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Abstract. In recent years, many algorithms have been developed to narrow down
the set of candidate disease genes implicated by genome wideassociation stud-
ies (GWAS), using knowledge on protein-protein interactions (PPIs). All of these
algorithms are based on a common principle; functional association between pro-
teins is correlated with their connectivity/proximity in the PPI network. However,
recent research also reveals that networks are organized into recurrent network
schemes that underlie the mechanisms of cooperation among proteins with dif-
ferent function, as well as the crosstalk between differentcellular processes. In
this paper, we hypothesize that proteins that are associated with similar diseases
may exhibit patterns of “topological similarity” in PPI networks. Motivated by
these observations, we introduce the notion of “topological profile”, which rep-
resents the location of a protein in the network with respectto other proteins.
Based on this notion, we develop a novel measure to assess thetopological sim-
ilarity of proteins in a PPI network. We then use this measureto develop algo-
rithms that prioritize candidate disease genes based on thetopological similarity
of their products and the products of known disease genes. Systematic experi-
mental studies using an integrated human PPI network and theOnline Mendelian
Inheritance (OMIM) database show that the proposed algorithm, VAVIEN , clearly
outperforms state-of-the-art network based prioritization algorithms. VAVIEN is
available as a web service athttp://www.diseasegenes.org.

1 Introduction
Characterization of disease-associated variations in human genome is an important step
toward enhancing our understanding of the cellular mechanisms that drive complex dis-
eases, with profound applications in modeling, diagnosis,prognosis, and therapeutic
intervention [1]. Genome-wide linkage and association studies in healthy and affected
populations provide chromosomal regions containing hundreds of polymorphisms that
are potentially associated with certain genetic diseases [2]. These polymorphisms often
implicate up to300 genes, only a few of which may have a role in the manifestation
of the disease. Investigation of that many candidates via sequencing is clearly an ex-
pensive task, thus not always a feasible option. Consequently, computational methods
are primarily used to prioritize and identify the most likely disease-associated genes by
utilizing a variety of data sources such as gene expression [3, 4] and functional anno-
tations [5–7]. Protein-protein interactions provide an invaluable resource in this regard,
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a. Network Connectivity c. Topological Similarityb. Information Flow

Fig. 1.Key principles in network-based disease gene prioritization. Nodes and edges respectively
represent proteins and interactions. Seed proteins (proteins known to be associated with the dis-
ease of interest) are shown in light blue, proteins that are implicated to be associated with the
same disease by the respective principle are shown in dark red, other proteins are shown in white.
(a) Network Connectivity[3, 10–13] infers association of the red protein with the seed proteins
because it interacts heavily with them. (b)Information Flow[14–17] infers association of the red
protein with seed proteins because it exhibits crosstalk tothem via indirect interactions through
other proteins. (c)Topological Similarity, proposed in this paper, infers association of the red
protein with the seed proteins because it (indirectly) interacts with a hub protein in a way topo-
logically similar to them.

since they provide functional information in a network context and can be obtained at a
large scale via high-throughput screening [8].

In the last few years, many algorithms have been developed toutilize protein-protein
interaction (PPI) networks in disease gene prioritization[9–19]. These algorithms take
as input a set ofseed proteins(coded by genes known to be associated with the disease
of interest or similar diseases),candidate proteins(coded by genes in the linkage in-
terval for the disease of interest), and a network of interactions among human proteins.
Subsequently, they use protein-protein interactions to infer the relationship between
seed and candidate proteins and rank the candidate proteinsaccording to these inferred
relationships. The key ideas in network-based prioritization of disease genes are illus-
trated in Figure 1.

Network connectivity is useful in disease gene prioritization. Network-based anal-
yses of diverse phenotypes demonstrate that products of genes that are implicated in
similar diseases are clustered together into highly connected subnetworks in PPI net-
works [20, 21]. Here, the similarity between diseases refers to the similarity in clinical
classification of diseases. Motivated by these observations, many studies search the PPI
networks for interacting partners of known disease genes tonarrow down the set of
candidate genes implicated by GWAS [10–13] (Figure 1(a)). These algorithms are also
extended to take into account the information provided by the genes implicated in dis-
eases similar to the disease of interest [3].

