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Abstract—Phenotypic heritability of complex traits and dis-
eases is seldom explained by individual genetic variants identified
in genome-wide association studies (GWAS). Many methods
have been developed to select a subset of variant loci, which
are associated with or predictive of the phenotype. Selecting
connected SNPs on SNP-SNP networks have been proven suc-
cessful in finding biologically interpretable and predictive SNPs.
However, we argue that the connectedness constraint favors
selecting redundant features that affect similar biological pro-
cesses and therefore does not necessarily yield better predictive
performance. In this paper, we propose a novel method called
SPADIS that favors the selection of remotely located SNPs in
order to account for their complementary effects in explaining
a phenotype. This is achieved by maximizing a submodular set
function with a greedy algorithm that ensures a constant factor
approximation to the optimal solution. We compare SPADIS to
the state-of-the-art method SConES, on a dataset of Arabidopsis
Thaliana with continuous flowering time phenotypes. SPADIS
has better average phenotype prediction performance in 15 out
of 17 phenotypes when the same number of SNPs are selected
and provides consistent improvements across multiple networks
and settings on average. Moreover, it identifies more candidate
genes and runs faster. We also investigate the use of Hi-C
data to construct SNP-SNP network in the context of SNP
selection problem for the first time, which yields improvements in
regression performance across all methods. SPADIS is available
at http://ciceklab.cs.bilkent.edu.tr/spadis

Index Terms—Phenotype Prediction, GWAS, SNP Selection,
SNP-SNP Networks, Hi-C, Submodular Function.

I. INTRODUCTION

Genome-Wide Association Studies (GWAS) have led to a
wide range of discoveries over the last decade where indi-
vidual variations in DNA sequences, usually single nucleotide
polymorphisms (SNPs), have been associated with phenotypic
differences (Visscher et al., 2017). However, individual vari-
ants often fail to explain the heritability of complex traits
and diseases (Manolio et al., 2009; Goldstein et al., 2009)
as a large number of variants contribute to these phenotypes
and each variant has a small overall effect (Kraft and Hunter,
2009; Christensen and Murray, 2007). Thus, evaluating and
associating multiple loci with a given phenotype is critical
(Moore et al., 2010; Cordell, 2009). Indeed, detecting genetic
interactions (epistasis) among pairs of loci has proven to be
a powerful approach as discussed in several reviews (Phillips,
2008; Cordell, 2009; Wang et al., 2010a; Wei et al., 2014).

Detecting higher-order combinations of genetic variations
is computationally challenging. For this reason, exhaustive
search approaches have been limited to small SNP counts (up
to few hundreds) (Nelson et al., 2001; Ritchie et al., 2001;
Lou et al., 2007; Lehar et al., 2008; Hua et al., 2010; Fang
et al., 2012) and greedy search algorithms have been limited
to searching for small combinations of SNPs — mostly around
3 (Storey et al., 2005; Evans et al., 2006; Yosef et al., 2007,
Varadan and Anastassiou, 2006; Varadan et al., 2006; Zhang
and Liu, 2007; Herold et al., 2009; Tang et al., 2009; Jiang
et al., 2009; Zhang et al., 2010; Wang et al., 2010b; Wan
et al., 2010; Guo et al., 2014; Ding et al., 2015; Ayati and
Koyutiirk, 2016; Tuo et al., 2017). Multivariate regression-
based approaches have been used (Shi er al., 2008; Wu et al.,
2009; Cho et al., 2010; Wang et al., 2011a; Rakitsch et al.,
2012). However, (i) their predictive power is limited, (ii)
incorporation of biological information in the models is not
straightforward, and finally (iii) selected SNP set is often not
biologically interpretable (Azencott et al., 2013).

Assessing the significance of loci by grouping them based
on functionally related genes, such as pathways, reduces the
search space for testing associations and leads to the discovery
of more interpretable sets (Wang et al., 2011b; de Leeuw et al.,
2015). Unfortunately, using gene sets and exonic regions for
association restricts the search space to coding and nearby-
coding regions. However, most of the genetic variation fall into
non-coding genome (Hindorff ef al., 2009) and our knowledge
of pathways are incomplete.

An alternative strategy to avoid literature bias is to select
features on the SNP-SNP networks by applying regression
based methods with sparsity and connectivity constraints
(Jacob et al., 2009; Huang et al., 2011). These regularized
methods jointly consider all predictors in the model as op-
posed to univariate test of associations. Nevertheless, using
a SNP-SNP interaction network with these regression based
methods on GWAS yields intractable number of interactions.
An efficient method called SConES uses a minimum graph
cut-based approach to select predictive SNPs over a network
of hundreds of thousands of SNPs (Azencott et al., 2013;
Sugiyama et al., 2014). In their network, edges denote either
(i) spatial proximity on the genomic sequence or (ii) functional
proximity as encoded with PPI closeness of loci. The method
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selects a connected set of SNPs that are individually related
to the phenotype under additive effect model and has been
shown to perform better than graph-regularized regression-
based methods.

