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Abstract4

Protein phosphorylation is a ubiquitous regulatory mechanism that plays a central role in cellular signaling. According5

to recent estimates, up to 70% of human proteins can be phosphorylated. Therefore, characterization of phosphorylation6

dynamics is critical for understanding a broad range of biological and biochemical processes. Technologies based on mass7

spectrometry are rapidly advancing to meet the needs for high-throughput screening of phosphorylation. These technolo-8

gies enable untargeted quantification of thousands of phosphorylation sites in a given sample. Many labs are already9

utilizing these technologies to comprehensively characterize signaling landscapes by examining perturbations with drugs10

and knockdown approaches, or by assessing diverse phenotypes in cancers, neuro-degerenational diseases, infectious11

diseases, and normal development. Here, we comprehensively investigate the concept of “co-phosphorylation”, defined as12

the correlated phosphorylation of a pair of phosphosites across various biological states. We integrate nine publicly avail-13

able phospho-proteomics datasets for various diseases (including breast cancer, ovarian cancer and Alzhemier’s disease)14

and utilize functional data related to sequence, evolutionary histories, kinase annotations, and pathway annotations to in-15

vestigate the functional relevance of co-phosphorylation. Our results across a broad range of studies consistently show that16

functionally associated sites tend to exhibit significant positive or negative co-phosphorylation. Specifically, we show that17

co-phosphorylation can be used to predict with high precision the sites that are on the same pathway or that are targeted by18

the same kinase. Overall, these results establish co-phosphorylation as a useful resource for analyzing phospho-proteins19

in a network context, which can help extend our knowledge on cellular signaling and its dysregulation.20

1 Introduction21

Protein phosphorylation is a ubiquitous mechanism of post-translational modification observed across cell types and22

species. Recent estimates suggest that up to 70% of cellular proteins can be phosphorylated [1]. Phosphorylation is23

regulated by networks composed of kinases, phosphatases, and their substrates. Characterization of these networks24

is increasingly important in many biomedical applications, including identification of novel disease-specific drug targets,25

development of patient-specific therapeutics, and prediction of treatment outcomes [2,3].26

Phosphorylation is particularly important in the context of cancer, as down-regulation of tumor suppressors and up-27

regulation of oncogenes (often kinases themselves) by dysregulation of the associated kinase and phosphatase networks28

are shown to have key roles in tumor growth and progression [4, 5]. To this end, characterization of signaling networks29

enables exploration of the interconnected targets [6, 7, 8] and identification of causal pathways [9], leading to the devel-30

opment of kinase inhibitors to treat a variety of cancers [10, 11]. Disruptions in the phosphorylation of various signaling31

proteins have also been implicated in the pathophysiology of various other diseases, including Alzheimer’s disease [12],32

Parkinson’s disease [13], obesity and diabetes [14], and fatty liver disease [15], among others. As a consequence, there33

is increased attention to cellular signaling in biomedical applications, motivating researchers to study phosphorylation at34

larger scales [16].35

In response to the growing need for large-scale monitoring of phosphorylation, advanced mass spectrometry (MS)-36

based phospho-proteomics technologies have exploded [17]. These technologies enable simultaneous identification and37

quantification of thousands of phosphopeptides and phosphosites from a given sample [18]. These developments result38

in the generation of data representing the phosphorylation levels of hundreds of thousands of phosphosites under vari-39

ous conditions across a range of biological contexts, including samples from human patients, cell lines, xenografts, and40

mouse models [19]. As compared to the widespread availability and sharing of genomic and transcriptomic data, public41

repositories of phospho-proteomic data are sparse, but growing. As a consequence, secondary or integrative analyses42

of phospho-proteomic data are less common. Despite tremendous advances in the last decade, a majority of the human43
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phosphoroteome has not been annotated to date [20]. Technical issues such as noise, lower coverage, lower number44

of samples, and low overlap between studies further complicate the analysis of phospho-proteomic data from a systems45

biology perspective [19].46

In order to facilitate large-scale utilization of phospho-proteomic data, we introduced the notion of co-phosphorylation47

