise. For a given value of the
topological profile of proteiw is defined a%, = limy_, a:fﬁ).

Note that the concept of topological profile introduced Hereot to be confused
by thegene closeness profilesed by the CIPHER algorithm for disease gene prioriti-
zation [18]. Here, topological profile is constructed udihg proximity of a protein of
interest to every other protein in the network. It is therefa global signature of the
location of the protein in the PPI network. In contrast, geloseness profile is based
only on the proximity of a protein of interest to proteins eddy known disease genes.
Furthermore, the proposed algorithm is different from @ndvalk based prioritization
algorithms in that these algorithms score candidate prstirectly based on random
walk proximity to seed proteins [15]. In contrasiWEN uses random walk proximity
as a feature to assess the topological similarity betweed ard candidate proteins,
which in turn is used to score candidate proteins. We nowritesthis approach in
detail.



Topological similarity of two proteins. Let v andv € V denote two proteins in the
network. The topological similarity af andv is defined as

) . Ztev (ﬁu(t) - ﬁ)(ﬂv(t) - ﬁ)
\/Ztev (ﬁu(t) - ﬁ)g\/Ztev (Bv(t) - |_\1;\)2

wherecorr(X,Y’) denotes the Pearson correlation coefficient of random hiasa

andY. The idea behind this approach is that, if two proteins atewith similar pro-

teins, or lay on similar locations with respect to hub pnogen the network, then their
topological profiles will be correlated, which will be captd by (8., 5.).

2.3 Using Topological Similarity to Prioritize Candidate Genes

, (2

p(Bua Bv) = COTT‘(ﬁu, ﬁv

The core idea behind the proposed algorithm is that careligieines whose products
are topologically similar to the products of seed genesikedylto be associated with
D. Based on this idea, we propose three schemes to prioréimtidate genes based on
their topological similarity with seed genes. All of thesthemes are implemented in
VAVIEN.

Proritization based on average topological similarity wih seed genes (ATS)For
eachu € C, the topological profile vectos, is computed using random walk with
restarts. Similarly, topological profile vectofs of all genesv € S are computed
separately. Subsequently, for eack C, the association score efwith D is computed
as the weighted average of the topological similarity.afith the genes ir5, where
the contribution of each seed gene is weighted by its agsatiaith D, i.e.

Zves U(’Ua D)p(’u, U)
ZUGS 0'(’0, D)

3)

aprs(u, D) =

Prioritization based on topological similarity with average profile of seed genes
(TSA). Instead of computing the topological similarity for eacledegene separately,
this approach first computes an average topological prdi#eis representative of the
seed genes and computes the topological similarity of theidate gene and this av-
erage topological profile. More precisely, the associatioore ofu € C with D is
computed as:

aTSA(uaD) = p(BuaBS)a (4)
where
BS _ Z’UGS U(’U, D)ﬁv
ZUGS U(U? D) .

Prioritization based on topological similarity with repre sentative profile of seed
genes (TSR)The random walk with restarts model can be easily extendedrigpute
the proximity between a group of proteins and each protethénnetwork. This can
be done by generalizing the random walk to one that makesidérgqestarts at any of
the proteins in the group. This is indeed the idea of disease @rioritization using
random walk with restarts [15]. This method is also usefuldectly computing a
representative topological profile f6r, instead of taking the average of the topological

()



profiles of the genes i§. More precisely, for given seed s§tand association scores
o for all genes inS, the proximity of the products of geneséhto each protein in the
network is computed by replacing the restart vector in Equét with vectores where

o(t,D)
Z’UGS U(’U, D) ’
if ¢t € S andes(t) = 0 otherwise. Then, the topological profils; of S is computed
asfs = limy_, ). The random walk based approach to disease gene priddtizat
estimates the association of each candidate gene with skasi# as the proximity be-

tween the product of the candidate gene &dnder this modeli.e., it directly sets
a = fs. In contrast, we compute the associationiaf C with D as

atsr(u) = p(Bu, Bs)- (7)

Oncea is computed using one of (3), (4), or (7)AXMEN ranks the candidate genes in
decreasing order af.

es(t) = (6)

3 Results

In this section, we systematically evaluate the performasfcVAVIEN in capturing
true disease-gene associations using a comprehensiimdataf known disease-gene
associations. We start by describing the datasets andimqreal settings. Next, we
analyze the performance of different schemes implement¥gviEN and the effect of
parameters. Subsequently, we compare the performance/af ¥V with three state-of-
the-art network based prioritization algoritms.