We argue that enforcing the selected features to be in
close proximity encourages the algorithm to pick features that
are in linkage disequilibrium or that have similar functional
consequences. One extreme choice of this approach would
be to choose all SNPs that fall into the same gene if they
are individually found to be significantly associated with the
phenotype. When there is an upper limit on the number of
SNPs to be selected, this leads to selecting functionally re-
dundant SNPs and miss variants that cover different processes.
Genetic complementation, on the other hand, is a well-known
phenomenon where multiple loci in multiple genes need to
be mutated in order to observe the phenotype (Fincham,
1968). While there are numerous examples of long-range
(trans) genetic interactions for transcription control (Miele
and Dekker, 2008) and long-range epistasis is evident in
complex genetic diseases such as type 2 diabetes (Wiltshire
et al., 2006), such complementary effects may not be treated
with this approach. For disorders with complex phenotypes
like Autism Spectrum Disorder (ASD), this would be even
more problematic since multiple functionalities (thus gene
modules in the network) are required to be disrupted for an
ASD diagnosis, whereas damage in only one leads to a more
restricted phenotype (Geschwind, 2008).

We hypothesize that diversifying the SNPs in terms of
location would result in covering complementary modules in
the underlying network that cause the phenotype. Based on this
rationale, here, we present SPADIS, a novel SNP selection
algorithm over a SNP-SNP interaction network that favors
(1) loci with high univariate associations to the phenotype
and (ii) that are diverse in the sense that they are far apart
on a loci interaction network. In order to incorporate these
principles, we design a submodular set scoring function and
select SNPs by maximizing this set function. To maximize
this set function, we use a greedy algorithm that is guaranteed
to return a solution which is a constant factor (1 — 1/e)
approximate to the optimal solution. We compare our algo-
rithm to the state-of-the-art method SConES, on a GWAS
of Arabidopsis Thaliana (AT) with 17 continuous phenotypes
related to flowering time (Atwell ef al., 2010). We show that
SPADIS has better average regression performance in 15 out
of 17 phenotypes with better runtime performance. Moreover,
our method always identifies more candidate genes (up to
50%) and always hits more Gene Ontology (GO) terms (up to
20%) on average, indicating that selection of SPADIS is more
diverse.

Finally, we employ Hi-C data in the context of SNP selec-
tion problem for the first time. Emerging evidence suggests
that the spatial organization of the genome plays an important
role in gene regulation (Bickmore, 2013) and contacts in
3D have been shown to affect the phenotype (Martin et al.,
2015; Jager et al., 2015). Hi-C technology can detect the
3D conformation genome-wide and yield contact maps which

show loci that reside nearby in 3D (van Berkum et al., 2010).
We construct a SNP-SNP network based on genomic contacts
in 3D as captured by Hi-C and use this network to guide SNP
selection. Our results show that use of Hi-C based network
provides a slight overall increase in the prediction performance
for all methods tested.

II. METHODS

The problem is formalized as a feature selection problem
over a network of SNPs. Let n be the number of SNPs. The
problem is to find a SNP subset S with cardinality at most k <
n that explains the phenotype, given a background biological
network G(V, E). In G, vertices represent SNPs and edges link
loci which are related based on spatial or functional proximity
as explained in sections below. G can be a directed or an
undirected graph.

We utilize a two-step approach. In the first step, we assess
the relation of each SNP to the phenotype individually using
the Sequence Kernel Association Test (SKAT) (Wu et al.,
2011). In the second step, our goal is to maximize the total
score of SNP set while ensuring the selected set consists of
SNPs that are remotely located on the network. Under the
additive effect model, we define the set function shown in
Equation 1 to encode this intuition.

F(S)=> |ci+8 1—ZK(i’j) (1

i€s jes 2k
K(i.j) = { 0 otherwise

Here c is the scoring vector such that ¢; € R>o indicates
the level of the i-th SNP’s association with the phenotype.
D e R.g is a distance limit parameter and d(i,j) is the
shortest path between vertices 4, j € V. Note that, d(¢, j) = oo
if 7 is not reachable from . K (4, j) is a function that penalizes
vertices that are in close proximity. That is, the vertices @
and j are considered close if and only if d(i,5) < D. The
second parameter, 3 € R>( controls the penalty to be applied
when two close vertices are jointly included in S. Note that,
K(i,j) € [0,1],Vi,j € V and ¢; is non-negative.
Our aim is to find a subset of SNPs S* of size &k that
maximizes F:
S* = argmax F(S) 2)
SCV,|S|<k
Subset selection problem with cardinality constraint is NP-
hard. Thus, exhaustive search is infeasible when k or V
is not small. We make use of the fact that the function
defined in Equation 1 is submodular. Although submodular
optimization itself is NP-hard as well (Krause and Guestrin,
2005), the greedy algorithm given in Algorithm 1, pro-
posed by Nemhauser et al. (1978), guarantees a (1 — %)-
factor approximation to the optimal solution under cardinality
constraint for monotonically non-decreasing and non-negative
submodular functions. The greedy algorithm starts with an
empty set and at each step, adds an element that maximizes the
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Algorithm 1 Greedy Algorithm

Input: Set function F, ground set V, cardinality constraint
kE<|V].
Output: Set S C V such that |S|=k
1. S+ (Z)
2: while |S|< k do
3: S« S Uargmax F(SUx)
zeV\S
4: end while

set function. Note that, this is equivalent to adding elements
with the largest marginal gain.