Information flow based methods take into account indirect interactions.Methods
that consider direct interactions between seed and candidate proteins do not utilize
knowledge of PPIs to their full potential. In particular, they do not consider interactions
among proteins that are not among the seed or candidate proteins, which might also
indicate indirect functional relationships between candidate and seed proteins. For this
reason, connectivity-based (“local”) methods are vulnerable to false negative and posi-
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Fig. 2. Motivating example for using topological similarity to prioritize candidate disease genes.
Two PPI subnetworks connecting key cancer driver genes,APC-HAPLN1(p < 0.0068) and
APC-P2RX7(p < 0.0212), were found significant when bimodality of coexpression with
proteomic targets were calculated [23]. Darker nodes represent proteins coded by genes that
carry “driver mutations”. Blue nodes represent growth factor receptors (GFRs). AlthoughAPC-
HAPLN1andAPC-P2RX7do not directly interact or exhibit significant crosstalk with growth
factors and products of driver genes, their relative locations with respect to these proteins exhibit
similarities.

tive interactions [22].Information flowbased (“global”) methods ground themselves on
the notion that products of genes that have an important rolein a disease are expected
to exhibit significant network crosstalk to each other in terms of the aggregate strength
of paths that connect the corresponding proteins (Figure 1(b)). These methods include
random walk with restarts [14,15] and network propagation [16,17], which significantly
outperform connectivity based methods [9].

Topological similarity indicates functional association. Despite their differences, all
network-based disease gene prioritization algorithms arebased on a unique principle:
the association between proteins is correlated with their connectivity/proximity in the
PPI network. However, recent research also reveals that networks are organized into
recurrent network schemes that underlie the interaction patterns among proteins with
different function [24, 25]. A well-known network schema, for example, is a chain of
membrane-bound receptors, protein kinases, and transcription factors, which serves as
a high-level description of the backbone of cellular signaling. Dedicated mining al-
gorithms identify more specific network schemes at a higher resolution, indicating that
similar principles are used recurrently in interaction networks [26,27]. Inspired by these
results, in this paper, we develop a network-based disease gene prioritization algorithm
that uses topological similarity to infer the association between seed and candidate pro-
teins (Figure 1(c)). Below, we further motivate this approach with an example from the
systems biology of cancer.

Motivating example. While theAPC gene has been identified to be one of the most
important genes that plays a role in the development of colorectal cancer, there are mul-
tiple proteins that work in parallel with Apc to create thesecancers [28, 29]. Although
the actual mechanisms of selection are not clear, it is knownthat, proteins that are not
directly interacting withAPC, and have similar functions in a cell, such as tumor sup-
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pressor genesPTEN [30], TRP53[31] andp21 [32] when mutated withAPC increase
the tumor burden. In a recent study, Bebeket al. [23] present a pipeline where bimodal-
ity of coexpresssion is used to prioritize proteomics targets identified in a mouse model
of colorectal cancer. Some of the significant proteins identified are shown in Figure 2 in
a PPI network. The identified targetsHAPLN1, P2RX7(colored purple in the figure) are
linked to growth factor receptors (GFRs) (EGFR, TGFR1, FGFR1, colored blue in the
figure), but not connected to each other. As seen in the figure,similarities of these two
proteomic targets in their function and role in disease are also reflected in their relative
topology with respect toAPCand growth factors.

Contributions of this study. We propose a topological similarity based disease gene
prioritization scheme in this paper. For this purpose, we develop a measure of topolog-
ical similarity among pairs of proteins in a PPI network and use the network similarity
between seed and candidate proteins to infer the likelihoodof disease association for
the candidates. We present the proposed methods in Section 2. Systematic experimental
studies using an integrated human PPI network and the OnlineMendelian Inheritance
(OMIM) database are presented in Section 3. These results show that the proposed
algorithm, VAVIEN 1, clearly outperforms state-of-the-art network based prioritization
algorithms. We conclude our discussion in Section 4.

2 Methods
In this section, we first describe the disease gene prioritization problem within a formal
framework. Subsequently, we formulate the concept of topological similarity of pairs of
proteins in terms of their proximity to other proteins in thenetwork. Finally, we discuss
how topological similarity of proteins is used to prioritize candidate disease genes.