(Co-P) [21]. The motivation behind this approach is to represent phosphorylation data in the form of relationships between48

pairs of phosphosites. Defining co-phosphorylation as the correlation between pairs of phosphosites across a range of49

biological states within a given study, we alleviate such issues as batch effects between different studies and missing50

identifications, while integrating phosphorylation data across multiple studies. Recently, we applied Co-P to the prediction51

of kinase-substrate associations) [21] and unsupervised identification of breast cancer subtypes [22], showing that co-P52

enables effective integration of multiple datasets and enhances the reproducibility of predictions.53

Co-phosphorylation is similar in spirit, but distinct and complementary to the notion of co-occurrence [23]. Co-54

occurence qualitatively assesses the relationship between the identification patterns of phosphosites in a broad range55

of studies. Co-P, on the other hand, quantitatively assesses the relationship between the phosphorylation levels of sites56

across a set of biological states (within a single study or by integrating different studies). Thus, co-occurrence captures57

high-level functional associations among phosphosites, whereas Co-P can also discover context-specific associations and58

provide insights into the dynamics of signaling interactions.59

In this paper, we comprehensively characterize the relationship between co-phosphorylation and functional associa-60

tions/interactions among protein phosphorylation sites. For this purpose, we systematically compare Co-P networks to61

networks that represent other functional relationships between proteins and phosphosites. These analyses serve two62

purposes: (i) Validation of Co-P as a relevant and useful tool for inferring functional relationships between proteins, (ii)63

Generation of knowledge on the basic principles of post-translational regulation of proteins and the functional relationships64

between them.65

2 Materials and Methods66

2.1 Phospho-Proteomic Datasets67

We analyze 9 different MS-based phospho-proteomics data representing cancer and non-cancer diseases.68

• BC1 (Breast Cancer): Huang et al. [24] used the isobaric tags for relative and absolute quantification (iTRAQ) to69

identify 56874 phosphosites in 24 breast cancer PDX models.70

• BC2 (Breast Cancer): This dataset was generated to analyze the effect of delayed cold Ischemia on the stability71

of phosphoproteins in tumor samples using quantitative LC-MS/MS. The phosphorylation level of the tumor samples72

was measured across 3 time points [25]. The dataset includes 8150 phosphosites mapping to 3025 phosphoproteins73

in 18 breast cancer xenografts.74

• BC3 (Breast Cancer): The NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) conducted an extensive MS75

based phosphoproteomics analysis of TCGA breast cancer samples [26]. After selecting the subset of samples to76

have the highest coverage and filtering the phosphosites with missing intensity values in those tumors, the remaining77

data contained intensity values for 11018 phosphosites mapping to 8304 phosphoproteins in 20 tumor samples.78

• OC1 (Ovarian Cancer): This dataset was generated by the same study as BC2, using the same protocol. The79

dataset includes 5017 phosphosites corresponding to 2425 phosphoproteins in 12 ovarian tumor samples.80

• OC2 (Ovarian Cancer): The Clinical Proteomic Tumor Analysis Consortium conducted an extensive MS based81

phosphoproteomic of ovarian HGSC tumors characterized by The Cancer Genome Atlas [27]. We filtered out the82

phosphosites with missing data and also selected a subset of tumors to maximize the number of phosphosites. This83

resulted in a total of 5017 phosphosites from 2425 proteins in 12 tumor samples.84

• CRC (Colorectal Cancer): Abe et al. [28] performed immobilized metal-ion affinity chromatography-based phospho-85

proteomics and highly sensitive pY proteomic analyses to obtain data from 4 different colorectal cancer cell line. The86

dataset included 5357 phosphosites with intensity values cross 12 different conditions. These phosphosites map to87