For each of the k iterations in the algorithm, where £ is the
size of S*, a single source shortest path problem needs to be
solved. Hence, the worst-case time complexity of the algorithm
is O(k(V + E)) assuming that all edge weights are positive.
For undirected graphs, K (i,j) = K(j,4) and computations
can be reduced by half.

A submodular function is a set function for which the gain
in the value of the function after adding a single item decreases
as the set size grows (diminishing returns). Next, we prove that
F' is a submodular set function.

Definition 1. V is the ground set, F" 2V 5 Rand SCV.
The marginal gain of adding one element to the set S is:
G(S,z) = F(SU{z}) — F(S) where z € V'\ S.

By plugging the definition of F' in Equation 1, we can
rewrite G.

G(S,z)=F(SuU{z}) — F(S)

K(i,j
=3 a8 Y 1= Y ( (Zk])>

i€eSU{z} ieSu{z} jeSu{x}

K (i, j)

at+pY (1= (F

=cp+ 8- ZkZ (i,2) + K(z,1))

€S

3)

Definition 2. A function F' that is defined on sets, is
submodular if and only if G(4, z) > G(B, z) or equivalently
F(Au{z})—F(A) > F(BU{z}) — F(B) for all sets A, B
where ACBCVand z € V'\ B.

Lemma 1. F(.S) given in Equation 1 is submodular.

Proof. F is submodular if and only if the following is true:

Let H(A, B, z) be

H(A,B,z) = G(A,x) — G(B, )
€A

- <cz+ﬂ fk (Z(K(i,xHK(W»))

ieB
= ﬁ K(,x)+ K(x,1
2k
i€B\A
(5
Since K(i,7) > 0Vi,j € V, H(A,B,z) > 0. Hence, F is
submodular. [ O

To be able to use the greedy algorithm, F' must be a mono-
tonically non-decreasing and non-negative function. Below, we
prove that I satisfies these properties.

Definition 3. F(S) is monotonically non-decreasing func-
tion for sets if and only if the corresponding gain function is
always non-negative i.e. G(S,z) > 0 for all sets S C V and
zeV.

Lemma 2. F(S) given in Equation 1 is monotonically non-
decreasing for sets for which |S|< k .

Proof. Since K (i,j) <1 Vij, G(S,z) is bounded such that;

B

G(Sx)>cm+ﬁ—% (14+1)

€S
Zcx+5**2|5\ (6)

> ¢ +B(1— ISI/k)
> (1—S]/k)
>0

Since |S|< k, F(S) is monotonically non-decreasing.
O O

Lemma 3. F(S) given in Equation 1 is non-negative for sets
|S|< k.

Proof. For any set S = {v1,va, ..., v, } with cardinality n, let
S* denote the subset of S that contains elements up to the
i-th element, i.e. S = {vy,v2,...,v;} and S* = ) for i = 0.
F(S) can be decomposed as the summation of marginal gain
functions:

F(S)=F©0)+) G5, v) (7)
i=1
F(0) = 0 by the definition of F(S). Lemma 2 states that

G(S,z) >0 for all sets S C V and z € V' \ S when |S|< k.
Hence F(S) > 0 for all sets S C V where |S|< k. O
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III. RESULTS
A. Dataset

We use AT genotype and phenotype data from Atwell
et al. (2010). The dataset includes 17 phenotypes related to
flowering times (up to m = 180 samples and n = 214051
SNPs). Gene-gene interaction network is constructed based
on TAIR protein-protein interaction (PPI) data!. SNPs with
a minor allele frequency (MAF) < 10% are disregarded
(n =173219 SNPs remained) and population stratification
is corrected using the principal components of the genotype
data (Price et al., 2006). Candidate genes pertaining to each
phenotype is retrieved from Segura et al. (2012) and used
for validating the models. Gene Ontology (GO) annotations
are obtained from TAIR (Berardini et al., 2004). We obtain
the Hi-C data for AT from Wang et al. (2015) and process
the intra-chromosomal contact matrices using the Fit-Hi-C
method (Ay et al., 2014).