2.1 Disease Gene Prioritization Problem
Let D denote a disease of interest, which is potentially associated with various genetic
factors (e.g., sleep apnea, Alzhemier’s disease, autism). Assume that a genome-wide
association study (GWAS) using samples from control and affected populations is con-
ducted, revealing a linkage interval that is significantly associated withD. Potentially,
such a linkage interval will contain multiple genes, which are all candidates for being
mechanistically associated withD (i.e., the mutation in a gene in the linkage interval
might have a role in the manifestation of disease). This set of candidate genes, denoted
C, forms the input to the disease gene prioritization problem.

The aim of disease gene prioritization is to rank the genes inC based on their po-
tential mechanistic association withD. For this purpose, a set of genes that are already
known to be associated withD or diseases similar toD is used (where similarity be-
tween diseases is defined phenotypically,e.g., based on the clinical description of dis-
eases). The idea here is that genes inC that are mechanistically associated withD are
likely to exhibit patterns of association with such genes ina network of PPIs. This set
of genes is referred to as theseed set and denotedS. Each genev ∈ S is assigned a
disease-association scoreσ(v,D) ∈ (0, 1], representing the known level of association

1 From va-et-vient (Fr.); an electrical circuit in which multiple switches in different locations
perform identical tasks (e.g., control lighting in a stairwell from either end).
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betweenv andD. The association score forv andD is set to1 if it is a known as-
sociation listed in OMIM database. Otherwise, it is computed as the maximum clinical
similarity betweenD and any other disease associated withv [33] (a detailed discussion
on computation of similarity scores can be found in [34]).

In order to capture the association of the genes inC with those inS, network-based
prioritization algorithms utilize a network of known interactions among human pro-
teins. The human protein-protein interaction (PPI) network G = (V , E , w) consists of a
set of proteinsV and a set of undirected interactionsE between these proteins, where
uv ∈ E represents an interaction betweenu ∈ V and v ∈ V . Since PPI networks
are noisy and incomplete [35], each interactionuv ∈ E is also assigned a confidence
score representing the reliability of the interaction betweenu andv [25, 36, 37]. For-
mally, there exists a functionw : E → (0, 1], wherew(uv) indicates the reliability of
interactionuv ∈ E .

In this paper, the reliability score is derived through a logistic regression model
where a positive interaction dataset (MIPS Golden PPI interactions [38]) and a nega-
tive interaction dataset (Negatome [39]) are used to train amodel with three variables:
(i) co-expression measurements for the corresponding genes derived from multiple sets
of tissue microarray experiments (normal human tissues measured in the Human Body
Index Transcriptional Profiling (GEO Accession: GSE7307) [40]), (ii) the proteins’
small world clustering coefficient, and (iii) the protein subcellular localization data of
interacting partners [41]. Co-expression values are used since co-regulated genes are
more likely to interact with each other than others [25, 36].On the other hand, the net-
work feature that we are extracting, the small world clustering coefficient, is a measure
of connectedness. This coefficient shows how likely the neighbors (interacting peers)
of a protein are neighbors of each other [42]. We also incorporate the protein subcel-
lular localization data into the logistic model, since thiswould eliminate interactions
among proteins that are not biologically significant [25]. The logistic regression model
is trained on randomly selected1000 positive and negative training data sets for100
times and regression constants are determined to score eachPPI.

GivenS andG, network-based disease gene prioritization aims to compute a score
α(v,D) for eachv ∈ C, representing the potential association ofv with diseaseD. For
this purpose, we develop a novel method,VAVIEN , to rank candidate genes based on
their topological similarity to the seed genes inG.

2.2 Topological Similarity of Proteins in a PPI Network
Recent research shows that molecular networks are organized into functional interaction
patterns that are used recurrently in different cellular processes [24,26]. In other words,
proteins with similar function often interact with proteins that are also functionally
similar to each other [27]. Motivated by this observation, VAVIEN aims to assess the
functional similarity between seed and candidate proteinsbased on theirtopological
similarity, that is the similarity of their relative location with respect to other proteins
in the network. For this purpose, we first define the topological profile of a protein in a
PPI network.