3.1 Datasets

Disease association datd.he Online Mendelian Inheritance in Man (OMIM) database
provides a publicly accessible and comprehensive datalifagnotype-phenotype re-
lationship in humans. We acquire disease-gene assod@dtiom OMIM and map the
gene products known to be associated with disease to our ®@Rbrk. The dataset
containsl 931 diseases with number of gene associations ranging fram25, average
being only1.31. Each gene in the seed sef is associated with the similarity score
o(v, D), indicating the known degree of association betweeand D as mentioned
before.

Human protein-protein interaction (PPI) network. In our experiments, we use the
human PPI data obtained from NCBI Entrez Gene Database T48j.database inte-
grates interaction data from several other databaseshbi@isuch as HPRD, BioGrid,
and BIND. After the removal of nodes with no interactiong fimal PPI network con-
tains8959 proteins and3528 interactions among these proteins. We assign reliability
scores to these interactions using the methodology desthibSection 2.1.

3.2 Experimental Setting

In order to evaluate the performance of different methogsioritizing disease-associated
genes, we use leave-one-out cross-validation. For eaawgisat is known to be asso-
ciated with a diseas® in our dataset, we conduct the following experiment:
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Fig. 3. The performance of the three prioritization algorithms liempented in MVIEN as a func-
tion of the restart probability used in computing proximitia random walk with restarts. The
performance here is measured in terms of the average rahle ¢dtget gene among 100 candi-
date genes, a lower value indicating better performance.

— We removeu from the set of genes known to be associated viiithWe call
thetarget gendor that experiment. The remaining set of genes associaitbdWw
becomes the seed st

— We generate an artificial linkage interval, containing thiyét gene: with other
99 genes located nearest in terms of genomic distance. The geitas artificial
linkage interval (including:) compose the candidate gkt

— We apply each prioritization algorithm to obtain a rankirigie genes irt.

— We assess the quality of the ranking provided by each algoritsing the evalua-
tion criteria described below.

Evaluation criteria. We first plot ROC (precisions. recall) curves, by varying the
threshold on the rank of a gene to be considered a “predidsedsk gene’Precision

is defined as the fraction of true disease genes among alkgenked above the partic-
ular threshold, whereascall is defined as the fraction of true disease genes identified
(ranked above the threshold) among all known disease ghioés.that, this is a con-
servative measure for this experimental set-up since #aasts only one true positive
(the target gene) for each experiment. For this reason, seecaimpare these methods
in terms of theaverage ranlof the target gene amon@0 candidates, computed across
all disease-gene pairs in our experiments. Clearly, lowerage rank indicates better
performance. Finally, we report the percentage of trueadisgenes that are ranked as
one of the genes in thep 1% (practically, the top gene) and also in tiog 5% among

all candidates.

3.3 Performance Evaluation

Performance of methods implemented inVAVIEN and the effect of restart param-
eter. We compare the three different algorithms (ATS, TSA and Tiailemented in



VAVIEN in Figure 3. Since the topological profile of a protein depead the restart
probability (the parametet) in the random walk with restarts, we also investigate the
effect of this parameter on the performance of algorithmghk figure, the average
rank of the target gene among 100 candidate genes is shoveadbralgorithm as a
function of restart probability. As seen in the figure, theethalgorithms deliver com-
parable performance. However, TSA, which makes use of teeage profile of seed
genes to compute the topological similarity of the candidgne to seed genes achieves
the best performance. Furthermore, the performance ofgatithms implemented in
VAVIEN appears to be robust to the selection of parametass long as it is in the
range[0.3 — 0.9]. In our experiments, we set= 0.5 and use TSA as the representative
algorithm since this combination provides the best pertoroe.

Performance of VAVIEN compared to existing algorithms.We also evaluate the per-
formance of MVIEN in comparison to state-of-the-art algorithms for netwbdsed
disease gene prioritization. These algorithms are thevatg:

— Random walk with restartsThis algorithm prioritizes candidate genes based on
their proximity to seed genes, using a random walk with réstaodel, i.e.q is
set tofSs [15].

— Network prioritization This algorithm is very similar to random walk with restarts
with one key difference. In network prioritization, the ghastic matrix in ( 1) is re-
placed with a flow matrix in which both the incoming and outggpilow to a protein
is normalizedite., P(u,t) = w(ut)/+/W (u)W (t) in network propagation) [16].

— Information flow with statistical correctiarBased on the observation that the per-
formance of information flow based algorithms (includingadam walk with restarts
and network propagation) depend on network degree, thigitigh applies statis-
tical correction to the random walk based association scoeased on a reference
model that takes into account the degree distribution oPfAknetwork [33].