B. Networks

We construct four undirected SNP-SNP networks. To be
able to compare the performances of SPADIS and SConES in
a controlled setting, we use three networks defined in Azencott
et al. (2013): The GS (gene sequence) network links loci that
are adjacent on the DNA sequence. The GM (gene member-
ship) network additionally links two loci if both loci fall into
the same gene or they are both close to the same gene below
a threshold of 20000 bp. The GI (gene interaction) network
also links any two loci if their nearby genes are interacting in
the protein interaction network. Note that, GS C GM C GI.
To investigate the usefulness of the 3D conformation of the
genome in this setting, we introduce a new network, GS-HICN
which connects loci that are close in 3D in addition to 2D
(GS). That is, an edge is added on top of the GS network
for loci pairs that are significantly close in 3D (FDR adjusted
p-value < 0.05). All networks contain 173219 vertices. The
number of (undirected) edges are as follows: GS: 173214,
GM: 11661 166, GI: 18134516, GS-HICN: 2919 607.

C. Compared Methods

We compare SPADIS with the following methods:
SConES: A network-constrained SNP selection method with
a max-flow based solution (Azencott et al., 2013).
Univariate: We run univariate linear regression and select
SNPs that are found to be significantly associated with the
phenotype (FDR-adjusted p-value < 0.05) (Yekutieli and Ben-
jamini, 1999). If the number of SNPs found to be associated is
larger than a cardinality constraint of k£ (the maximum number
of SNPs to be selected), only the most significant k& SNPs are
picked.

Lasso: The Lasso regression (Tibshirani, 1996) that minimizes
the prediction error with the ¢1-regularizer of the coefficient
vectors. We use the SLEP implementation (Liu et al., 2009).
GraphLasso and GroupLasso: We also compare our method
to GraphLasso and GroupLasso (Jacob et al., 2009) through

Lftp://ftp.arabidopsis.org/home/tair/Proteins/

simulations, using the implementation in the SLEP package.
Due to the prohibitive runtimes of these algorithms, they
are excluded from the comparison on AT dataset (see Time
Performance section). For GraphLasso, SNP pairs connected
with an edge constitute a separate group, i.e. one such group
is constructed for every edge in the network. For GroupLasso,
the groups are defined as follows. For GS: every consecutive
SNP pair on the genome constitute a single group. This is
equivalent to setting a group for an edge. For GM: the SNPs
near (< 20 kbp) a gene are considered as a group, and a
separate group is constructed for every gene. For GI: the SNPs
that are near interacting genes in the PPI network are combined
and formed a single group. The SNPs that are near genes that
do not participate in the gene interaction network are assigned
to groups based on their gene membership as in GM. For
GS-HICN: SNP pairs connected with an edge is considered
as a separate group similar to the groups in GraphLasso.

D. Experimental Setup

A fair comparison among such a diverse range of methods
is challenging. SPADIS operates with a cardinality constraint,
whereas other methods have parameters that affect the number
of selected SNPs. To account for such differences, we compare
the methods using either of the following constraints: (1) Tight
cardinality constraint where all methods select a fixed number
of SNPs which is k, and (2) maximum cardinality constraint
where the methods are allowed to select SNP sets of different
sizes as long as the set sizes are smaller than an upper bound
k. In both cases, SPADIS selects k SNPs.

Some of the methods that we compare SPADIS to, such as
SConES and Lasso, do not operate with a cardinality constraint
directly. In order to satisfy the tight cardinality constraint,
during parameter selection of these methods, we apply binary
search over a range of sparsity parameter values that yields
numbers close to k. For the rest of the parameters or all
parameters in the case of maximum cardinality constraint (in-
cluding sparsity parameter), we select them using two metrics
separately: stability, denoted with (S) and found using the con-
sistency index as described in Kuncheva (2007), and regression
performance, denoted with (R), measured using Pearson’s
squared correlation coefficient. The details on parameter selec-
tion for each method are provided in Supplementary Text 3.1.

Since we compare SPADIS with SConES in various settings,
as a first step, we verify that we make use of SConES properly
by replicating the results reported in Azencott er al. (2013)
using their setting. Then, we compare SPADIS with SConES
and other methods using another evaluation scheme.

1) Replicating results of SConES: Here, we use SConES’
setting explained in Azencott ef al. (2013). First, using 10-fold
cross validation, the desired objective function (i.e. stability
for SConES(S), regression performance for SConES(R)) are
measured for all parameters tested. The parameter values that
maximize the desired objective are selected, and the final SNP
set is determined with these parameters. Then, for evaluation, a
ridge regression is performed on the complete dataset in a 10-
fold cross validated setting using this SNP set and Pearson’s
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squared correlation coefficient is calculated for regression
performance. Although this strategy is adopted by Azencott
et al. (2013) due to the limited dataset size, it also implicates
that the test data is used during the parameter selection step
which might lead to memorization.