Topological profile of a protein. For a given proteinv ∈ V and a PPI networkG, the
topological profileβv of v is defined as a|V|-dimensional vector such that for eachu ∈
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V , βv(u) represents the proximity of proteinv to proteinu in G. Clearly, the proximity
between two proteins can be computed in various ways. A well-known measure of
proximity is the shortest path (here, the most reliable path) between the two proteins,
however, this method is vulnerable to missing data and noisein PPI networks [22]. A
reliable measure of network proximity is effective conductance, which is based on a
model that represents the network as an electrical-circuit. In this model, each edge is
represented as a capacitor with capacitance proportional to its reliability score. Effective
conductance can be computed using the inverse of the Laplacian matrix of the network,
however, this computation is quite costly since it requirescomputation of the inverse of
a sparse matrix [43]. Fortunately, however, computation ofeffective conductance and
random walks in a network are known to be related [44] and proximity scores based on
random walks can be computed efficiently using iterative methods.

VAVIEN computes the proximity between pairs of proteins using random walk with
restarts [45, 46]. This method is used in a wide range of applications, including identi-
fication of functional modules [47] and modeling the evolution of social networks [48].
It is also the first information flow based method to be appliedto disease gene prioriti-
zation [14,15] and is shown to clearly outperform connectivity based methods.

Random walk with restarts computes the proximity between a protein v and all
other proteins in the network as follows: A random walk starts atv. At each step, if the
random walk is at proteinu, it either moves to an interacting partnert of u (i.e., ut ∈ E)
or it restarts the walk atv. The probabilityP (u, t) of moving to a specific interacting
partnert of u is proportional to the reliability of the interaction betweenu andt, i.e.,
P (u, t) = w(ut)/W (u) whereW (u) =

∑

t′:t′u∈E w(ut
′) is the weighted degree ofu

in the network. The probability of restarting at a given timestep is a fixed parameter
denotedr. After a sufficiently long time, the probability of being at nodeu at a random
time step provides a measure of the proximity betweenv andu, which can be computed
iteratively as follows:

x(k)
v = (1− r)Px(k−1)

v + rev. (1)

Herex(k)
v denotes a probability vector such thatx

(k)
v (u) equals the probability of being

at proteinu at thekth iteration of the random walk,x(0)
v = ev, andev is the restart

vector such thatev(u) = 1 if u = v and 0 otherwise. For a given value ofr, the
topological profile of proteinv is defined asβv = limk→∞ x

(k)
v .

Note that the concept of topological profile introduced hereis not to be confused
by thegene closeness profileused by the CIPHER algorithm for disease gene prioriti-
zation [18]. Here, topological profile is constructed usingthe proximity of a protein of
interest to every other protein in the network. It is therefore a global signature of the
location of the protein in the PPI network. In contrast, genecloseness profile is based
only on the proximity of a protein of interest to proteins coded by known disease genes.
Furthermore, the proposed algorithm is different from random walk based prioritization
algorithms in that these algorithms score candidate proteins directly based on random
walk proximity to seed proteins [15]. In contrast, VAVIEN uses random walk proximity
as a feature to assess the topological similarity between seed and candidate proteins,
which in turn is used to score candidate proteins. We now describe this approach in
detail.

6



Topological similarity of two proteins. Let u andv ∈ V denote two proteins in the
network. The topological similarity ofu andv is defined as

ρ(βu, βv) = corr(βu, βv) =

∑

t∈V (βu(t)−
1
|V|)(βv(t)−

1
|V|)

√

∑

t∈V (βu(t)−
1
|V|)

2
√

∑

t∈V (βv(t)−
1
|V|)

2
, (2)

wherecorr(X,Y ) denotes the Pearson correlation coefficient of random variablesX
andY . The idea behind this approach is that, if two proteins interact with similar pro-
teins, or lay on similar locations with respect to hub proteins in the network, then their
topological profiles will be correlated, which will be captured byρ(βu, βv).