While software implementing these algorithms are avadlablg, PRINCE [16] im-
plements network propagationaADA [50] implements statistical correction), we here
report results based on our implementation of each alguorithle implement all algo-
rithms using identical settings for data integration ancbiiporation of disease sim-
ilarity scores, differing from each other only in how netkadnformation is utilized

in computing disease association scores. The objectiveisfapproach to provide a
setting in which the algorithmic ideas can be directly coregaby removing the influ-
ence of implementation details and datasets used. It steufsbted, however, that the
performance of these algorithms could be better than themeance reported here if
available software and/or different PP| datasets are used.

The ROC curves for the three existing methods andi&N are shown in Figure 4,
demonstrating the relationship between precision andlfecaeach algorithm. Other
performance measures for all methods are listed in Tableske&n in both the figure
and the table, Mv/iEN clearly outperforms all of the existing algorithms in rami
candidate disease genes. In particular, it is able to rabkdfirue disease genes as the
top candidate among 100 candidates and it ranks 62% of te@ask genes in the top
5% of all candidates.

Information flow based algorithms are previously shown tbiased with respect to
the degree of the target genes [33]. In other words, theskeadstwork poorly in iden-
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Fig.4. ROC curves comparing the performance of the proposed methitid existing
information-flow based algorithms.

tifying loosely connected disease genes. Previous effedsce this bias to a certain
extent by introducing several statistical correction secbg [33]. Motivated by these
observations, we here investigate the effect of the biasdoted by degree distribu-
tion on the performance of different algorithms. The resok these experiments are
shown in Figure 5. In this figure, the change on the performgacerage rank of the
target gene) of different methods is plotted with respettiéodegree of the target gene.
As clearly seen, ¥IEN is the algorithm that is affected least by this bias and ipeut
forms other methods in identifying loosely connected disegenes. It is particularly
impressive that WWIEN's performance is less affected by degree distribution as-co
pared to DDA, since DADA is designed explicitly with the purpose of removing the
effect of network degree.

As argued in the previous sections, information flow basediprity and topolog-
ical similarity capture different aspects of the relatioipsbetween functional associa-
tion and network topology. Consequently, we expect thaptbposed topological sim-
ilarity and information flow based algorithms will be sucefes in identifying different

Table 1. Comparison of MvIEN with existing algorithms for network-based disease ger@{r
itization. VAVIEN outperforms state-of-the-art information flow based athars with respect to
all performance criteria.

METHOD Avg. Rank Ranked in top 1% Ranked in top 5%
VAVIEN 17.52 40.48 62.46
Random walk 18.58 38.42 59.01
Network propagation 18.28 37.97 57.96
Random walk with statistical correction 17.86 39.41 59.76
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candidates for ¥vIEN and existing algorithms.

disease associated genes. In order to investigate whéikés the case, we compare
target genes that are correctly identified as the true disgase by each algorithm.
These results are shown by a Vlenn diagram in Figure 6. In thisdj each value repre-
sents the number of true disease genes that are raskachongl 00 candidates by the
corresponding algorithm(s). Amor@§96 disease-gene associations\AEN is able to
rank the true candidate first 808 of the cases9d3 of these genes are not ranked as
the top candidate by neither random walk with restarts nowowk propagation. On
the other hand, the number of true candidates that are ugigientified by each of
the other two algorithms is lowei § for random walk with restart®5 for network
propagation), demonstrating thadWEN is quite distinct in its approach and it is more
powerful in extracting information that is missed by othigraaithms. Furthermore, the
93 candidates uniquely identified byaVIEN mostly code for loosely connected pro-
teins (with67 of them having<= 5 known interactions). This observation supports our
claim that \AVIEN is indeed less effected by the bias introduced by degregixigon,

as compared to information flow based network proximity.

4 Conclusion

In this paper, we present an algorithm, calledv\eN, for harnessing the topologi-
cal similarity of proteins in a network of interactions tdqitize candidate disease-
associated genes. After investigating the performandeedfiree schemes implemented
in VAVIEN with respect to the restart parameter, we conduct a compsateeset of
experiments on OMIM data and show thaaWEN outperforms existing information
flow based models, as well as their statistically adjustadios, in terms of rank-
ing the true disease gene highest among other candidats.gemese results demon-
strate that in addition to the connectivity patterns in PEtworks, topological pat-
terns in these networks are also useful in generating noggjlits into systems bi-
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RWR NP

5

VAVIEN

Fig. 6. Venn Diagram comparing the true disease genes ranked byrestbiod as the most likely
candidate. The sets labeled RWR, NP, and/[¢N represent the set of true disease genes that
are ranked top by random walk with restarts, network propagaand topological similarity,
respectively. Each number in an area shows the number of@n@idates in that se¢.g, 20 true
disease genes were ranked top by network propagation avig, but not random walk with
restarts).

ology of complex diseases.AVIEN is available online as a web serviceldtt p:
/I ww. di seasegenes. org.
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