In order to reproduce the results, we apply tight cardinality
constraint during parameter selection, targeted at the number
of SNPs that are reported in the paper. We show that our
replicated results are on par with the reported R? and ratio
of SNPs near candidate genes, respectively, indicating that
we are able to replicate their results. These results are shown
in Supplementary Figures 1 and 2, respectively. In addition,
we run SConES(R), SConES(S) and SPADIS for the tight
cardinality constraint of £ = 500 using this setting. The
corresponding results suggest that SPADIS performs better in
regression performance in this setting —see Supplementary
Figure 3.

2) Evaluation of SPADIS and compared methods: In this
study, we use nested cross-validation for evaluation. The
outer 10-fold cross-validation splits the data into training and
test data, and the inner 10-fold cross-validation selects the
parameters using the training data only. For each fold in the
outer cross-validation, a separate SNP set is selected and the
test data is not seen by the algorithms. Unless otherwise stated,
we use this setting in our experiments.

E. Simulation Experiments

To assess the performance of the methods in a controlled
manner, we conduct simulation experiments. We randomly
choose 200 samples (out of 1307) in AT data. We select 500
random SNPs with MAF > 10% as follows: We first select 25
genes randomly. Then, we select 20 random SNPs near (< 20
kbp) each gene. In each experiment, we designate 15 SNPs to
be causal and generate phenotypes using the regression model:
y = Xw + ¢, where y € R™*! is the phenotype vector,
X € R™*™ is the genotype matrix, w € R™*! is the weight
vector for each SNP, and € is the error term. Both w and ¢
are normally distributed. We sample the weights of the causal
SNPs from a standard normal distribution. We argue that in a
real-life setting, there is no clear separation between causal and
non-causal SNPs i.e. all SNPs play some part in explaining the
phenotype at varying degrees. Hence, we sample the weights
of the non-causal SNPs from a normal distribution with zero
mean and 0.1 standard deviation instead of setting the standard
deviations directly to zero. In our tests, we use the GS network
as the SNP-SNP network.

We compare the methods under four different simulation
settings: (a) the causal SNPs are randomly selected, (b) the
causal SNPs are selected randomly such that they are near
different genes, (c) 5 causal genes are determined and 3 SNPs
near each causal gene are selected for a total of 15 SNPs, and
(d) the causal SNPs are selected near a single random gene.

For each method, we adopt the tight cardinality constraint
and test with k = 5, 10 and 15. For evaluation, we consider
three metrics: (i) Precision as the ratio of the number of causal
SNPs that are selected to the total number of SNPs selected,

(i1) Number of causal genes hit (a gene is hit if a SNP near that
gene is selected), (iii) Pearson’s squared correlation coefficient
(R?). We perform 10-fold cross-validation 50 times and report
averages over all folds. The 95% confidence interval for the
means of the specified statistics are calculated assuming a
t-distribution on the error.

In simulation settings (a), (b) and (c), SPADIS outperforms
other methods when k is less than the number of causal SNPs
—see Figure 1. When £k is equal to the number of causal SNPs,
Lasso catches up to SPADIS and they outperform all other
methods. In setting (d) where the assumptions of SPADIS are
violated, SPADIS underperforms compared to others in terms
of Precision. Regardless, its regression performance is on a
par with other methods. Note that, this is the setting where
methods with graph connectivity assumption should perform
well (casual SNPs are close). However, this scenario is not
realistic since all associated SNPs are rarely that close to each
other for complex traits.

Next, we check the number of causal genes hit (GenesHit)
for all methods. In all simulation settings, we observe a
correlation between GenesHit and R? (i.e. methods that per-
form well in GenesHit perform well in R? as well). We
argue that high number of hit genes indicates high regression
performance because when the selected SNPs fall into different
genes, they are likely to contain complementary information
and can explain the phenotype better. This constitutes the core
idea of SPADIS.

F. Phenotype Prediction Performance

1) Experiments with Tight Cardinality Constraint: First,
we compare the regression performances of SConES(S),
SConES(R) and SPADIS in AT data using the Pearson’s
squared correlation coefficient (R2) by constraining them to
select close to k SNPs (tight cardinality constraint). Here, we
report results for £k = 500 which we consider representative
—see Figure 2. The results for £ = 100, 250, and 1000 are
provided in Supplementary Figures 4, 5 and 6, respectively.

Out of 68 tests that is performed for & = 500 over 17
phenotypes using 4 different networks separately as input,
SPADIS outperforms SConES(S) in 46 tests and SConES(R)
in 47 tests. The improvement in R? is up to 0.15 in a single
phenotype and 0.03 on average. Overall, this corresponds to
an improvement in 12 out of 17 phenotypes when averaged
over all networks. Next, we test whether the differences in
R? are statistically significant (FDR adjusted p-value < 0.05)
using the method described in Hittner et al. (2003). The
multiple hypothesis correction is conducted as in Yekutieli
and Benjamini (1999). 3 results of SPADIS are found to be
significantly better than SConES, whereas none of the results
of SConES is found to be significantly better than SPADIS.