2228 phosphoproteins.88

• LC (Lung Cancer): Wiredja et al. [29] performed a time course label-free phospho-proteomics on non-small lung89

cancer cell lines across 1, 6 and 24 hrs after applying two different treatments of PP2A activator and MK-AZD,90

resulting in total of 6 samples. They reported phosphorylation levels for 5068 phosphosites, which map to 216891

proteins.92

• AD (Alzheimer’s Disease): LC-MS/MS phosphoproteomics was performed on eight individual AD and eight age-93

matched control postmortem human brain tissues. The dataset contains 5569 phosphosites mapping to 2106 pro-94

teins [30].95
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Table 1: Descriptive statistics of the phospho-proteomic datasets used in our computational experiments and their overlap
with functional networks. For each dataset, the number of samples, the number of phosphorylation sites that were identified and the
number of proteins that are spanned by these sites are shown. For each dataset and functional network pair, the number in the first row
shows the number of sites with at least one interaction in the functional network and the second row shows the number of interactions
in the functional network with both sites present in the corresponding dataset.

Descriptive Statistics Overlap with Functional Networks
Dataset # Samples # Phosphosites # Proteins Shared Kinase PPI PTMCode PTMSigDB
BC1 24 15780 4539 805 7632 4437 138

27791 142077 15335 2547
BC2 18 8150 3025 243 1639 1007 54

2723 16541 1811 429
BC3 20 11472 3312 553 4491 3014 119

13123 45911 9127 2226
OC1 12 5017 2425 414 2450 1318 74

7174 17584 2580 1032
OC2 12 4802 2230 157 818 510 32

1114 4764 685 158
CRC 12 5352 2228 320 1663 1240 51

6237 17573 2715 421
LC 6 5068 2168 380 2036 1238 64

6493 17884 2919 588
AD 8 5569 1559 238 1743 941 44

3637 19075 3182 228
RPE 18 1016 619 120 371 193 31

931 1667 320 216

• RPE (Retinal Pigmented Epithelium): MS-based phosphoproteomics was performed on three cultured human-96

derived RPE-like ARPE-19 cells which were exposed to photoreceptor outer segments (POS) for different time97

periods (0, 15, 30, 60, 90, and 120 min) [31]. The dataset contains 1016 phosphosites mapping to 619 proteins in98

18 samples.99

2.2 Functional Networks100

To assess the functional relevance of co-phosphorylation, we use networks of functional relationships/associations be-101

tween pairs of phosphorylation sites. For this purpose, we consider four types of functional networks:102

Kinase-Substrate Associations (KSAs). We use PhosphoSitePLUS (PSP) [32] as a gold-standard dataset for103

kinase-substrate associations. PSP reports 9699 associations among 347 kinases and 6906 substrates. We use these104

associations to constructed a “shared kinase network” of phosphorylation sites, in which nodes represent phosphosites105

and edges represent the presence of at least one kinase that phosphorylated both sites. The associations obtained from106

PSP lead to a shared kinase network of 6906 phosphosite nodes and 881685 shared kinase edges.107

Protein-Protein Interaction (PPI). We use the PPIs that are provided in STRING database [33] with high confidence108

(combined score≥0.95). Overall, there are 61452 high-confidence interactions among 8987 proteins. For each of the 9109

datasets, we use these PPIs to construct an interaction network among the sites identified in that dataset. In this network,110

each node represents a phosphosite and each edge represents an interaction between the two proteins that harbor the111

respective sites.112

Evolutionary and Functional Associations. PTMCode is a database of known and predicted functional associations113

between phosphorylation and other post-translational modification sites [34]. The associations included in PTMCode are114

curated from the literature, inferred from residue co-evolution, or are based on the structural distances between phospho-115

sites. We utilize PTMcode as a direct source of functional, evolutionary, and structural associations between phospho-116

rylation sites. In the PTMcode network, there are 96519 phosphosite nodes and 4661285 functional association edges117

between these phosphosites.118

Phosphosite-Specific Signaling Pathways. We use PTMsigDB as a reference database of site-specific phospho-119

rylation signatures of kinases, perturbations, and signaling pathways [35]. While PTMSigDB provides data on all post-120