2.3 Using Topological Similarity to Prioritize Candidate Genes

The core idea behind the proposed algorithm is that candidate genes whose products
are topologically similar to the products of seed genes are likely to be associated with
D. Based on this idea, we propose three schemes to prioritize candidate genes based on
their topological similarity with seed genes. All of these schemes are implemented in
VAVIEN .

Proritization based on average topological similarity with seed genes (ATS).For
eachu ∈ C, the topological profile vectorβu is computed using random walk with
restarts. Similarly, topological profile vectorsβv of all genesv ∈ S are computed
separately. Subsequently, for eachu ∈ C, the association score ofu with D is computed
as the weighted average of the topological similarity ofu with the genes inS, where
the contribution of each seed gene is weighted by its association withD, i.e.:

αATS(u,D) =

∑

v∈S σ(v,D)ρ(u, v)
∑

v∈S σ(v,D)
. (3)

Prioritization based on topological similarity with average profile of seed genes
(TSA). Instead of computing the topological similarity for each seed gene separately,
this approach first computes an average topological profile that is representative of the
seed genes and computes the topological similarity of the candidate gene and this av-
erage topological profile. More precisely, the associationscore ofu ∈ C with D is
computed as:

αTSA(u,D) = ρ(βu, β̄S), (4)

where

β̄S =

∑

v∈S σ(v,D)βv
∑

v∈S σ(v,D)
. (5)

Prioritization based on topological similarity with repre sentative profile of seed
genes (TSR).The random walk with restarts model can be easily extended tocompute
the proximity between a group of proteins and each protein inthe network. This can
be done by generalizing the random walk to one that makes frequent restarts at any of
the proteins in the group. This is indeed the idea of disease gene prioritization using
random walk with restarts [15]. This method is also useful for directly computing a
representative topological profile forS, instead of taking the average of the topological
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profiles of the genes inS. More precisely, for given seed setS and association scores
σ for all genes inS, the proximity of the products of genes inS to each protein in the
network is computed by replacing the restart vector in Equation 1 with vectoreS where

eS(t) =
σ(t,D)

∑

v∈S σ(v,D)
, (6)

if t ∈ S andeS(t) = 0 otherwise. Then, the topological profileβS of S is computed
asβS = limk→∞ x(k). The random walk based approach to disease gene prioritization
estimates the association of each candidate gene with the disease as the proximity be-
tween the product of the candidate gene andS under this model,i.e., it directly sets
α = βS . In contrast, we compute the association ofu ∈ C with D as

αTSR(u) = ρ(βu, βS). (7)

Onceα is computed using one of (3), (4), or (7), VAVIEN ranks the candidate genes in
decreasing order ofα.

3 Results
In this section, we systematically evaluate the performance of VAVIEN in capturing
true disease-gene associations using a comprehensive database of known disease-gene
associations. We start by describing the datasets and experimental settings. Next, we
analyze the performance of different schemes implemented in VAVIEN and the effect of
parameters. Subsequently, we compare the performance of VAVIEN with three state-of-
the-art network based prioritization algoritms.

3.1 Datasets
Disease association data.The Online Mendelian Inheritance in Man (OMIM) database
provides a publicly accessible and comprehensive databaseof genotype-phenotype re-
lationship in humans. We acquire disease-gene associations from OMIM and map the
gene products known to be associated with disease to our PPI network. The dataset
contains1931 diseases with number of gene associations ranging from1 to 25, average
being only1.31. Each genev in the seed setS is associated with the similarity score
σ(v,D), indicating the known degree of association betweenv andD as mentioned
before.

Human protein-protein interaction (PPI) network. In our experiments, we use the
human PPI data obtained from NCBI Entrez Gene Database [49].This database inte-
grates interaction data from several other databases available, such as HPRD, BioGrid,
and BIND. After the removal of nodes with no interactions, the final PPI network con-
tains8959 proteins and33528 interactions among these proteins. We assign reliability
scores to these interactions using the methodology described in Section 2.1.

3.2 Experimental Setting

In order to evaluate the performance of different methods inprioritizing disease-associated
genes, we use leave-one-out cross-validation. For each geneu that is known to be asso-
ciated with a diseaseD in our dataset, we conduct the following experiment:
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Fig. 3. The performance of the three prioritization algorithms implemented in VAVIEN as a func-
tion of the restart probability used in computing proximityvia random walk with restarts. The
performance here is measured in terms of the average rank of the target gene among 100 candi-
date genes, a lower value indicating better performance.