When averaged over all k& values tested and all networks,
SPADIS performs better than SConES in terms of Pearson’s
squared correlation coefficient in 15 out of 17 phenotypes
—see Supplementary Table 1. Moreover, SPADIS provides
a consistent improvement in regression performance over
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(d) The causal SNPs are selected such that they are near the same gene.

Fig. 1: The simulation results of SPADIS, SConES(S), SConES(R), Univariate, Lasso, GroupLasso and GraphLasso for & = 5,
k =10 and k = 15. (a) Causal SNPs are picked randomly. (b) All causal SNPs are from different genes. (c) Causal SNPs are
from 5 different genes (d) All causal SNPs are from the same gene. (Left) Pearson’s squared correlation coefficient, (Middle)
Number of causal genes hit, (Right) Precision calculated for causal SNPs hit. Black bars indicate the 95% confidence intervals.
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FTGH| 0.53-0.53 | 0.48-0.49 | 0.50-0.51 | 0.53-0.53 FTGH| 0.53-0.47 | 0.48-0.50 | 0.50-0.50 | 0.53-0.54
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LDV | 0.59-0.51 0.63 - 0.52 LDV| 0.59-0.54 | 0.61-0.56 | 0.63-0.53 | 0.62-0.54
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2w| 062-0.56 | 0.58-0.59 | 0.57-0.56 | 0.60-0. 2w| 0.62-0.55 | 0.58-0.55 | 0.57-0.51 | 0.60-0.55 [R50
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Fig. 2: The regression performance comparisons of SPADIS with SConES(S) and SConES(R) on AT data for tight cardinality
constraint of £ = 500. The rows denote phenotypes and the columns denote networks. The numbers in each cell show Pearson’s
squared correlation coefficients attained by SPADIS and SConES respectively. The background color encodes the difference in
correlation coefficients. Red indicates SPADIS performs better than SConES while blue indicates otherwise. Differences that
are found to be statistically significant are shown in bold, white font and marked with star (*).

SConES when averaged over all phenotypes. This improve-
ment of SPADIS over SConES is summarized in Figure 3 for
each network and k value tested. Note that, the improvement
is particularly prevalent when k is smaller. On the other hand,
we observe that average performance of both methods increase
as the set size grows. Therefore, for a fair comparison, we
believe that it is important to compare the methods when they
select the same number of SNPs. That is why we perform the
experiments with tight cardinality constraints.

2) Experiments with Maximum Cardinality Constraint: A
more natural setting for SConES and other compared methods
is to let them decide the number of SNPs based on their
parameter search procedure. Hence, we perform a second
set of experiments in which we allow methods to pick the

SNP set size as long as the set sizes are bounded from
above by 1733 i.e. 1% of the number of all SNPs as done
in Azencott et al. (2013). Here, we compare SPADIS with
SConES(S), SConES(R), Univariate, Lasso(S) and Lasso(R)
on all phenotypes and all networks.

SPADIS is the best performing method in 8 out of 17 phe-
notypes on GS and GI networks and the best in 9 phenotypes
on GM and GS-HICN networks (see Supplementary Figures
7-10). When regression performances (R?) are averaged over
all phenotypes for each method, SPADIS outperforms all other
methods on every network (see Figure 4). The next two best
performing methods are SConES(R) and Lasso(R) respec-
tively. Unsurprisingly, the methods that directly optimize or are
tuned based on R? are better in regression than their stability
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Fig. 3: The improvement of SPADIS over SConES in terms
of (left) Pearson’s squared correlation coefficient and (right)
number of distinct candidate genes-hit for different tight
cardinality constaints k. All values shown are averages over 17
phenotypes. Blue bar indicates the maximum of SConES(S)
and SConES(R) for the corresponding network and k value.
The red bar indicates the amount of improvement of SPADIS
over SConES.

optimizing versions on average.

Next, we check whether the differences between SPADIS
and other methods are statistically significant. Out of 68 ex-
periments of SPADIS (17 phenotypes x 4 networks) SPADIS
is found to be significantly better than (i) SConES(R) in 2
experiments, (ii) Lasso(R) in 6 experiments, (iii) SConES(S) in
14 experiments, (iv) Univariate in 17 experiments, and finally,
(v) Lasso(S) in 28 experiments. In none of the experiments,
SPADIS is found to be significantly worse than its counter-
parts. See Supplementary Figures 11-13 for the corresponding
results.

G. Diverse Selection of SNPs

The goal of SPADIS is to select a diverse set of SNPs over
the SNP-SNP network. We hypothesize that SNPs selected
with SPADIS overlap with more diverse biological processes
and that the prediction performance is reinforced by this effect.
Here, we investigate whether this hypothesis is supported
by empirical values on the 17 flowering time phenotypes
of AT. To this end, we utilize three metrics: (1) Genes-Hit,
(2) GO-Hit, and (3) Precision, which are explained in the
following subsections. Since the performance with respect
to these metrics typically depends on the number of SNPs
selected, we apply tight cardinality constraint and report the
results for £ = 100, 250, 500 and 1000.