translational modifications, we here use the subset that corresponds to phosphorylation. There area 2398 phosphosites121

that are associated with 388 different perturbation and signaling pathways. We represent these associations as a binary122

network of signaling-pathway associations among phosphosites, in which an edge between two phosphosites indicates123

that the phosphorylation of the two sites is involved in the same pathway. The resulting network contains 6276 edges124

between 2398 phosphosite nodes.125
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For each functional network, the number of nodes/edges edges that overlap with our 9 phospho-proteomic datasets126

are shown in Table 1.127

2.3 Assessment of Co-Phosphorylation128

For a given phosho-proteomic dataset, we define the vector containing the phosphorylation levels of a phosphosite across129

a number of biological states as the phosphorylation profile of a phosphosite. For a pair of phosphosites, we define the130

co-phosphorylation of the two sites as the statistical association of their phosphorylation profiles. To assess statistical131

association, we refer to the rich literature on the assessment of gene co-expression based on mRNA-level gene expres-132

sion [36], and consider Pearson correlation [37], biweight-midcorrelation [38], and mutual information [39]. Since our133

experiments suggest that the different measures of association lead to similar results (data not shown), we use Pearson134

correlation as a simple measure of statistical association in our experiments.135

We use the datasets described in the previous section to characterize co-phosphorylation in relation to the functional,136

structural, and evolutionarily relationships between sites and proteins encoded in the functional networks. For this analysis,137

we investigate correspondence between co-phosphorylation in each individual MS-based phospho-proteomics dataset and138

each functional network.139

2.4 Integration of Co-Phosphorylation Networks Across Datasets140

Since co-phosphorylation can potentially capture context-specific, as well as universal functional relationships among
phosphorylation sites, we also investigate the functional relevance of co-phosphorylation across different datasets. While
integrating co-phosphorylation across multiple datasets, the number of samples (i.e., the number of dimensions used to
compute the correlation) in each dataset is different. For this reason, we use the adjusted R-squared [40] (denoted R2

d) to
remove the effect of number of dimensions from dataset-specific co-phosphorylation between pairs of phosphosites:

R2
d(i, j) = 1− nd − 1

nd − 2
(1− cd(i, j)2). (1)

Here, cd(i, j) denotes the co-phosphorylation (measured by Pearson correlation) in dataset d ∈ D with nd samples.141

In mass-spectrometry based phospho-proteomics, the overlap between the phosphorylation sites that are identified
across different studies is usually low [19]. Specifically, for the 9 datasets we use in our computational experiments,
there are only 17 phosphosites that are identified in all studies. Consequently, to preserve the scope of our cross-dataset
analysis, we use all sites that are identified in at least one study. For this purpose, we develop a measure of cross-dataset
co-phosphorylation that can integrate the co-phosphorylation scores computed on an arbitrary number of datasets. To
handle missing data without introducing bias, we set R2

d(i, j) = 0 if phosphosite i or phosphosite j is not present in dataset
d. Subsequently, we compute the integrated Co-P between sites i and j as follows:

cintegrated(i, j) = 1−
∏
d∈D

(1−R2
d(i, j)). (2)

Observe that, 0 ≤ cintegrated(i, j) ≤ 1, where the minimum value is realized if the two sites are never identified in the same142

dataset or their phosphorylation levels have zero correlation if they are identified together. If the phosphorylation levels of143

two sites exhibit perfect correlation in at least one dataset, then cintegrated = 1. Finally, as the number of datasets on which144

both sites are identified goes up, cintegrated also tends to go up. Thus cintegrated can be thought of as a measure of both145

co-occurrence [23] and co-phosphorylation [21], since it captures both the tendency of the sites being identified in similar146

contexts, as well as the relationship between their dynamic ranges of phosphorylation.147