– We removeu from the set of genes known to be associated withD. We call u
the target genefor that experiment. The remaining set of genes associated with D
becomes the seed setS.

– We generate an artificial linkage interval, containing the target geneu with other
99 genes located nearest in terms of genomic distance. The genes in this artificial
linkage interval (includingu) compose the candidate setC.

– We apply each prioritization algorithm to obtain a ranking of the genes inC.
– We assess the quality of the ranking provided by each algorithm using the evalua-

tion criteria described below.

Evaluation criteria. We first plot ROC (precisionvs. recall) curves, by varying the
threshold on the rank of a gene to be considered a “predicted disease gene”.Precision
is defined as the fraction of true disease genes among all genes ranked above the partic-
ular threshold, whereasrecall is defined as the fraction of true disease genes identified
(ranked above the threshold) among all known disease genes.Note that, this is a con-
servative measure for this experimental set-up since thereexists only one true positive
(the target gene) for each experiment. For this reason, we also compare these methods
in terms of theaverage rankof the target gene among100 candidates, computed across
all disease-gene pairs in our experiments. Clearly, lower average rank indicates better
performance. Finally, we report the percentage of true disease genes that are ranked as
one of the genes in thetop1% (practically, the top gene) and also in thetop5% among
all candidates.

3.3 Performance Evaluation

Performance of methods implemented inVAVIEN and the effect of restart param-
eter. We compare the three different algorithms (ATS, TSA and TSR)implemented in
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VAVIEN in Figure 3. Since the topological profile of a protein depends on the restart
probability (the parameterr) in the random walk with restarts, we also investigate the
effect of this parameter on the performance of algorithms. In the figure, the average
rank of the target gene among 100 candidate genes is shown foreach algorithm as a
function of restart probability. As seen in the figure, the three algorithms deliver com-
parable performance. However, TSA, which makes use of the average profile of seed
genes to compute the topological similarity of the candidate gene to seed genes achieves
the best performance. Furthermore, the performance of all algorithms implemented in
VAVIEN appears to be robust to the selection of parameterr, as long as it is in the
range[0.3− 0.9]. In our experiments, we setr = 0.5 and use TSA as the representative
algorithm since this combination provides the best performance.

Performance ofVAVIEN compared to existing algorithms.We also evaluate the per-
formance of VAVIEN in comparison to state-of-the-art algorithms for network-based
disease gene prioritization. These algorithms are the following:

– Random walk with restarts: This algorithm prioritizes candidate genes based on
their proximity to seed genes, using a random walk with restarts model, i.e.,α is
set toβS [15].

– Network prioritization: This algorithm is very similar to random walk with restarts,
with one key difference. In network prioritization, the stochastic matrix in ( 1) is re-
placed with a flow matrix in which both the incoming and outgoing flow to a protein
is normalized (i.e., P (u, t) = w(ut)/

√

W (u)W (t) in network propagation) [16].
– Information flow with statistical correction: Based on the observation that the per-

formance of information flow based algorithms (including random walk with restarts
and network propagation) depend on network degree, this algorithm applies statis-
tical correction to the random walk based association scores based on a reference
model that takes into account the degree distribution of thePPI network [33].

While software implementing these algorithms are available (e.g., PRINCE [16] im-
plements network propagation, DADA [50] implements statistical correction), we here
report results based on our implementation of each algorithm. We implement all algo-
rithms using identical settings for data integration and incorporation of disease sim-
ilarity scores, differing from each other only in how network information is utilized
in computing disease association scores. The objective of this approach to provide a
setting in which the algorithmic ideas can be directly compared, by removing the influ-
ence of implementation details and datasets used. It shouldbe noted, however, that the
performance of these algorithms could be better than the performance reported here if
available software and/or different PPI datasets are used.