1) Evaluation with Genes-Hit metric: First, we compare the
average number of candidate genes hit by each method (out
of 165 candidate genes related with flowering time). A gene is
considered hit if the method selects a SNP near the gene (< 20
kbp). SPADIS hits 7%-46% more distinct candidate genes
compared to the next best performing method on average,
over different cardinality constraints —see Table I. This is
an indication that SPADIS realizes one of its goals which is
to spatially cover the network and genome.

2) Evaluation with GO-Hit metric: Here, we check how
many distinct GO biological processes are hit by the SNPs

Pearson's squared correlation coefficient

GS GM Gl GS-HICN

0.440.440.44
040

Fig. 4: Regression performances of SPADIS, SConES(S),
SConES(R), Univariate, Lasso(S) and Lasso(R) averaged over
17 AT phenotypes for maximum cardinality constraint of
1733. X-axis shows the compared methods and Y-axis shows
the Pearson’s squared correlation coefficient (R?). For each
network, methods are ordered in descending order of R2.

selected by each method. A process is considered hit if the
method chooses a SNP near a gene which is annotated with
that biological term.

As shown in Table I, SNPs discovered by SPADIS covers 151,
306, 491 and 747 GO-terms on average for k£ = 100, 250, 500
and 1000 respectively. This is an increase of 5% to 17%
compared to the next best performing method, over different
cardinality constraints. It supports our intuition that SPADIS
discovers SNPs that are related to diverse processes.

3) Evaluation with Precision metric: Finally, for the sake
of completeness, we compare SPADIS and other methods with
respect to the ratio of the number of selected SNPs that are
near a candidate gene to the total number of selected SNPs,
as done in Azencott et al. (2013). This metric measures the
precision of the selected SNPs, hence we denote it as such. As
shown in Table I, SPADIS consistently underperforms in this
metric. Nevertheless, we argue that it is not a good measure
of how well the methods perform. Precision considers all
SNPs near a candidate gene as true positives. Consider the
following extreme case: a method that selects solely a set of
SNPs near a single candidate gene can achieve a precision of
1. Hence, precision indirectly rewards the selection of SNPs
that fall into a smaller number of genes. On the other hand,
the diversification of SNPs in terms of genes and biological
processes help explain the phenotype better. This metric is in
clear contrast with the number of genes hit and the number of
biological processes hit.

H. Contribution of the Hi-C Data

We evaluate the information leveraged by using the Hi-C
data via comparing the regression performances obtained when
using GS-HICN compared to using other networks (GS, GM,
GI). Tests are performed for all 17 phenotypes with SPADIS,
SConES(S) and SConES(R). We compared the methods over
five experiments: four experiments with tight cardinality con-
straint applied for £ = 100,250,500 and 1000, and one
experiment with maximum cardinality constraint applied for
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TABLE I: Table shows statistics about the genes and bio-
logical processes hit by the selected SNPs sets by SPADIS,
SConES(S), SConES(R), Univariate and Lasso. Tight cardinal-
ity constraint is applied for the following k& values: k£ = 100,
250, 500 and 1000. The reported results are averages over all
17 phenotypes and 4 networks. The best result for each k is
marked as bold.

Metric k \ SPADIS  SConES(S)  SConES(R)  Univariate  Lasso
100 59 44 45 38 5.5
Geneshit 230 129 8.7 9.0 76 10.9
s 500 234 143 15.0 13.8 183
1000 | 408 247 236 242 279
100 151 114 117 137 144
) 250 306 230 236 266 280
GO-Hit 5o 491 373 382 424 441
1000 747 597 581 659 636
100 7.0% 11.0% 10.9% 8.6% 73%
precision 20 6.3% 9.4% 9.4% 7.4% 6.1%
‘ 500 6.2% 8.3% 8.5% 6.9% 5.9%
1000 | 6.3% 7.5% 7.6% 6.7% 5.8%

k = 1733. As shown in Table II, Hi-C data provides im-
provements in regression performance on average: 1.4% higher
than GS and GM and 1.9% higher than GI. Moreover, the
improvement can be considered consistent since GS-HICN
performs better than other networks on average in 4 out of
5 experiments. Moreover, GS-HICN hits 3.0% to 6.6% more
genes and 2.7% to 21.9% more biological processes compared
to other networks, on average — see Supplementary Tables
2-5. For comparisons of GS-HICN with other networks per
individual phenotype in terms of regression performance, see
Supplementary Figures 14-17.

1. Time Performance

We report the CPU runtime of all methods, across a range of
number of SNPs (from 1000 to 173 219) and all four networks.
The measurements are taken on a single dedicated core of
Intel 17-6700HQ processor. The runtime tests are conducted
for one cross-validation fold with preset parameters on a single
phenotype FT Field, which has the most number of samples
available (m = 180).