3 Results and Discussion148

3.1 Statistical Significance of Co-phosphorylation149

To understand whether the notion of co-phosphorylation (co-P) is biologically relevant, we first investigate the distribution150

of co-P levels across all pairs of phosphosites identified within a study. The results of this analysis for 9 datasets are151

shown in Figure 1. As seen in the figure, co-P follows a normal distribution with mean close to zero (as would be expected152

if phosphorylation levels were drawn from a normal distribution) and the distribution is narrower (and likely less noisy)153

if more biological states (dimensions) are available. Based on the premise that co-P can capture functionally relevant154

relationships, we hypothesize that distribution of co-phosphorylation on real datasets would contain more positively and155

negatively correlated phosphosite pairs than would be expected at random. To test this hypothesis, we conduct permutation156

tests by permuting phosphorylation levels across the entire data matrix, and compute the co-P distribution on these157

randomized datasets. As seen in the figure, co-P is concentrated more on strongly positive or strongly negative correlation158
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Figure 1: Statistical significance of co-phosphorylation. Each panel compares the distribution of co-phosphorylation computed
on a specific dataset against that computed on randomly permuted data for each dataset. The blue histogram shows the distribution
of co-phosphorylation (the correlation between the phosphorylation levels) of all pairs of phosphosites identified in the corresponding
study, the pink histogram in each panel shows the average distribution of co-phosphorylation of all pairs of phosphosites across 100
permutation tests. The permutation tests are performed by randomly permuting all entries in the phosphorylation matrix. The difference
between the means of each pair of distributions is given on the colored boxes below. The 95% confidence intervals for the difference
are provided in brackets.

levels for all datasets. For all datasets, the Kolmogorov-Smirnov (KS) test p-values for the difference between the observed159

co-P distribution and permuted co-P of distribution are << 1E − 9. Similarly, the t-test p-values for the difference between160

the means of these distributions are << 1E−9 for all datasets except CRC. The mean difference and the 95% confidence161

interval for each dataset are provided below the histograms in the figure.162

Furthermore, for most datasets (BC2, BC3, OC1), we observe that the mean co-P is clearly shifted to the right, as also163

indicated by the effect size and the significance of the t-statistic.. For other datasets (BC1, CRC), the difference between164

the means is close to zero and the corresponding t-statistics are less significant. However, even for these datasets, the KS-165

test indicates that the difference between the distributions is significantl, and visual inspection of the historgrams suggests166

that the histogram for observed Co-P values is always more spread. This observation suggests that these datasets also167

contain a large number of site pairs with negatively correlated phosphorylation levels. Clearly, as with positive correlation,168

negative correlation can also be indicative of a functional relationship between two phosphorylation sites169

Taken together, for all studies considered, there are more pairs of phosphosites with (positively or negatively) correlated170

phosphorylation levels than would expected at random – hence a large fraction of these strong correlations likely stem from171

functional or structural relationships between the phosphosites.172

3.2 Co-Phosphorylation of Intra-Protein Sites173

Results of previous studies indicate that the phosphorylation of different sites of the same protein can lead to different174

functional outcomes [41, 42]. Here, with a view to characterizing the functional diversity of the phosphorylation sites on175

a single protein, we compare the Co-P distribution of pairs of phosphosites that reside on the same protein (intra-protein176

sites) against the Co-P distribution of pairs of phosphosites that reside on different proteins (inter-protein sites). We also177

investigate the effect of proximity between phosphorylation sites on the functional relationship between the sites. The178
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Figure 2: Co-phosphorylation of phosphorylation sites on the same protein. (a) Comparison of the distribution of Co-P for all site
pairs that are on the same protein (orange histogram) vs. co-P for all pairs of sites on different proteins (blue histogram). Each violin plot
represents a different dataset. Colored boxes below indicate the mean difference between the intra-protein pairs and inter-protein pairs.
Within brackets, 95% confidence interval for the mean Co-P difference are provided. (b) The relationship between co-P and sequence
proximity for pairs of sites that reside on the same protein. Each panel shows a different dataset, the x-axis in each panel shows the
distance between sites on the protein sequence (in terms of number of residues) and the y-axis shows the co-phosphorylation between
pairs of sites in close proximity (up to the corresponding distance in x-axis). The curve and shaded area respectively show the mean
Co-P and its 95% confidence interval.