The ROC curves for the three existing methods and VAVIEN are shown in Figure 4,
demonstrating the relationship between precision and recall for each algorithm. Other
performance measures for all methods are listed in Table 1. As seen in both the figure
and the table, VAVIEN clearly outperforms all of the existing algorithms in ranking
candidate disease genes. In particular, it is able to rank 40% of true disease genes as the
top candidate among 100 candidates and it ranks 62% of true disease genes in the top
5% of all candidates.

Information flow based algorithms are previously shown to bebiased with respect to
the degree of the target genes [33]. In other words, these methods work poorly in iden-
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Fig. 4. ROC curves comparing the performance of the proposed methodwith existing
information-flow based algorithms.

tifying loosely connected disease genes. Previous effortsreduce this bias to a certain
extent by introducing several statistical correction schemes [33]. Motivated by these
observations, we here investigate the effect of the bias introduced by degree distribu-
tion on the performance of different algorithms. The results of these experiments are
shown in Figure 5. In this figure, the change on the performance (average rank of the
target gene) of different methods is plotted with respect tothe degree of the target gene.
As clearly seen, VAVIEN is the algorithm that is affected least by this bias and it outper-
forms other methods in identifying loosely connected disease genes. It is particularly
impressive that VAVIEN ’s performance is less affected by degree distribution as com-
pared to DADA , since DADA is designed explicitly with the purpose of removing the
effect of network degree.

As argued in the previous sections, information flow based proximity and topolog-
ical similarity capture different aspects of the relationship between functional associa-
tion and network topology. Consequently, we expect that theproposed topological sim-
ilarity and information flow based algorithms will be successful in identifying different

Table 1. Comparison of VAVIEN with existing algorithms for network-based disease gene prior-
itization. VAVIEN outperforms state-of-the-art information flow based algorithms with respect to
all performance criteria.

METHOD Avg. Rank Ranked in top 1% Ranked in top 5%
VAVIEN 17.52 40.48 62.46

Random walk 18.58 38.42 59.01
Network propagation 18.28 37.97 57.96

Random walk with statistical correction 17.86 39.41 59.76
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candidates for VAVIEN and existing algorithms.

disease associated genes. In order to investigate whether this is the case, we compare
target genes that are correctly identified as the true disease gene by each algorithm.
These results are shown by a Venn diagram in Figure 6. In this figure, each value repre-
sents the number of true disease genes that are ranked1st among100 candidates by the
corresponding algorithm(s). Among1996 disease-gene associations, VAVIEN is able to
rank the true candidate first in808 of the cases.93 of these genes are not ranked as
the top candidate by neither random walk with restarts nor network propagation. On
the other hand, the number of true candidates that are uniquely identified by each of
the other two algorithms is lower (15 for random walk with restarts,25 for network
propagation), demonstrating that VAVIEN is quite distinct in its approach and it is more
powerful in extracting information that is missed by other algorithms. Furthermore, the
93 candidates uniquely identified by VAVIEN mostly code for loosely connected pro-
teins (with67 of them having<= 5 known interactions). This observation supports our
claim that VAVIEN is indeed less effected by the bias introduced by degree distribution,
as compared to information flow based network proximity.

4 Conclusion
In this paper, we present an algorithm, called VAVIEN , for harnessing the topologi-
cal similarity of proteins in a network of interactions to prioritize candidate disease-
associated genes. After investigating the performance of the three schemes implemented
in VAVIEN with respect to the restart parameter, we conduct a comprehensive set of
experiments on OMIM data and show that VAVIEN outperforms existing information
flow based models, as well as their statistically adjusted version, in terms of rank-
ing the true disease gene highest among other candidate genes. These results demon-
strate that in addition to the connectivity patterns in PPI networks, topological pat-
terns in these networks are also useful in generating novel insights into systems bi-
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Fig. 6.Venn Diagram comparing the true disease genes ranked by eachmethod as the most likely
candidate. The sets labeled RWR, NP, and VAVIEN represent the set of true disease genes that
are ranked top by random walk with restarts, network propagation, and topological similarity,
respectively. Each number in an area shows the number of truecandidates in that set (e.g., 20 true
disease genes were ranked top by network propagation and VAVIEN , but not random walk with
restarts).

ology of complex diseases. VAVIEN is available online as a web service athttp:
//www.diseasegenes.org.
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