We consider a method to time-out if it takes more than 103
seconds for a single run because the runtime of the complete
test (10 folds with parameter selection) would take more than
1 CPU week (10 seconds x 10 evaluation folds x 10 training
folds x at least 7 parameters).

Results show that SPADIS is more efficient than all other
methods except the Univariate (baseline) method —see Fig-
ure 5. GroupLasso and GraphLasso do not scale to SNP
selection problem in GWAS. For this reason, they are not
included in the experiments performed on AT data.

IV. DISCUSSION

SPADIS seeks for a subset of SNPs on a network derived
from biological knowledge, such that the selected SNP set is
associated with the phenotype. Even though there are other
network based methods for tackling the same problem, they
rest on the assumption that causal SNPs tend to be connected

TABLE II: Table shows the average Pearson’s squared cor-
relation coefficient obtained for all networks and experiments
that are tested. The results are averaged over all 17 phenotypes
and all methods (SPADIS, SConES(S) and SConES(R)). The
best result for each experiment is marked as bold.

Experiment Network
Constraint k | GS GM GI GS-HICN
Tight 100 | 0310 0311  0.309 0.314
Tight 250 | 0.403 0.406  0.398 0.415
Tight 500 | 0438 0438 0432 0.445
Tight 1000 | 0.461 0.461 0.459 0.467
Maximum 1733 | 0457 0456  0.462 0.461
Average 0414 0414 0412 0.420

on the network. Thus, they incorporate constraints that favor
the connectivity of selected SNPs. However, we argue that se-
lecting connected SNPs together might not provide additional
predictive power as they can be in haplotype blocks and bring
redundant information. Moreover, a method that highlights
different parts of the network could be useful because it can
potentially recover different biological processes: SNPs af-
fecting diverse biological processes would be complementary
and explain the phenotype better. To address these issues, we
propose a new formulation: As opposed to enforcing graph
connectivity over the set of selected features, we set out to
discover SNPs that are far apart in terms of their location
on the genome, which translate into diversity in function. To
the best of our knowledge, none of the current approaches
operate with this principle. Our results indicate that selecting
SNPs remotely located on the network indeed hit genes that
are related to a larger number of distinct biological processes.
This property can help in gaining more biological insights into
the genetic basis of the complex traits and diseases.

The technical contribution of this paper involves formulating
this principle through a submodular function. We empirically
show that SPADIS can recover SNPs known to be associated
with the phenotype and the optimization is efficient. Another
alternative would be to formulate an optimization function that
directly rewards the number of distinct process hits. However,
given the incomplete knowledge of the process annotations,
this could lead to literature bias. Therefore, we refrain from
incorporating such a term directly in the model, instead, we
let the diversity on the 2D and 3D locations lead the diverse
selection.

In our experiments, to score each SNPs relevance to the
phenotype, we use sequence kernel association test (SKAT)
based on its success and for drawing a fair comparison to the
literature. There are other alternatives such as Pearson’s corre-
lation coefficient, or maximal information coefficient (Reshef
et al., 2011), which can easily be used with SPADIS as long
as the computed scores are non-negative or are transformed to
a non-negative range.

For the first time, we investigate the utility of Hi-C data
for selecting a SNP set. Our results show that Hi-C data
consistently provides slight improvements in regression per-
formance. We think it is a promising source of information for
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Fig. 5: CPU time measurements of SPADIS, SConES, Uni-
variate, Lasso, GroupLasso and GraphLasso from 1.000 to
173.219 SNPs on four networks: (Top left) GS, (Top right)
GM, (Bottom left) GI and (Bottom right) GS-HICN. Note that,
runtimes of GroupLasso and GraphLasso are the same for GS
and GS-HICN networks by construction.

SNP association. We currently limit the use of data to intra-
chromosomal contacts due to much better higher resolution
compared to inter-chromosomal contact maps (2 kbp vs.
20 kbp). We also discard contacts that fall outside of the
significance range. These choices are likely to over-constrain
the method, and further research is needed to fully utilize such
information, which we leave as future work.

In this article, we introduce SPADIS and benchmark its
performance on AT genotype and phenotypes. Alternatively,
SPADIS can be used for discovering associated SNP sets for
complex genetic disorders as well. For instance in autism,
research efforts have mostly focused on identifying risk genes
through whole exome sequencing studies (De Rubeis et al.,
2014; Tossifov et al., 2014). However, close to 90% of the point
mutations fall outside of the coding regions (Hindorff et al.,
2009). Discovering a set of non-coding risk mutations will
certainly help to uncover the genetic architecture. Recently,
a large-scale effort to collect GWAS data of autism families
along with clinical information of patients is reported (Yuen
et al., 2017). Hence, in future work, we plan to apply SPADIS
on autism, which should help explain the heterogeneity in wide
spectrum of phenotypes.
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