results of this analysis are shown in Figure 2.179

As seen in Figure 2(a), the distribution of co-P for pairs of intra- and inter-protein sites are significantly different for most180

of the datasets (the mean differences and confidence intervals are provided in the figure, the p-values for the t-test as well181

as the KS-test are << 1E − 9 for all datasets except RPE). We consistently observe that the co-phosphorylation of intra-182

protein sites (orange histogram) is shifted towards high co-phosphorylation values. In other words,the phosphorylation183

levels of sites on the same protein are substantially more positively correlated as compared to the phosphorylation levels184
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of sites on different proteins. While this observation can be partially explained by the impact of protein expression levels,185

a recent study showed that the protein abundance is overall not a strong indicator of phosphorylation fold-changes [43].186

Thus, we hypothesize that intra-proteins pairs exhibit higher co-phosphorylation because those pairs are more likely to be187

targeted by the same kinase/phosphates, or that they are more likely to be functionally associated by being part of the188

same signaling pathways.189

Note that, the differences between the datasets in terms of the difference of intra- and inter-protein pairs are highly190

prononunced (e.g., we observe strong difference for BC1, BC3, OC1 while difference is more modest for BC2, CRC, and191

AD). While there can be biological reasons for this difference, it is important to note that each of these datasets come192

from different platforms, different sample types (e.g., patient-derived xenografts vs. cell lines), different data collection193

procedures (e.g., protein degradation due to proteases in the sample), and are highly divergent interms of availability of194

data (number of identified sites and number of samples). For this reason, the observed differences between the datasets195

can also be attributed to experimental, technological, or statistical reasons. Further investigation is needed to elucidate196

potential biological differences between the systems that are represented by these datasets.197

Next, we investigate whether the proximity on the protein sequence has any effect on the co-phosphorylation between198

two intra-protein sites. Since previous studies suggest that closely positioned sites tend to be phosphorylated by the same199

kinase [44], we expect a positive relation between sequence proximity and co-phosphorylation (i.e., we expect higher200

co-phosphorylation between close sites). To investigate this, we plot the relationship between the sequence proximity of201

intra-protein sites, and their co-phosphorylation (Co-P). Figure 2(b) shows that the closely positioned intra-protein sites202

have higher Co-P. Thus, we observe that as the phosphosites get far away from each other, their Co-P typically reduces.203

3.3 Co-phosphorylation and Functional Association204

Li et al. [23] show that phosphorylation sites that are modified together tend to participate in similar biological processes.205

Here, focusing on the dynamic range of phosphorylation, we hypothesize that phosphosite pairs with correlated phos-206

phorylation profiles are likely to be functionally associated with each other. To test this hypothesis, we investigate the207

relationship between Co-P and a broad range of functional associations. Since our results in Figure 2 suggest that there208

is a considerable difference between intra-protein and inter-protein sites in terms of their co-phosphorylation, we perform209

stratified analyses for intra- and inter-protein pairs. The results of this analysis are shown in Figure 3.210

Shared-Kinase Pairs. First, we consider the Co-P of the substrates of the same kinase (i.e., shared-kinase pairs) as211

annotated by PhosphositePlus. As seen in the Figure 3, in all datasets, the Co-P distribution of shared-kinase pairs is212

significantly shifted upwards, i.e., sites that are targeted by the same kinase are likely to exihibit stronger correlation of213

phosphorylation as compared to arbitrary pairs. While this difference is more pronounced for intra-protein pairs, it is also214

evident for inter-protein pairs. This observation is also in line with previous findings in the literature [21,43].215

Phosphorylation Sites on Interacting Proteins. Protein-Protein Interaction networks (PPI) encode physical and216

functional associations among proteins, thus have been used commonly for various inference tasks in cellular signaling.217

These tasks include identification of signaling pathways [45], identification of pathways that are mutated in cancers [46],218

prediction of the effect of mutations on protein interactions [47], and prediction of kinase-substrate associations [48]. It219

is also well-established that proteins that are coded by co-expressed genes are likely to interact with each other [49].220

Here, we compare the PPI network and Co-P network to investigate the pattern of Co-P of pairs of phosphosites on221

interacting proteins. Note that, by definition, we only have this type of functional interaction for inter-protein sites. As222

seen in the Figure 3, in most of the datasets we consider (including BC1, BC3, OC1, OC2, LC, RPE), there is a clear223

upward shift of co-P for sites on interacting proteins. This suggests that sites on interacting proteins are likely to be co-224

phosphorylated. Identification of the specific protein-protein interactions (PPIs) that are associated with co-phosphorylation225

can be potentially useful in elucidating the mechanisms of these PPIs.226

Co-evolution of Phosphorylation Sites. The conservation status of the phosphosites has been used as a tool to227

measure PTM activity [50]. It has been shown that co-evolving PTMs are likely to be functionally associated [51]. Here, we228

investigate the relationship between co-evolution and co-phosphorylation of phosphosites. The results of this analysis are229

shown in Figure 3. As seen in the figure, the association between co-evolution and co-phosphorylation is relatively weak230

compared to the association of co-P with other functional networks.231

Phosphorylation Sites with Common Signaling Pathways. Identifying the signaling pathways that are dysregulated232

in any perturbation and disease is crucial for understanding the underlying mechanism of diseases. While most databases233

for signaling pathways are limited to gene or protein-centric information, PTMsigDB [35] provides a collection of PTM234

site-specific signatures that have been assembled and curated from public datasets. Using PTMsigDB, we investigate the235

Co-P of phosphosites that are involved in the same pathway. As seen in Figure 3, there is considerable difference between236

the Co-P distribution of the phosphosites that are involved in the same signaling pathway as compated to that of other237

phosphosite pairs. Similar to the results for shared-kinase pairs, this difference is more pronounced for intra-protein sites.238
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Figure 3: The relationship between co-phosphorylation and functional association between pairs of phosphorylation sites. In
each panel, the violin plots compares the distribution of co-P for phosphosite pairs with an edge in the respective functional association
network (colored histograms) against all phosphosite pairs (gray-colored histograms), across the 9 datasets that are considered. For
each dataset, the left/right violin plots respectively show intra-/inter-protein pairs. The black horizontal lines show the mean Co-P for all
(intra- or inter-protein) phosphosite pairs, the colored horizontal lines show the mean Co-P for functionally associated pairs. The four type
of functional association networks that are considered are illustrated on the right side of the corresponding violin plot. On the rightmost
side, the colored tables show the mean difference between functionally associated pairs and all phosphosite pairs (corresponding to
the gap between colored and black horizontal lines in the violinplots) for 9 datasets and 4 functional networks. In each cell, the 95%
confidence intervals for the mean difference is given within brackets.

3.4 Predictive Power of Co-phosphorylation239

Our results indicate that phosphosites involved in a common pathway or targeted by a common kinase are likely to be co-240

phosphorylated across different biological states. Motivated by this observation, we quantitatively assess the effectiveness241

of Co-P in predicting shared-kinase and shared-pathway associations between phosphorylation sites. While doing so, we242

also assess the contribution of Co-P evidence supported by multiple datasets to the reliability of predictions on functional243

association. For this purpose, we assess the predictive ability of Co-P computed using each individual dataset as well as244

the integrated Co-P computed using cross-dataset analysis. The results of this analysis are shown in Figure 4.245

While constructing the co-P networks, we compute a co-P score for each pair of phosphosites, namely cd(i, j) for246

individual dataset d and cintegrated(i, j) for the integrated network. We then sort the pairs according to this co-P score247

and apply a moving threshold to generate a series of co-P networks with increasing number of edges. In the left panel of248

Figure 4, the precision-recall curves for the ability of this network in predicting shared-kinase interactions (top-left panel)249

and shared-pathway interactions (bottom-left panel) are shown. In this context, recall is the defined as the fraction of edges250

in the corresponding functional network that also exist in the co-P network, whereas precision is defined as the fraction251

of edges in the co-P network that also exist in the functional network. To provide a baseline for the predictive ability of252

the co-P network, we also visualize the mean precision and 95% confidence interval for given recall for a random ranking253

of phosphosite pairs across 20 runs. As seen in the figure, the precision provided by the co-P network is significantly254

higher than random ordering for both functional networks. We also observe that co-P delivers higher precision for the255
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Figure 4: The utility of co-phosphorylation in predicting the functional association of phosphorylation sites. (Left) Precision-
Recall curve showing the functional predictivity of the Co-P network obtained by integrating 9 different phospho-proteomic datasets. The
shaded gray area shows the 95% confidence interval for the mean precision-recall curve for permutation tests obtained by randomly
ranking pairs of phosphosites (across 20 runs). (Right) Comparison of the predictive performance of the integrated Co-P network against
the 9 individual Co-P networks obtained using each dataset separately. The x-axis shows the number of pairs that are included in the
co-P network, the y-axis shows the odds ratio of being connected in the respective functional network given that the sites are connected
in the co-P network. (Top) Predicting shared-kinase associations. (Bottom) Predicting shared-pathway associations.

shared-pathway network as compared to the shared-kinase network. This is likely because the information in PTMSigDB256

is sparser than the information in PhosphositePLUS.257

The right panel of Figure 4 shows the odds ratio of a pair of sites being connected in the functional network as a258

function of the number of edges in the co-P network. Namely, in these plots, a point on the x axis corresponds to a co-P259

network with a given number of edges. For this network, the value on the y-axis shows the odds ratio of the event that two260

sites are connected in the functional network given that they are connected in the co-P network, as compared to a random261

pair of sites. As seen in the figure, for both shared-kinase and shared-pathway networks, the odds-ratio provided by the262

integrated co-P network is consistently higher than that provided by any individual network. While the odds-ratio of sharing263

a kinase goes up to 100 and the odds-ratio of being involved in the same pathway goes up to 30 for pairs of sites with264

co-P, these odds-ratios respectively converge to 4 and 2 as more edges are added to the integrated co-P network. Overall,265

these results suggest that co-P networks provide valuable information on the functional association of phosphorylation266

sites and this information becomes more reliable as co-P information from more datasets are included in the co-P network.267
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4 Conclusion268

Mass-spectrometry techniques are advancing and more MS-based quantitative phosphoproteomics data are generated269

at high volumes. However, integration of these data may be challenging since the data is generated in different labs and270

in different contexts. By focusing on the relationships between pairs of phosphosites as opposed to their individual phos-271

phorylation levels, co-phosphorylation networks can alleviate the dependency of computational and statistical methods on272

these factors. In this paper, we systematically investigated the relationship between co-phosphorylation and broad range273

of known functional associations between proteins and phosphorylation sites. Our results showed that the sites that are274

functionally associated tend to exhibit higher levels of co-phosphorylation. Our results also showed that the integration of275

co-phosphorylation networks across different datasets can improve the predictivity of co-phosphorylation, as compared to276

analyzing the datasets in isolation. These results highlight the power of network models and network-based analyses of277

phosphorylation data in predicting the functional relationships among phospho-proteins, kinases, and phosphatases in the278

context of cellular signaling.279
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[6] Doriano Fabbro, Sandra W Cowan-Jacob, Henrik Möbitz, and Georg Martiny-Baron. Targeting cancer with small-298

molecular-weight kinase inhibitors. In Kinase Inhibitors, pages 1–34. Springer, 2012.299

[7] Peng Wu, Thomas E Nielsen, and Mads H Clausen. Small-molecule kinase inhibitors: an analysis of fda-approved300

drugs. Drug discovery today, 21(1):5–10, 2016.301

[8] Serhan Yılmaz, Marzieh Ayati, Daniela Schlatzer, A Ercüment Çiçek, Mark R Chance, and Mehmet Koyutürk. Robust302
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